Chapter 5: Energy Decay in Isotropic Turbulence

Part 4: Energy Spectrum Equation

In Part 3, an equation for R;;(r, t) was derived by taking the average of ui(g, t)

times NS; at y + average of u; (X' t) times NS; at x subject assumptions of

homogeneous turbulence:

R
J r,t)=

Where:

aSjk,i aSjk‘i
or, (-r,t)+ or. (r,¢

163( 10%;
p ar;

% (xy,t) = w(eo)p (1)

is the two-point pressure-velocity correlation vector.

Recall Fourier transform definitions of the velocity-spectrum Sij (E» t) and fRij (g, t)

tensors:

£1(0t) = Zoge [ Rl etz

Rij(r.t) = f Ej(xe, t)e ™ Ldi
v

@ = dKldkzdkg

These two equations provide a means of decomposing turbulence correlations
into contributions from a continuous range of scales as represented by Fourier

components e

lKT'




Fourier transform of the R;; equation gives,

E
L (k, t) = Tij(g, t) + Pl-j(g, t) — 2wc28ij(5, t) (1)

Which is a 2" order tensor equation, where:

1 .
Tyj(x,t) = @ L Sij(r,t)e™Ldr (2)

Sy(rt) = 5o () + 5 2 @

Tij(g, t) = rate of transfer of energy (gains or losses) between different scales of
turbulent motion due to vortex stretching and re-orientation.

10K; 107(
Pyl t) =~ s | 55 (0 + 55 ()| et

is the Fourier transformed pressure velocity term.

Pij(g, t) = 0 for isotropic turbulence = influence of pressure field on bringing
anisotropic turbulence to an isotropic state.

The viscous dissipation term is evaluated as follows:

2v 0°R; 2v
3 / (T t)em tdr = 3
(2m)3 ), or? (2m)

f 2k*R;jeETdr = —2vk*E;;(k, t)



Contracting indices in Eq. (1), the pressure term drops out and integrating over a
. 1 . oo
spherical shell converts £;; to E(k,t) = Ef|£|=rc Eii(x, t) dQ with K = Jy EGc t)dx

0E
= () =T0 1) = 2vi"E(,t) - (4)

Which is a scalar equation, where:

df) =elemental
solid angle

1
T(k,t) = §j| | Tii(g, t) d0 = 2nKk?T;;(x,t)  (5)
K|=K

is the transfer term and T;; = Tk{Sii(L t)}

Next assume in addition to homogeneous also isotropic turbulence and substitute
the isotropic form of Sy ;, obtained in Chapter 4 Part 2, into Eq. (3) which gives,

, 1.dy dk 5
Sii(r,t) = Upms 2 dr (T ar (r,t) + 4r°k(r, t)) (6) Appendix A.1

Where k(r,t) = S;11(ré))/ul,, is the previously defined (Chapter 4 Part 2)
correlation function, not to be confused with wave number k. Note that S;; = f(r)
only in isotropic turbulence.

Using Eqg. (6), Eq. (2) becomes (Bernard P4.7),

(0]

sin kr

dr = f(k) #+ f(E) (7) Appendix A.2

1
Tii(KJ t) = WJ Sii(r, t)T'Z o
0

3



Substituting Eq. (7) into Eqg. (5) gives,

e}

1
T(k,t) = %[ S;;(r,t)krsinkrdr (8)
0

Which can be interpreted as the Fourier transform of S;; such that the inverse
transform is,

(0.0)

Sii(T', t) = ZJ T(K, t)

0 KTr

sin kr

dke  (9)

Substituting Eq. (6) into Eq. (8) and integrating by parts twice gives

ud o
T(k,t) = T:Sf k [(3 — k?r?) sin(kr) — 3kr cos(kr)]k(r,t)dr (10)
0

Appendix A.3

Which shows that k(r,t) determines the rate of energy transfer between the

scales of turbulence, as shown later.

Integrating Eq. (4) between 0 and oo and using

(00]

K(t) =J E(k,t)dk
0

€= ZVJ K?E (x, t)dx
0

Gives
dK(t)
dt

:f T(k,t)dk — &
0

And in isotropic turbulence




Therefore, in isotropic turbulence

f T(k,t)dk =0
0

i.e., net energy transfer between scales equal zero or in other words gains and
losses are conserved.

When f(r,t) is known, E(k, t) can be evaluated using:

E(k) = %Zfoo(gf(r) + rf’(r))icr sin(kr)dr (11) | Appendix A.4
0

r2

For the final decay, f(r,t) = e_%, such that E (k) for the final decay is given by:

2

A 1 2
E(k,t) = trmsZg K/lg)4e_§(mg) (12%) Appendix A.5

V2r

Consistent with E (k) = —4mk*E;(k), as per Bernard Eq. (4.67).

Substituting Eq. (12) into Eqg. (4) yields

T(x, t) = E (i, ) ”“S(( ) —5)

*According to Bernard, this expression is consistent with Eq. (4.67), such that

_ _E@ urmslg (K)lg)z
By () = amit  4m2m /19 e
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Figure 5.8 Energy spectrum budget in final period. —, 9E /dt; ——, transfer term; — - —, dissipation. In

this illustration R; = 10, with A denoting 4,.

In final decay scales for which k < \/g//'lg lose energy to those for which k >

V5/2,.

Ke = 2/Ag peak E

Kq = \/E//lg peak dissipation

In this example, k., and k; not well separated due to low R;.

No inertial range for above form of E (k, t) equation. As Ag rises the balance in Fig.
5.8 shifts to smaller wave number, i.e., larger scale — higher wave numbers lose all
their energy before lower wave numbers.



Hinze pp. 218-220

Consider the integrated form of Eq. (4)

K

%fOKE(K, t)di = fOKT(K, t)dx — 21/]0 K?E(x, t)dx  (13)

If, as previously done, the upper limit of the integral is increased to k = o
j T(k,t)dk =0 (14)
0

i.e., net energy transfer between scales is zero or in other words gains and losses
are conserved.

An alternative derivation for Eq. (14) can be obtained starting from Eq. (9).
Specifying r = 0 in Eq. (9) recovers Eq. (14)

sin kr

1
o dx = ESii(O, t)

J T(k,t) lim
0 r—0

If Sl-l-(O, t) = 0.



An alternative form of Eq. (6) for S;;(r, t) is:

2

Sii(r,t) = ugms( d —(r,t) +7' (7' t) +— k(T t)) (15) | Appendix A.6

3
Substituting the Taylor expansion of k(r, t) = %k"’(O, t) + --- into Eq. (15) gives

35 271,111 .
Sii(r,t) =Tk (0,t) Appendix A.7

Which shows that S;; (1, t) behaves like 2 for small values of 7. Consequently,

Sii(O, t) =0
And Eg. (14) must hold.

Therefore, for k = o, Eq. (13) becomes,

(00]

d [0 ]
—J E(x, t)dx = —Zvj k?E (x, t)dx
dt J, 0

dK(t)
dt

= —¢

The LHS shows the change of total kinetic energy of turbulence and since there are
no external energy sources, LHS must equal the dissipation caused by viscous
effects.



T (k, t) is the Fourier transform of S;;(r, t), which is related to k(r, t). In the K-H
equation, it was previously stated that the term:

3
Uyms

— 4k

[ak 4
ar r

represents inertial processes. However, it can also be interpreted as a “convective”
action in the transport of f(r,t), caused by the interaction of eddies of different
sizes.

Similarly, the term fOK T (k,t)dx can be interpreted as the interaction of eddies of

different wave numbers, transferring energy by inertial effects to or from the
eddies in region 0 to x, which is the reason T (k,t) is referred to as the energy-
transfer-spectrum function.

Neglecting the interaction of eddies in Eq. (4) gives

OE
R (k,t) = —2vk?E (k, t)

And integrating

E(k,t) = E(k, ty) exp[—2vi2(t — ty)] (15)



Comparing this expression with Eq. (12)

2 2
E(x,t) = ui/";ijg (K/lg)zle_%(“g) (12)

The two exponential forms are equivalent for t > t, = t — t, = t since (Hinze
p.210)

A =Bt = A, = Vvt Ar =21

1 1
exp[—2vk?t] = exp [— 5 K*Vavty 4vt] = exp—- (leg)z

Moreover, assuming IC

U2
E(x, ty) = Hrms g )

Eg. (12) and Eq. (15) become identical.

This shows that the decrease of kinetic energy with time occurs at a higher rate for
large wave number eddies and E (k, t) increases very rapidly, proportional to x*
and decreases monotonously to zero as k increases.
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Appendix A
A.l

dikrmm  k or 1dkr?) 1 T
5in(0) = s | (b = ) o 500 g g (00 2 )

Forj=kandl =1

dixme kom 1dkr?) , n, T
Sua(£) = e (k=) 3~ 5ot g (0 0

dk Tk ka 1 d(k?"z) Tk
— .3 el T A "k
= trms [(k r dr) 2r 2r + 4r dr (4 r)

T r_kd(krz)
— UYrms Cdr2 ' r?z dr

Tk dk Tk
= b [ 5 37 + 247

Taking a derivative with respect to 1y, yields
0Siki
aTk

(1) = s [5K7 ) + 2K ) + 2] 1)

As shown in Chapter 5 Part 1 Appendix A.2.

Similarly,
0Siki
ark

4k (-1)
r

(_f) = ugms [_gk”(_r) + ;k,(_r) - ] (24)

And using the following relations
k(r) = —k(-r)
k'(r) =k'(—r)
k' (r) =—=k"(-r)

11



Into Eq. (2A) gives
0Siki
ar'k

(—t)=u$’ms[ kK'(r) + k()+ﬁ] (34)

Now, defining

0S:,
Sll(”l" t) _ ik,i (—T, t) lkl ( t)
ory, -
And using Egs. (1A) and (3A) yields
— .3 " ( )
Sl-l-(f, t) = Uns [Tk (r) + 7K' (r) + ——
Multiplying and dividing by 2 results in
1
Su(r,t) = urms[ 3k" + 712k’ + 8kr]

Or equivalently

1 .y 5
Si(r, ) = Upms — -y (r k' + 4r?k)

12



A.2

Ty t) = 75 )3J Sy(r.t)eiszdr  (44)

Converting to spherical coordinates
=r(sinfcos ¢ é; + sinfsin¢ é, + cos b é;)
Also, for isotropic turbulence

1d dk .
S;i(r,t) =ud, = S (r —(r t) + 4r<k(r, t))

Such that S;; is only a function of 7, a scalar quantity.
Assume that,

K =Kes

Which is possible due to the isotropy hypothesis, i.e., invariance under rotation
and reflection.

Therefore, Eq. (4A) for T;; becomes,

— 1 S iK'T'd
T (k) = ij ii(r)e Tdr

1 00 2T T ]
= (ZTF'J drSii(r)J dqu dOe kT 05042 gin(9)
0 0 0

1 J°° , ™o
= r drS--(r)j dBe T s sin(9)
(277:)2 0 A 0

Multiply and divide by —ikr

[o'e] Vs
T (k) = — f rzdrSii(r)f —ikre™ <0sf sin(9) do
0

ikr(2m)? ),
And use the relation:

e ikrcos6 _ iKkr cos @

T —ikr sin(@)e
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Gives

1 ® Td .
.. N 2 . __ _ikrcos@ do
T;; (k) im’(Zn)ZJO r drSu(r)fO 75 ¢
1 °° , -
__ 2 . ikr cos
- fo r2drSy(r) et coso ]
2 o0 eixr _ e—iKT‘
S 2¢. . —_—d
KT‘(ZT[)ZJO rSiu(r) 21 r
2 °° sin(xr)
— 2¢..
a0 = gz |, S0 T
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A3
In Kr
dr  (54)

Ty (x, t) = @JwSii(r, t)r? >

S;i(r,t) = urmsédi(r d—(r t) + 4r2k(r, t)) (64)

1
T(x,t) = Ef T;i(x, t) d2 = 2nKc?Ty(x, t)  (74)
K=K

3 0
T(k,t) = u:;nsf k [(3 = k?r?) sin(kr) — 3xr cos(kr)]k(r, t)dr
0

Substituting Eq. (6A) into (5A) gives
@ sin kr

Tii(K, t) = 2—7_[2 urms —_— (7"3k,(7", t) + 47’2]{(7’, t)) dr
ud ® sin kr
_ ””SJ —(r3k (r, ) + 4r7k(r,0) == dr
2n? ),
Integration by parts
Judv=uv—jvdu
3 (0]
T;i(k, t) = [ﬂ r2K'(r, t) + 4rk(r,t)) sin KT]

212K 0
uﬁmsJoo( WD) + 47k D) d (SinKT')
212 J, R rR dr \ «kr r

15
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Where:

u o0
Zrms ( 2K (r,t) + 4rk(r, t)) sin kr
0
3
u
= 2;# [(rzk’(r, t) + 4rk(r, t)) sin KT]OO
us
=5 [(0%K(0, £) +4—6# (07T SIn O]
 2m2k

And using the fact that at large 7, the triple correlation k(r,t) behaves like r=*

(see Part 3)

lim r2k'(r,t) = 11m rk(r,t) =0

T—>00

Therefore,

oo

43
[ 7 (rzk (r,t) + 4rk(r, t)) sin KZT] =0

2m 0

And Eqg. (8A) becomes:

3

u «© d /sinkr
Tyi(r, ) = — 2:-:-nZSJ (r3k’(’"’t) + 4r2k(r, t))a ( — )dr (94)
0

Evaluating the derivative of sin kr /kr as

d (sin KT) COSKr SinkKr
r K12

dr Kr

16



And substituting into Eq. (9A) gives

3 %) .
__ Urms 37 7 COSKr  Sinkr
Tk, t) = — 2 fo (r3K'(r, ) + 4r2k(r, t))[ — dr
u‘l%mS ® 271.1 r ' .
~ T op2 f (T k'(r,t) coskr + 4rk(r,t) coskr — ;k (r,t) sinkr
0

4
- k(r,t) sin KT‘) dr

Using the Product Rule of derivatives

T;;(k, t) = — — 2rk(r,t) | coskr + 4rk(r,t) cos kr

212 dr

ud. J°° d(r%k(r,t))
0

B l d(rk(r, t))

4
— k(r,t) |sinkr ——k(r,t) sinkr dr
K dr K

+ 2rk(r,t) | coskr

__ufmsJ“ d(r%k(r,t))
- 2m? ), dr

B l d(rk(r, t))

+ 3k(r,t) |sinkrdr
K dr

17



Grouping terms depending on k(r, t) and integrating by parts again

u; * 3k(r,t
T;;(k, t) = — Zrnmzs (f 2rk(r,t) coskr — (K )sin KT dr>
0
us ® (d(r?k(r,t
- rmszf ( ( ( ))> cos kr dr
(2m)*Jo dr
ul © (d(rk(r,t
+—rmszJ (—( ( ))> sin kr dr
k(2m)? J, dr
u; 0 3k(r,t
= f 2rk(r,t) coskr — ( )sin Kkr dr
22\ J,

ul
T [M +] kr?k(r,t) sin kr dr]

27‘[2

+ Wgs [W{B" —j krk(r,t) cos kr dr]
2T“K 0

Where the fact that at large 7, the triple correlation k(r, t) behaves like r~* was
invoked.

3

u (0]
i = — ZT;TmZSfo [3rk(r,t) coskr —

3k(r,t)

=3

sin kr

+ kr2k(r,t)sinkr]dr (104)

18



Substituting Eq. (10A) into (7A) gives

2,,3
Urms

3k(r,t)

K [ee]
T(k,t) = J [-3rk(r,t) coskr + sinkr — kr?k(r,t) sin kr] dr
0

ud ®
_ :;nsf [—3K2rk(r,t) cos kr + 3kk(r, t) sinkr — K372k (r, t) sinkr] dr
0

3 0
T(k,t) = u:;nsf k [(3 = k?r?) sin(kr) — 3xr cos(kr)]k(r, t)dr
0
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A4

In Chapter 2, the velocity spectrum tensor was defined as

1 .
Ej(rt) = @7 L Rij(r, t)e™ Ldr

Using a contraction of indices

Eulre t) = #LR&(L t)e'ldr
And for isotropic turbulence, as shown in Chapter 4 Part 2
Rii(r,t) =3f(r) +rf'(r)
Proves that R;; is only a function of r, a scalar quantity.

Following the same steps taken for T;; (k) in Appendix A.2, the following result is
obtained,

sin(xr)

KT

E = 2 ) 2R d 114
ii(K)—(Zn)zjo r°R(r) r (114)

It is also possible to relate £;;(k) to E (k), as shown in alternative derivation for
relation between 1D and 3D spectra, obtaining the equation:

E(k) = 2nk%€;(k)  (124)

Substituting Eqg. (11A) into (12A) gives

1(” sin(xr)
E(x) = Kz—f r2R;; (1)
T J, Kr

dr (134)

And substituting Eg. (13A) into (12A) yields

2

u [0 ]
E(k) = ?f (3f(r) + rf’(r))}cr sin(kr)dr
0

20



A.5

r2

frt)=e 5 (144)
Evaluate 1D spectrum E;; using (Chapter 4 Part 5 Eq. (14))

2 - (0e]
E{1(kq,t) = Euz f f(r,t)cosk,rdr (154)
0

Substituting Eq. (14A) into (15A) gives

2 [° -1
i 522
E{1(kq,t) = —u? j e 2% cos KT dr
n 0
This integral can be reconducted to a differential equation. Differentiate with
respect to

72

dE,{(xq,t) 2 — 532
Dy re 245 9 sink,rdr
dKq T J
Use the substitution:
r2 r2
de_le _ L 2/12 dr
— /12
g
To obtain
dE, (k;,t) 2 o0 r
11\K1, — ) oz
— = —y2)2 j sink;rde %
0

r2

(oe]
5122
—Klf COSK T € 22 adr
0

0

2
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Which is equal to:

dEq;(kq,t)
d—lc1 —AZ K1E11(K1: t)

And using separation of variables yields

dEq 4 (xq,t)
— = —2%Kk,d
Ei1(xq,t) gf1t

AgKs
Ei{1(kq,t) =Cexp| — 5

Where the constant C is found by evaluating
2
2 X V2 —
E11(0,t —ZJ td——zj 2y = —242)
11( ) u f(r ) r n_u r \/Eu d
Such that
2212

Ei1(kq,t) = \/—\gﬁlg exp (— ZK > (164)

Using the relation between 1D and 3D spectra (Chapter 4 Part 5 Appendix A.2)

KZ1 d? Eiq K dE;
2 dzcl 2 dK,

E(xy) =

And substituting Eq. (16A) gives

V2 —  [K? A A2 K2
E(K1)=ﬁu2/1g 71(/131{%—/15) exp (— J 1>+—1K1/1§ exp <— g 1)]




A.6

Sii(r,t) = urms 2 dr

1d
_urms Zd

dk
S;i(r,t) = ul,. ( —(r,t) + r—s

1d

dk
3r? —(r t) + 13

(r d—(r t) + 4r2k(r, t))

2

23

d*k dk
—— (r,t) + 8rk(r,t) + 4r* —(r, t))
dr dr

2

k (r t) + 8k(r t))



A.7

2

S;(r,t) = ufms< dk —(r,t) +rd >(r,t) + 8k(r t)) (17A)

Taylor expansion for k(r, t) and its derivatives

3
k(r,t) ~ k”’(o t)

2 2

—(r £) ~ 3 S0, ==k (0,0)

2

k r
Tz (r,t) = 2 5 k"'(0,t) =rk"'(0,t)

Substituting these expressions into Eq. (17A) gives

r? 4 35
S, ) = U | 7K (0,0) +72K"0,6) + 27K (0,0) | = Z 12K (0,0
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