Chapter 5: Energy Decay in Isotropic Turbulence

Part 5: Energy Spectrum Equation via Fourier Analysis of the Velocity
Field

Transfer physics in analyzed based on Fourier analysis in wave number space of the
NS equations, which shows that the energy transfer occurs due to interactions
between scales at specific combinations of wave numbers. Whereas previous
approach used R;; and K-H equation leading to k(r, t) analysis.

Fourier-series representation

The velocity field can be expressed as:

=

= 2nn/L

u(x t) = z e™2a(x,t) (1)

Where n = (n4,n,,n3) and n; are integers with —oo < n; < oo.
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Fig 6.8. A sketch of the Fourier mode corresponding to k = (4, 2,0). The oblique
lines show the crests, where R(e**) = cosk * x is unity.



The Fourier coefficients of the velocity are:

4k, t) = Fr{u;(x, t)}
Inner product

= (uj(x,t), e k%), +— -
Volume average
1

A4

Where the operator F{ }is defined as

Fel 9(x)} = (g(x), e %) (2)

Note that e’ X = constant=1fork -x =0, >k L x
The Fourier modes are orthogonal:
(X o™ik Xy = § = {1’ if k=«
’ RE 0, if k=K

'

Inner product

(f,9) = f f(x)g" () dx

Since g(g, t) is real,

u(xt) = u(xt)

Where an asterisk denotes the complex conjugate.



Therefore,

u(st) = D ek xale) = ) e H L )
z[u (—K t) —u(K t)] e
2 (—xt) = (k. t)

One of the principal reasons for invoking the Fourier representation is the form
taken by derivatives. Using Eq. (1) and taking derivative with respect to x;:
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ou(xt) = ik; z e 2q(k,t) = ika e kX g*(k, t)
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Tk{au(x t)} ik; Z (K t) 61( K/ i = ik; u(K t) (3)
Since u is real

@(xt) =a(kt)

Differentiation with respect to x; in physical space corresponds to multiplication
by ikx; in wave number space.



The Evolution of Fourier modes

Divergence of velocity in wave number space

Tk{ui,j} = lK]ﬁ] = lE@
du; oA ~ ~
V-u=0—>7-"k{ }=lkiui=K Uu=0-xkld

Consider an arbitrary vector G, it can always be decomposed into a component
parallel to k and a component normal to k

[

=gl 4 ¢

And considering € = k/k the unit vector in the direction of k, we have

Or using index notation

(Kla\l + Kz@ + ’C36§)(K1' K2, ’C3)/’c2 = @

[(E ' Q)Kl' (E ' Q)KZ' (E ' Q)’%]/’CZ =Gl



For the perpendicular component

Where the projection tensor Py (k) is

Kij

Pir = 0 —— 5~

Which determines G+ to be the projection of G onto the plan normal to k.
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Fig. 6.9. A sketch (in two-dimensional wavenumber space) showing the decomposition
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of any vector G into a component G parallel to k, and a component G perpendicular
to K.



Navier-Stokes:

ou; N 0 (ujux) _ 0%u; _10p
Jt 0x; oxixy, pOox;

Apply the operator F;{ } to NS:
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azuj 2~
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p(x t) ETk{

p(x t)}
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Where previous derivation showing differentiation with respect to x; in physical

space corresponds to multiplication by ikx; in wave number space was used and

x,t .
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The nonlinear convection term is written as

And its Fourier coefficients will be defined later.




Thus, NS becomes:

~

ol A
a_lz] (i, £) + vi® W (e, t) = —ir;p (i, t) — Gj(x, t)

Multiply by k; such that LHS=0, since k;il; = 0 (continuity equation) and multiply
by i to obtain

Eqg. (4) can be shown to be equivalent to the pressure Poisson equation in Fourier
space and to show that the pressure and convection terms can be combined using
the projection tensor.

1) In wave number space, the Poisson equation for pressure is obtained by
taking the Fourier transform of the divergence of the NS equations:

v () - n [

Where:

And

Tk{ 0 la(ujuk) } = ik, {M} = iK1 )

ox;| Oxy dxp

In both cases using the property of% in wave number space = ik;, as per Eq. (3).
]

Thus:

kzﬁ = lK] G] (E, t)



2) By usingj = k in Eq. (4) and multiplying by —ik;

. 2 A ~
—IKK D = KjK G

Dividing by k2

. Kij ~ ~

_lK']p e K-Z Gk et G”]

i.e., the pressure term —ik;p exactly balances G, the component of G in direction
of k.

The NS equations can be re-written as

a1, - |

Combines pressure and
convection terms.

Consider the final period of decay of isotropic turbulence in which Re is so low, that
convection is negligible relative to the effects of viscosity such that the RHS of the

above equation is zero. Then, for a specified initial condition Q(E, 0), the solution
of the NS in wave number space is:

2k, t) = 2, 0)e ™"t

Thus, each Fourier mode evolves and decays exponentially with t at rate vi?,
independently from the other modes. High wave number modes (small 1) decay
more rapidly than low wave numbers (large A).



Expressed in terms of Q(E), the nonlinear convective term is:

~ 0 (u,uy) ,
Gk(E» t) = ka {#} = mliFk{ukul} As per Eq. (3)

= iKlTk Eﬁk(K_’)eik—’-£ Zﬁl(Kf_”)eik—”-£
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represents NS in wave number space.

The LHS involves 7 only at k. In contrast, the RHS involves il at k" and k', such
that k' + k"' = k, and the contributions from k’ = k and k" = k are zero.

In wave number space, the convection term is nonlinear and non-local, involving
the interaction of wave number triads, k, k'and k"', such that k' + k" = k.



Figure 5.9 Triads of wave numbers.

The kinetic energy of Fourier modes (Pope)

A dynamical equation for the discrete energy spectrum

~

Bl t) =55 (6 D) (6)

May be derived by taking the average of the sum of Eq. (5) times ﬁ]* (E’ t) and the

complex conjugate of Eq. (5) times ﬁj(g, t). The result is:

a E T ~ . . .
EE(E, t) = T(E, t) — ZVKZE(E, t) (7) Derivation in

progress

Where:
Pk t) = P ()R i ) (@ () ()i (i — )

And R{ } denotes the real part. Comparing Eq. (7) with Part 4 Eq. (4) and since the
time derivative and dissipation terms are the same suggests that the transfer terms
are also equal, although Part 4 Eq. (4) subject assumption homogeneity and not yet
established whether or not invoked for Eq. (7); however, this needs to be shown.
Note that Eq. (7) derived from NS, whereas Part 4 Eq. (4) from R;; equation.
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Summing over all k, LHS becomes dk/dt, while the last term on the right-hand
side sums to —¢, and the sum of ’IA"(E, t) is zero:

> () =0

K

Thus, the term 'IA"(E, t) represents a transfer of energy between modes.
Eqg. (7) has a direct correspondence with K-H equation, but has the advantage of
providing clear quantification of the energy at different scales of motion and an

explicit expression for the energy-transfer rate — 'IA"(E, t), which plays a central
role in the energy cascade and involves k' + k" = k.

The terms E(k, t) and —2vk?E (k, t) in Eq. (7) can be related to the two-point
two-velocity correlation in wave number space R;;(k, k', t).

The two-point two-velocity correlation R;; (g,g +r, t) can be represented in
physical space and wave number space:

Ensemble
average

Rij(2xx+7,t) = (i ) (x +1,t)) <

Rij (1 ', t) = (Frfui (2, ) JFir{wy (2, 1) )

= (@(k )y (K, 1))

The dependence from x and x’ = x + r in physical space is transformed in a
dependence from k and k' in wave number space.

Recall for homogeneous turbulence Rij(&»l +r, t)=iRl-j(§ , t) and equivalently
in wave number space, as shown in Appendix A.1, ﬁi(& t) and aj(g’, t) are
uncorrelated, unless k' + k = 0, i.e., k' = —k. This relates the vector r in physical
space, with an equivalent vector k in wave number space.
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Thus, all the covariance information is contained in:
Rij(ret) = @(—r 0)(re, £)) = (@5 (16, )8 (1, 1)) = (B (16, £) 8 (16, 1))

And in homogeneous flow the Fourier representation of R;; becomes
Rii(r,t) = zjzu (i, t)ei®r

The kinetic energy of the Fourier mode, defined in Eq. (6) can be related to ﬁii:

" 1 1
E(re t) = 517 (1 0) (1, t) = = R, t)

The TKE is:

1
k(t) = = Wit

= Z%ﬁii(& t) = Z E(xt)

The dissipation rate £(t) is also related to E(E, t), by

e(t ——vllm Tt

(t) r=0 012 J]( )

= —vli te T Rii(x,t
vim ) e (—KrK) ”(E )

= z ZVKZE(E, t)
i

Thus, E'(E, t) and ZVKZE(E, t) are the contributions to TKE and ¢ from Fourier
mode K.

12



The kinetic energy of Fourier modes (Bernard)

Recall previous derivation discrete NS as per Pope

9
(35 + v ) (1) = =Py . (€, (- 1) (5)

K’

Can be transformed to Bernard form by settingj =i, l=m, k=j, k' =1
0
(6 + VK ) (K t) = ucmP”Zu](l t)um(rc [ t) (8)

An equivalent form of Eq. (8) is given by:

0
(6 -I-VK) (KZ t) Ml]m(K)Zu](l t)um(rc lt) 9 Appendix A.2

Where:

[
Mijm = —E(Kmpij(E) + ijim(E))

Which can be obtained noting that the RHS of Eq. (8) is left unchanged if the dummy
indices j and m are switched, and summation on [ is replaced by the equivalent
summationonl' = k — L.
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Applying the same steps used to go from Eq. (5) to (6), i.e., taking the average of
the sum of Eq. (9) times i (E» t) and the complex conjugate of Eq. (9) times ﬁi(g, t)
gives a dynamical equation for the discrete energy spectrum in the form:

3 Derivation in
=B (1ct) + 2vi?E (1 ) progress

1 — N N =
= >Mym ) (@)% O (k- 1) - ()t (O (£~ 1)) (10)

Kf’

Where [ has been replaced with —[ in the second term for later convenience. The
RHS accounts for the energy transfer between wave numbers. The triadic nature
of such exchanges is evident in these expressions.

Equivalency of Eq. (10) and Eq. (7) needs to be shown.

Limit of Infinite Space (In progress)

Consider now limit of Eq. (10) as L — oo.

Define

L 3
Bh(et) = (5) 2le (ko) A

And using the following:

(i t) = 4(~x t)

14



1 .
s O (6 0 = 35 [ Ry (e)etsrr

Eqg. (11) becomes:

L

3 3
1 .
L — _ /\. /\.* _ i N _ K-ﬁ
B (et) = (55) o0t (o) = (57) [Ro (0 o)etemar
In the limit as L — oo, RHS becomes the Fourier transformor R;; — &;;

lim EL](E, t) = 8”(5, t)

Lo oo l

During this process, k values become closer and closer, transforming from a
discrete distribution to a continuous vector.

A similar reasoning can be applied in the case of the two-point triple velocity
correlation. Thus, define:

L 6

Tha(st) = (52) e 8@ OB (k-Le) (2)

Where the fact that

()0 (L t),(m, t) = 0

Unlessk + [ + m = 0 is used.
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Substituting the Fourier components according to
~ 1 —iK'x
;(x,t) = 3 vui(g, t)e Exdx (13)

Transforms Eq. (12) into

Tijn (% L t)
= (%)6%9] j j ui(g, t)uj (X’ t) un(g' t)e—ig-(&—z)—ig-(z—z)dEd}_/dZ (14)
vJvJy

For homogeneous turbulence, the triple velocity correlation S;;,, depends only on
r=x—zands=y—z - x=r+z y=s+z

Therefore,

Siin(1,s,t) = u;(x, t)y (X' t) un(zt) =w(r+z)u(s +z t)u,(zt) (15)

Changing x and y variables in Eq. (14) with r and s, respectively, and using Eq.

(15) gives

1\°1 o
Tl t) = (5) = fv fv fv w(r +z 0)u(s + 2 un(z t) e " H2drdsdz
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And carrying out the z integration

1\° .
Tiﬁ'n(El L t) = (ﬁ) L j\; Sijn(t, s, t)e—lE'K—LL-gdtdi

In the limit as L — oo this becomes

6
Tim(k Lt) = (%) j f Sijn(r, s, t)e ESdrds  (16)

Which represents the Fourier transform of S;,,.

Now, the tools to consider the limit of Eq. (10) as L — oo have been developed.

Multiplying Eq. (10) by (L/2m)3 and taking the limit as L — oo gives

- 4(k)8; (D (- - 1) || (A7)

Now, consider each term separately.
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Term 1:

3

lim ( L )3 :t E(k t) —l (%) iu (e, t)0(x, t)

L—ooo \2TT

And using Eq. (11) and the fact that @} (k, t) = @;(—K, t)

_ 39 . 1 10
lim (2—) EE(E’ t) = EllmE’“ (K t) =33 Su(rc t) (18)

L—o0

Moreover, in Chapter 4 Part 5, the following relation was derived:

(K)_EWG(”_EE)
l] l

4rKc2 K2

And contracting indices gives

E(x,t) KiK; E(x,t)
Eit (E' t) ~ 4mi? é}.‘, T2 | T 2mk? (19)
3w

Substituting Eq. (19) into (18) yields

L 1 0E(k,t)
Lh_}rg( ) E(K) 4?2 Ot
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Term 2:
3 3

. L . . L — =
lim 2 (§> vi?E(k,t) = lim (2—) vic2 i} (x, t) 0 (x, t)

L—>oo L—>oo s

Using similar steps shown for Term 1:

_ L3 ~ _ v
lim 2 (E) vi?E(k,t) = 2 lim vk2E;i (ke t) = 5B 1)

L—>o

Term 3b:
tim () My Z 2,2 ()@ (-x - 1) (20)
Recall relation between triad of wave numbers:

K+l+m=0

Using Eq. (12) withi =j, j=m, m=iandk =1, | =k

3

(&)Y (00 D)

e Y60 e



Therefore

tim 2(2) My 3 (@02, OF (- D) = 2 M [ Tmi(le~L6)

L

Where the last equality derives from the fact that Lllm imi = Ljmi, s shownin

3
Eqg. (16), and that (T) represents the volume surrounding each wave number

vectors in the sum, since k = 2nn/L.

Term 3a:

Same steps as Term 3b give:

thglo ) ( ) ijm Z 2, (1) (L)t (— 1 — l)) Mum Timi(L—k =L t)dl

Therefore Eq. (17) becomes:

1 0E(k, t) E( 0
4mtk? Ot 2

= Um(K)jT]ml(l k—0Lt) = Trmi(L—Kk—Lt)dl (21)
And using homogeneity properties of Tj,,;, it can be shown that:

Timi(L =k =L t) = =Timi(Lx =L t)
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And Eg. (21) becomes:

1 aE(K,t)+vE( & = M I L) dl
4‘7TK2 ot 2T K, - ijm jmi _;E L L

Finally, multiplying by 4mk?

0E (k, t)

Fra 2vKk2E (i, t) = 4nk*Mijm | Timi(LE — L) dl  (22)

This represents an alternative form of the equation for the energy spectrum that
can be compared with

0E
s (k,t) + 2vi?E (k, t)

3
Urms

= j k[(3 — k?r?) sinkr — 3kr coskr]k(r,t)dr (23)
0

T

obtained in Part 4; however, also subject assumption of isotropy, whereas Eq. (22)
only assume homogeneity. In both expressions, the RHS represents the rate of
transfer of energy between scales.

Eqg. (22) clearly shows the interaction between the wave number triads that are
responsible for the transfer of energy between scales.

Eg. (23), on the other hand, shows the role of the two-point three-velocity
correlation in the transfer process.
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Appendix A
A.l

Rij(x,x +1,t) = (w(x t)y(x +1,t))

Rij (1,1, t) = (Frefu (2, ) Frr {uy (2, 1) 1)
= (0 (k, t); (K, 1))

= (wi(x £) e7%) (', 1), e %))

[inner product] [inner product]

1 L oL ' .
@) =35 [ [ e Oy, ) e = Daxay
o

Substituting x’ = x +r and using the fact that in homogeneous turbulence
Rij(x,x +1,t) = Ry(r,t)

1 (%t . o
(ui(& t)uj(k_’, t)) = E_I f :Rij(fr t)e—lz-(E+K_)e—lE -£d£d£/
° e

Using the fact that dx’ = dr

1 L

. Vi 1 L .
= E e_lﬁ'(E+K_)d£L—3f :RU (Z , t)e_”c_'fdt
0 0

= (e7xk o~xk ) (R (r,t), e &)

|inner product| linner product]

= 81 (Rij(r, 1), € 7ET)

linner z;roduct|
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And using the definition of the Fourier coefficients

(@ (K, t) (K, t)) = Fi{Rij (1, )30

Substituting k' = —k

Rij(ke,t) = (U (k, t)a; (=K t)) = FrfRi;(x, £)}

A.2
d
<E+VK2> ﬁi(E' t) = —lePUza}(L t)ﬁ;l(E_L t) (114)
!

Switching the dummy indices j and m gives

0

(35 + i) i €) = =it Pam Y (L)1 — L)
!
and replacing the summation on [ with the equivalent summationon l' = k — [:

(% + VKZ)ﬁi(E, t) = —lK]lezlfr\n(E _ £l' t)ﬁ\](l_', t)

k-l

G,
(& + wc2> = —iK; Py z T (U t)un(k—1,t) (24)
14

Taking the average of the sum of the RHS of Eq. (1A) and (2A), i.e.,
(RHS 4 + RHS,,4)/2

Gives

d i
(a + Wcz)ﬁi(ﬁ» t) = — 5 (emPyj + ijim)za\](lr t)tm (k — L t)
:

(% + V"Z) (1, £) = Myjm (k) Z (L)@ (= L t)
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