Chapter 5: Energy Decay in Isotropic Turbulence

Part 3: Equation for Two-Point Correlations & Self-Preservation and
the Karman-Howarth Equation

5.5 Equation for Two-Point Correlations

The analysis of isotropic decay carried out in the previous section concentrates on
tracing the history of K and ¢ as they change in time. Only minimal information about

the flow structure was needed, in fact, just the skewness and palenstrophy coeflicient
that are related to the two-point correlation functions. To proceed to a more extensive
analysis of the decay problem that includes analyzing the time dependence of G* and
S, it is necessary to include dynamical information about multi-point correlations.
This means introducing an equation for the time history of the two-point velocity
correlation tensor R(r, ) and then considering its form during isotropic decay. From
such an analysis it is also possible to consider the spectral properties of the turbulence
during the decay process.

An equation governing R ;(x. y, f) for arbitrary incompressible flow is derived by tak-
ing the average of u,(x, f) times the jth component of the Navier-5tokes equation in Eq.
(2.2) at y and adding to this the same quantity with i and j and x and y reversed. The
result is
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Using the definition of R ; given in Eq. (2.30) it follows that the first two terms on the
left-hand side of Eq. {5.83) may be written as
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since terms such as ug-(x.r,]da}{y. t)/ot = 0. The next two terms in Eq. (5.83), coming
from the advection term, give
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The first two terms on the right-hand side of Eq. (5.85) are equal to
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Furthermore, differentiation of Eq. (2.30) gives

R, ou;
—(x,y.t) = uix, £)=—1(y. 1) (5.87)
dyy ay;

and similarly for x; derivatives, so that the third and fourth terms on the right-hand side
of Eq. (5.85) take the form of convection terms
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As far as the last two terms on the right-hand side of Eq. (5.85) are concerned, they
may be written using Eq. (2.31) as
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has been used as implied by incompressibility.

To treat the contribution to Eq. (5.83) from the terms containing pressure, introduce
the two-point pressure-velocity correlation vector
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Putting the above results together it has been shown that Eq. (5.83) becomes
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5.5 Eguation for Two-Point Correlations

Whenx =y, R j'r-{x.. xt)= R,—J;{ x. t), and it may be shown that Eq. (5.95) becomes identical
to Eq. (3.53). This connection suggests that the first two terms on the right-hand side of
Eq. (5.95) are “production” terms. The remaining terms acquire meaning by noting their
similarity to the corresponding terms in Eq. (3.53).

The formidable complexity of Eq. (5.95) can be reduced somewhat by apply-
ing the relation to the specific case of homogeneous, isotropic turbulence. Since
U, (y.t) = U,(x.t) in homogeneous turbulence, and using results like Eq. (5.87), it
follows that the two convection terms on the left-hand side of Eq. (5.95) sum to zero.
Uniformity of U, also implies that the two production terms on the right-hand side of
Eqg. (5.95) are zero.

The simplification for homogeneous turbulence used in Eq. (4.1) can be generalized
to include the statements that

Sin(x.¥.t) = Sy —x,t) (5.96)
and
Kix,y. t) = Ky —x.t), (5.97)

where for convenience the same symbols R, S;;, and X; on the right-hand side are
adopted; their applicability to homogeneous turbulence is implied by the appearance of
one less argument than their more general counterparts. Using these relations, it follows
that
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Putting together the various results, it is found that the two-point velocity correlation
tensor in homogeneous turbulence is governed by the equation
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Contracting the indices in Egs. (5.100) and (5.101), noting the definition of &, in Eq.
{5.92) and using the incompressibility condition gives in both cases
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Now taking a trace of Eq. (5.102) and using (5.103) gives
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which shows that the time rate of change of the trace of the two-point velocity correla-
tion tensor depends on a balance between viscous diffusion, given in the last term, and
the two terms depending on the two-point triple velocity correlation tensor. The latter
represent the process by which vortex stretching brings energy to small dissipative
scales.

Note that the R;; and R;; equations are not closed as they contain the two-point
triple velocity correlation terms and if equations derived for S, ; they would
contain fourth order velocity correlation terms, i.e., conundrum of the RANS
turbulence closure problem and paradox.

Next impose isotropy by using isotropic tensor form of R;; and S;; ; to obtain the
K-H equation.



Self-Preservation and the Karman-Howarth Equation

The R;; equation is transformed to the Karman-Howarth equation under the
assumptions of homogeneous and isotopic turbulence.
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of a scalar scalar

This is a scalar equation, where each term is function of r and ¢, in the most
general case.

Combining Eq. (1) with the Chapter 4 Part 2 isotropic expressions for R;; and S;; ;
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it is possible to analyze each term in Eq. (1) separately.
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Now, taking a derivative with respect to 7y
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Divide by r3

0 — ok f azf Karman-Howarth
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The Karman-Howarth equation relates f(r,t), k(r,t) and u,,,s(t). However, as
with the R;; equation the K-H equation is not closed, as if considered an equation
for f(r,t), it contains an additional unknown, i.e., the triple velocity correlation
term k(r,t).

Using a Taylor expansion for f and k
4
f(r,t) = f(O t) + (0, t) +f’V(0 t)—+
3
k(r,t) =k'(0,t) r+ k"' (0,t) a0 + -
!

and substituting into Eq. (3) gives two equations by gathering terms depending on
like powers of . | appendix A.2

The r% equation gives,
02
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And using the definitions of turbulent kinetic energy



and Taylor microscale
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in Eq. (4) yields
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And using the TKE equation for homogeneous isotropic turbulence
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A result obtained already in Chapter 4.
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The r2 equation gives,

dg «+pl/2 . 2
ac R Oy
Which, coupled with
dk B
T

Describes the decay of homogeneous isotropic turbulence, as per Part 2. This shows
that all the isotropy information in the k and & equations is contained in the
Karman-Howart equation, for which it should be emphasized were derived from
the Navier-Stokes equations, as were the k and € equations.

Assuming self-similarity

£, = F (g5 =)
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@

The Karman-Howarth equation becomes,

LAf\  df - (7. df _,d(n*k)
2n~ d77<n d77> ndn<_ o—5>+10f—R)1<65k07]%_774 dn >(5)

Appendix A.3

Where n = r /A, is a similarity variable.

Eq. (5) represents a single ODE for £(1) and k(1) with R,(t) acting as a parameter.

11



Note that Eqg. (5) contains G, and Sy, which were shown in Part 2 to be constants
during self-similar decay and equal to:

G =f"(0)
_Sk — I;Hr(o)
For self-similarity f(r,t) = f(n) # f(t) and k(r,t) = k(n)) = f(b).

Consequently, both Eq. (5) RHS and LHS = 0 for R;(t) # 0, otherwise LHS
multivalued for R, (t), since f, k, Sky Go # f(E).

However, if R, (t) is sufficiently small, then RHS =~ 0 such that LHS = 0, which is
referred to as the separability condition.

LHS = 0 gives the confluent hypergeometric equation with solution

1

- 5 5(Gs— 1)

Where M is the confluent hypergeometric function.

Integration of the RHS=0 of Eq. (5) yields

R = =S, — f s —ds %

Which can be solved using f given by Eq. (6).
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Self-similarity provides f() and k() for chosen G, and Sk, Recall complete

similarity not possible in isotropic decay - in reality (1) and k() must be f(t).
However, still useful to examine high and low Ry equilibrium solutions.

1) For small Ry, which is still f(t) near Ry, = 0 - Ry ,~0.1. RHS of Eq. (5)
small and using G, = 7/5 for final period

fap=m(32-T) =%
="M\

In agreement with Part 2

72

fart)=e 24

Assuming that decay is self-similar near R = 0, then Eq. (7) holds and solving the
integral yields,

k(n) = gSkoné[(ns + 513 + 15n)e ™1 /2 — 15\/; erf(%)] (9)

where

2 (" _,
erf(n) :ﬁf e Sds
0

is the error function.

Note that G, and Sk, are constants based on assigned values provided by EFD or
DNS.
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Fig. 5.7 shows a plot of Eq. (9), where k is seen to have a much slower decay for
large 7 than the Gaussian form of £.

E(n) Y 77_4 for n -» o

1.0 — k(n)
fin)

0.8

0.6

0.4
k(n), fin)

0.2

0.0

2) For large Re equilibrium, consider Ry = constant # 0. If Ry = f(t), LHS
would have to be multivalued to satisfy equation. If R; = constant a solution for
and f(n) and k() exists, but the equation in indeterminate (1eq. 2 unknowns;
thus, unlike self-similar k and € equation, Karman-Howarth equation is not solvable
without additional assumptions.
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Figure 3. Unscaled (a) and scaled (b) double correlations. Increasing time corresponds to decreasing magnitude in (a), while

profiles collapse in (b) under the scaling. All data is Case 2, while Cases 1 and 3 show similar behavior.
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Figure 4. Unscaled (a) and scaled (b) triple correlations. Increasing time corresponds to decreasing magnitude in (a), while
profiles collapse in (b) under the scaling, where Case 1 is shown in dashed lines (lowest magnitude), Case 2 in solid, and Case
3 in dotted lines (highest magnitude). The scaling works by accounting for the decreasing Reynolds number in each simulation
but not the differences in Reynolds number between cases, which remains a point of ongoing investigation.

Byers, C. P., MacArt, J. F.,, Mueller, M. E., & Hultmark, M. (2019). Similarity
constraints in decaying isotropic turbulence. Paper presented at 11th International
Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019, Southampton,

United Kingdom.
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Additional Discussion Karman-Howarth Equation (Pope pp. 202-205)

2vu? 9 ( . Of

at[ uZf| = ”;’Z:S : 0+ (r a—r) 3)

a) Closure problem, i.e., one equation, two unknowns f(n) and k(1) = one
could write equation for E(n), but it would depend on fourth-order
correlation and so on.

b) Terms in k and v represent inertial and viscous processes, respectively.
c) Atr =0, k term = 0 since
k(r,t) =~ k"'r3/3! + kVr>/5!

And continuity implies k' (0,t) = 0; also, f is even in 7, Eq. (3) becomes,

£ 9f
—_ — v | —— (4L
ot [ = 2vu r4 or (r 67‘)]
— 1 f azf
— 2 i
2vu o [4 ™ +r* 67‘2] i
r=0
= 21/?i 4r*— L9f + r462—f Zvu2 514 i
r# ror or?| _ r4 or?| _
r=0 r=0
d— — 1ovuz 2 1
—— = 4 —_— e —_—_—_— = - /1 2 e ———
£(0,6) =1 E u? = 10vu?f"(0,t) = (07 3 e (10) 4() 70,0
Pope Ex. 6.6

Where the Taylor expansion for f ()
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2
f'r) = £0)+7rf"(0) +% + o

im 2 — oy

r-0 71

was used.

. 2. .
Hence, for r = 0, the Karman-Howart equation reduces to 3 times the k equation,

dk B
dat
d) Energy cascade for high Re hypothesis is that the energy transfer from

larger to smaller scales is an inertial process for r >> 71, consequently, k
term is responsible for this process.

—&

e) If u(x,t) were a Gaussian field then k(r, t), like all higher order moments,
would be zero — energy cascade depends on non-Gaussian aspects of the
velocity field. This fact is used in the Quasi-normal approximation method
for KH equation.
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Skewness of velocity derivative

— aul 3 & 3/2 2 6ui
3,011 — - _ —_—— i) ——
wk(0,0) (ax1> Sk (151/) 35 Vi) 0x;

where

_ (uL1)3

Sk = 372
(uLl)

In the velocity-derivative skewness, includes — sign as per Bernard. Pope and Hinze
define S, without the - sign. In Bernard definition, Sj is positive, while for Hinze
and Pope it is negative. This fact does not change the physical meaning of the
equations but could require some sign changes in the derivations. Throughout
these notes, Bernard definition is used to be consistent.

. connection between S, vortex stretching and transfer of energy between
different scales, as will be shown in Part 4.
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The Kolmogorov 4/5 law

The Karman-Howarth equation can be re-expressed in terms of the structure
functions D;; (r,t) and D;;; (7, t)

Dy (r,t) = [u1 (& + réy, t) — U (E' t)]3

As

% _— %% r*D,,,) = i_Z%( 4 agiLL) _ g Pope Ex. 6.9
Integrating

%J;)TS4%DLLL(S, t)ds = 6v agiLL — Dy — &

For isotropic turbulence in the inertial subrange, unsteady term = 0 and viscous
term negligible leads to Kolmogorov -4/5 law

DLLL = _EET

Kolmogorov also argued that the structure function skewness,

S' =Dy, (r,t) /Dy (r, )32
is constant, leading to
2/3

4
. 2/3
55') (er)

Dy (r,t) = (

Which represents Kolmogorov hypothesis, and shows consistency between it and
the NS equations, and relates Kolmogorov constant to skewness S'.
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The Loitsyanskii integral

Multiplying Eq. (3) (K-H equation Pope form) by r* and integrating between 0 and
R, yields

d (R _
Ef wW2rtf(r,t)dr = ul, R*k(r,t) + 2vusr*f'(r,t) (11)
0

Loitsyanskii considered I%im Eq. (11), assuming that f(r,t) and k(r,t) decrease
rapidly with 7, such that the Loitsyanskii integral,

B, =j W2rtf(r, t)dr
0

Converges, such that terms in k(R, t) and f'(R, t) vanish.

With these assumptions, B, # f(t), and became known as Loitsyanskii invariant.

However, these assumptions are incorrect, as shown by Saffman, who considered
the following invariant,

C :f r2R(r)dr
0

where

1

R(r) =
) 8mr?

f| _ RaAAD)

And for isotropic turbulence, R(r) = %u_2(3f +rf").
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Kolmogorov, starting from the invariance of the Loitsyanskii integral, obtained

that for isotropic turbulence u2 o t~1%/7 (1.43) during decay.

During the final decay predictions of the —5/2 (—2.5) law are in agreement.
However, for higher Re conditions, approaching or including inertial subrange,
there is no consensus, and many solutions are obtained depending on the
approach and assumptions used.

Bachelor, Decay of turbulence in the final period (1948), as shown by Bernard: t 1

Saffman, imposing the invariance of C, obtained

u? = KC?/5t76/5 (1.2)

Where K is a constant that depends upon the structure of the turbulence. To
obtain this result, differently from Kolmogorov, Saffman only required self-
similarity, not isotropy.

1 !
11} .
-1.2
n
-1.3
1.4 *
_15 *’x * I * *‘ i i il \ !
10° 104 Re 10° 108

Figure 5.6 Measured power law exponents in decaying homogeneous turbulence from numerous
experiments [9]. Filled symbols represent traditional turbulence behind a grid of bars. Open symbols
are other turbulence sources. The symbols with x,* and + are from three different probes used in
decaying turbulence behind a grid of bars for which the Reynolds number was changed only by
altering the viscosity of the working fluid. Used by permission of AIP.
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Hinze Section 3.3

u

r —
r* or

2vu? 9 ( 4af)
or

Ems a
U 4
a ar(r k) +

7] -
Karman-Howarth equation represents one equation in two unknowns f(r) and
k(r). Similar to NS equations leads to closure problem since the number of
unknowns is larger than the number of equations. Also, as with NS equations if one
obtains higher order velocity correlation equation, they lead to additional
unknowns.

Truncation approximation= neglect higher order terms but leads to unphysical
solutions.

Quasi-normal approximation= neglect higher order cumulants = assume Gaussian
4% order correlation. However, this implies Siji = 0, which is unacceptable .- again
leads to unphysical solutions.

Direct-interaction approximation= considers interaction of eddies of different
sized, including their randomness.

Before these approaches, closure problem also attacked based on physical
assumptions for the inertial term.

Consider Eq. (1) using the simplification Sy ; (1, t) = —Sj ;(—1,t)

0 S

- 0%R..
e (nt) = w5 () (1)

Ri;
at (Z’ t) - 2
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In Hinze, the following notation is used.

0Sik,i (

i — Qi,i 2 aTk

-7, t) = Si,i

1. Taking the second moment of each termin Eq. (12)

,0S; 2Ry \|
f dr r2R;; — ZJ dr r2—2 = 2y (2 -

Applying incompressibility yields

(0] [0 0] OS‘ )
J dr r?R;; = 2] drr2 =2 = ¢
0 0 a1y,

Consequently

L 0%Ry
711_)1‘1;7‘ o172 =0 (13)

Which shows how fast R;; decreases as r increases.
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2. Multiplying Eq. (3) by r* and taking the fourth moment of each term

e}

0 (— [ . of
a(uzfo dr r4f) = (WS RS + 2vu? (r4 6_r)

0

With certain assumptions concerning large-scale structure of turbulence, it is
reasonable to expect that,

0
lim (r4 a—f) =0 (14) See Hinze pp. 207, 216-218

7"—0C0

R;; and f have same asymptotic behavior, so if f(r) behaves like r~" for large r,
Eg. (13) requires n > 1. Eq. (14), instead, would require n > 3.

The term r*k has usually been assumed to approach zero for increasing r, and
this assumption has been used by Loitsyanskii to obtain,

B, =J W2rtf(r, )dr
0

must be invariant and not function of time— Loitsyanskii invariant. However, this
is not true, and depends on IC of the turbulence (see Saffman).
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Consider now limiting case of Eq. (12), where the viscosity effects become
predominant — characteristic of final decay,

0°Ry; 0Sik,i
s (r,t) »2 o (-1, ¢)

02Ry;  92Ry;
This hypothesis allows to treat the vector r as a scalar r, such that —- P L= 7”
k

ORi (r,t) = Zv——[ R = (r, t)] (15)
dt 20
Where the identity

0%R;; 10 6.‘Ru

2,0 = 2v | = 1)

was used.

Assume

Rii(r, t) = ()Y (x)

Where y = r/+/8vt, i.e., separation of variables

25



Substituting into Eq. (15) leads to two differential equations,

ldp «

pdt ¢
With solution ¢ = ¢ X t™% and

2

—+2Q2+1)d—¢+4a P =0

Assuming @ = (2p + 1)/2 with p integer, the solution is

1
lpp = )_( eXp(—)(Z)HZp—1Q()

Where H,,(x) is the Hermite polynomial

dTl

H, () = (=" exp(x*) " exp(—x?)

Hy=1, H{=2y, H,=4y*>-2, Hy;=8y3-12y

General solution of Eq. (15) is:

V8v - A r
R.:(r,t) = —exp(—r?/8vt Z—pH _ (—)
ll( ) r p( / ) g tp 2p-1 m
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Where the constants A, must be chosen such that the series converges and that

R;:(0,) = u? 3@+rd£ 0) | = 3u2

Applying 2" moment condition
J dr TZ:Rii =0
0

Gives A; = 0.

Moreover, substituting R;;(r, t) = E(Bf + rf") it can be seen that:
1. Al = 0

2. Using 4" moment condition (Loitsyanskii integral) = only p = 2 term # 0.

Therefore, solution of Eq. (15) for p = 2 may be reduced to

44,

7,.2
Rii(r, t) = — t57 (3 — m) exp(—r2/8vt)

And applying the condition R;;(0,t) = 3u2 yields

— 5 5
u?=—4A,t 2=cxt 2 (16)

27



And, consequently,

2

r
Rii(r,t) = c x t>/2 (3 — 4_vt> exp(—12/8vt)

_ 72 r2
Ri(r,t) =u?(3——]e vt (17
i(r )=u ( 4Vt>e v (17)

Combining the relation between R;;(r, t) and f(r, t)

172
2

_ 0 0
R;(r,t) = u? (Bf(r, t) +ra—£(r, t)) = a[r3f(r, )]

With Eq. (17) gives the following differential equation

-2
r2or vt

2 72
i [r3f(r,t)] = ?(3 — 4r—> e BVE

With boundary conditions

f@,t) =1

And by integration

4vt

r¥\ _rt _rt
r3f(r,t) = frz 3—— |e vt =r3e BVt +C
Or equivalently

frt) = e_g_vzf (18)

Where C = 0 from the application of BCs.
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Thus, for dominating viscosity effects, Eq. (12) shows the decay law for the
turbulence = —5/2 decay as shown in Chapter 5 Part 2.

f (r,t) has shape Gaussian curve and remains self-preserving during decay. Shows
good agreement with EFD. Moreover, using Eqs. (16) and (18) to evaluate
Loitsyanskii integral proves that it is an exact invariant with respect to time, in these
conditions. | Appendix A.4

1.0 -Q% Rey =650
NG R ¢ s, o B Y
S -
‘ o
t s ‘\\ . - xl/M
_ \ @ 960
AL VS 5 5 + 640 } Measurements
I \Q 0320
&= 3oyw- \
z :‘; 0.51- ti‘i et © =
< 8vt

v 4vt

FIGURE 3-11 - _
Longitudinal-velocity-correlation coefficient f(r,f) in the final period of decay.
(From: Batchelor, G. K., and A. A. Townsend,” by permission of the Royal Society.)
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Appendix A

Note: To avoid confusion between k(r,t) and TKE, a capital K will be used for the
TKE, in this Appendix.

A.l

0

— ok 4 f 62f
—_152fl = .3 2
at[u f] = Upms [6r+rk]+2vu

ror 6r2

Multiply and divide by r*

ul ok — f azf
2 ™ ms 4_ 3 2
at[u ]— [ 6r+4r k]+2vu [4 o — 4 rt—=

_ Yrms [awk) — 4% + M‘ 2t [4r3 o 4y i

r or r4 or or?
ENA)
W(T“%)
d— 1 Uy 0 2vu2 9 [, of
_ 2 — rms_ 4 2
ot [u f] 4 Or(r ) + r4 ar(r Or)
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A.2

)= e B () an

or

Taylor series for f(r,t) and k(r, t)

2 4
f(r,t) = £0,£) + £ (0, t)% + Fv (o, t)% + o
s . .

3
r
k(r,t) =k'(0,t)r+k"'(0,t) 3 + .
'

Substitute into Eq. (1A)
Ol (14570 t)r2+ (0 t)r4
ot |“ PO+ 77005

3 3
_ uT‘mS a 4 1274 r
= r4 a (7" k (0, t) _'>

2vu? 0
+ ( (f”(o r + f1V(0,t) ))

r+ or

ouz 129

=+ o (w20, t)) + o 9 (57 (0,0)

ot  2!0
ud (7 2vu? 7
_ Urms <gr6k'"(0, t)) + 3 <5r4f”(0, t) + gr6flv(0, t))

r4‘
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Simplify powers or r

ouz 129
o7 2 o v
AR GG t)>+4'a (7" ©.0)
7 — 7 —
= gufmsrzk”’(o, t) + 10vu?f"(0,¢t) + §vu2r2f”/(0, t)

Now, gather terms according to power of r

. 0u? — .
r. F = 10vu2f (0, t) (ZA)

2

r?: ; g (uzf”(O t)) = zurmsr k"'(0,t) + 7vu2 2fV(0,t) (34)

Only one term on the LHS for r%, no need to consider it for this analysis.

Focus on Eq. (2A)

ou’ = 10vu2f"(0,t)
5 - 1o,

Using the definitions of turbulent kinetic energy

K = —u?
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And Taylor microscale

3 2
fII (0, t)

In Eqg. (2A) yields

dK—310_2 2\ 30vu2
ac 2 e\ T)T T

And using the TKE equation for homogeneous isotropic turbulence

dK
. °
Gives
30 ﬁ 151/?
e = o __
Af /'15

Focus on Eq. (3A)

rz a 144 21,111 7 2 1474
e (qu o, t))-—urmsr k70,6 + 3 vtV (0,6)

r? [ u? —af"(0,t) 7 7 —
12 2 < —_ 3 21,111 _ 2..2 clV
> <_6t f"00,t) +u — < UrmsT k'"'(0,t) + ZVur £ (0,t)

33
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Now focus on term in parenthesis on LHS

—of"(0,t) 20K L 10D

ou?
— /(0.0 +u = 550100+

ot 30t ot (54)

Substituting

dK B
T
Into Eq. (5A)
2 2 df"(0,t)
——&f" —K—— A
Zef (0,0 +K——""  (64)
And using

&
124 O, t — — _
f7(0,0) 15v12 10vK

Into Eq. (6A) gives

2 &2 ZKd(s)_ g2 K [1de € dK
310vK 3 dt\10vK’/ 15vK 15v\ K dt KZQE

g2 K <1de €2> ey 1 de 87

~ 15vK  15v\K dt ¥8vK  15vdt 15vK
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Therefore, it was proved that,

ou? —af"'(0,t) 1 de
-1/ 2 —_ -
dt fr 0 +u dt 15v dt 74

Substituting Eq. (7A) into Eq. (4A) gives

2

r 1 de 7 7 —
(=N L3 2 L 21V
> (151/ dt) 6urmsr k"'(0,t) + 3vu r<f(0,t)

And isolating de/dt

de —
- = —35vud, k"' (0,t) — 70v2u2fV(0, t)

Which is equivalent to

de 12 € &2
ar - kR =G

As shown in Chapter 5 Part 1.
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A3

at[ 2 f] = ”””S—< 4k)+21”2 : (r* g—’;) 84)

Self-similarity

fr,0) = fa/A@®) = Far/L(®) = F(n)
k(r,t) = k(r/A(t)) = k()

n=r/A
on 0 r r n
—_— ——)=——= —— A
oA 6/1(/1) A2 A (94)
Focus on LHS of Eq. (8A)
2dK 7 2 of
U2 L
at[ f] 3dt ~+3 dt
_ZdK ~ 2K6f LoA
_3dtf 3 ot (104)

of ofor afan/1 _.ndf

E‘ﬁat 6776)1 Adn
_

I

Therefore, Eq. (10A) becomes,
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Now, focus on RHS Eq. (8A)

ud,o 0 9 iy + 2vu? 9 (r i)
r* or r* or or
Assuming Self-similarity: v = ni,
3 ) F
Uyrms 0 ( 4~ 2vu d 4 1 df
Z o (n/lg) k)+ Z o (77’19 2 an
(n4g) gz (n4g) Iz Ag d1]
gan Agdn

ud.s d L) + 2vi? d df
n*ig dn n*ag dn dn

2K3/2d( B+ 4vK d ( ,df
3n*A,dn n’ 3n*A% dn g dn

Therefore, Eq. (8A) becomes,

=
QU

=

Q

A

2dK . 2 ndf_(2>3/2K3/2 () + 4K d [ ,df
3! 73 9q,dn  \3) A dn\! 3t AZdn\" dy
And multiplying by 315 /2vK
A2 dK . . ndf 2/1 sz df
Zadlp ) pHer_ ( ) L %) + ) 14
VK dt vdn 3 vr)4 dn dn
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Term 1:

ApdK . Ap . A5 10vK . 10
K ar! k= K;Lg,f_ 4

Term 2:

» /1 ndf 10vK d 10vK ndf 1d (IOVK)ndf
vdn g dt € vdn 2dt\ ¢ vdn

dK1 Kde\df ( KdE)df
— 5 (-

Ce2dt dn

= -5
g dt e &2dt [dn

Now substitute decay equation for ¢

nf_ K( 7 z€* 7 e*\\df
Aol 5”(1 52<3\/ES"°RTk 1590 % dn

9vdn
35 Ldf df
—+— ——=nGy— (124
U +3Fnko an 3750 (124)
Recall relation between R and R;
VRt = > R
And substitute into Eq. (12A)
ndf df 7-8 df 7 df
=y /1 ——=15 Sk. |5——=R —=nG
9vdn ndn 3% - 377 k |3 22 Adn 31 Odn
df 7 df 7 _df

=5 Sk Ry—=— =1Gy——
Mgyt 5"k R g, 3%,
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Term 3:

2/1Kd A\/_d
(3) —(n*k) ==

- UM )——4%('7 k)

vyt dn

Therefore, Eq. (11A) becomes,

.7 af 7 af Ry d wy df
—10f+g775k0R)L d77 + (5 360>nd77 4 dn( ) 4dn dTI

Reordering the term yields

2 d df df ) 7 df d , .
—— | n*— — — Z Lt (n*k
7 (n >+ndn (30 5)+10f Rl g1k gy ~ 1" o (n*k)
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A4

Loitsyanskii integral

Using

— _> _>
u? = —4A,t 2=cXxt 2

r2
f@r,0) = e7Bv

And substituting into the expression for B,
S (e o, _rt
B,=cxXt 2] rte svidr (134)
0

Assuming full self-similarity, since the solution is in the final decay region, the
variable ) can be used to describe f (7, t) such that,

F,0 = F(35=n)

Where A(t) represents the Taylor microscale, that varies with time:

A(t) <At

as shown in Chapter 5 Part 2.
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Substituting r = nA, dr = Adn in Eq. (13A) yields

5 (® _n°A%
B,=cXt 2[ n*Ate "8vt Adn
0

5 (*, A
B, = ¢ X A°t zf nte T svtdn (14A4)
0

Evaluating the integral in Eq. (14A) gives

2
8a2 4a 0

oo 3vmerf(va 2an3® + 3n)e~a1’]"
J r]4e_‘”72dr] — [ E n) . (2an n)
0

Where

AZ
Bt
Evaluating Eq. (15A) at 0 and oo gives
o 3\/%
f e~ dn = 5
0 8az

And substituting back into Eq. (13A)

5
5 3Vm A°t72

BZ =cCc X /‘lst_E

5
AZ\2 ASt72
8 (m)
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=cX ==c#* f(t)

(154)



