Chapter 5: Energy Decay in Isotropic Turbulence

Part 2: Modes of Isotropic Decay and Self-Similarity

Additional assumptions are required to close the equations derived for the decay

of isotropic turbulence. The interest is in the decay at both the low and high

k? kk3/?
turbulent Reynolds number R; = —~ = ik /e

result in a power law in time for the decay process, i.e.,

limits. Several theories, but all

k~(t—ty)™

where t, represents a virtual time origin. For very low Rt (final period of decay),
vortex stretching can be neglected and the solution to the simplified k, € equations
along with the solution of the Karman-Howarth equation for f(r,t) shows that

k follows a t ~3/2

power law.
For High Ry, vortex stretching cannot be neglected and n and other statistical
guantities depend on different theories:

1) Full or partial similarity: for high Ry, k~t™1
2) Saffman: for high Ry, k~t /5

Validation requires data for —n and other flow statistics; however, many difficulties
obtaining archival EFD and DNS for homogeneous isotropic turbulence: finite
domain, anisotropy, and initial conditions.
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Figure 5.6 Measured power law exponents in decaying homogeneous turbulence from numerous
experiments [9]. Filled symbols represent traditional turbulence behind a grid of bars. Open symbols
are other turbulence sources. The symbols with x,*, and + are from three different probes used in
decaying turbulence behind a grid of bars for which the Reynolds number was changed only by
altering the viscosity of the working fluid. Used by permission of AIP.



Since isotropic decay assumes homogeneous conditions over all space, there is no
externally imposed geometric length scale. For self-similarity L = L(t) such that
multi-point velocity correlation functions retain the same form independent of
time.

While there is no externally imposed length scale on the isotropic decay process;
nonetheless; the turbulence has two intrinsic length scales associated with the
isotropic motion, i.e., (1) scales in the dissipation range depending on viscosity and
(2) integral length scales of the turbulence associated with the larger energy
containing eddies. The presence of two length scales causes difficulties in obtaining
similarity solutions. Early research used the Taylor integral length scale A in seeking
self-similarity, but later greater success was found using the Taylor micro scale A.

The Taylor micro scale is the only similarity length scale that can yield complete
self-preserving solutions to the full viscous equations of motion for isotropic
turbulence. For similarity:

o ,t + 7t
F0,0 = F (g5 =n) = 22w
K D) = R (ﬁ _ 7]) _ u(x, t)u(a;,?,t)u(x +7,t) (1b)

Wheren = r/L(t) is the similarity variable. The turbulent decay exhibits complete
self-similarity, i.e., self-preserving if scaling holds for all r or partial/incomplete if
only holds for limited range of r or for limited ranges of R;. Note that as a direct
consequence of self-similarity £(n) and k() are not f(t).

Under the assumption of complete similarity, the decay becomes solvable albeit
with some unresolved issues especially regarding the entire decay process.



Recall definitions from Chap. 2,
Ar=V21,; (2

As* = =2/f"(0)
Therefore (f' = f'/L; f"' = f"/1?):
AP 12 = =2/f"(0)

Where f"(0) # f(t) according to Eq. (1a), i.e., f (L(r—t) = 0) is not a function of
time. Thus,
/lfz « [?

using Eqg. (2). Similarly, using the relation

3/2
&
klll(o) — _Sk< >

15u2v

and can assume L = 4,

uz ~ ~
Substituting € = 1ju2v and assuming self-similarity (k' = k'/L; k" = k" /L?) yields
g
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Similarly, starting from
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The following relation is obtained,
. — 2
) . (153@ 1 ) G
4 — 2] T a
g u?v 4g g

G = f"(0)

i.e., Sx and G are constant during self-similar decay. This is a direct consequence of
the self-similarity hypothesis, and it is the reason why the GDE represent a closed
system of equations, under self-similarity:

where S;O and G are constants provided by assigned values based on experiments
or DNS. Alternatively, can solve single equation for R3(t) = Ry (t) = k?(t) /ve(t)

dR7
——=Ri(Gs—2-SiJRr) @

From an initial state with R7.(0) > 1 to a time when R} < 1.
Part 3 uses assigned values of S,ﬁo and G to solve the K-H equations forf and k for

the final decay, which are used below to confirm the assigned values showing that
assigning either S;O and G, or f and k are equivalent.



Fixed Point Analysis

. . dR:
Consider solutions for dTT

= 0, i.e., R} = constant, which are “attracting” solutions

in dynamical sense such that the IC Ry, converges towards Ry, solutionsas t — .

Dynamical system theory indicates that even for G and S,’QO functions of time, fixed

point solutions are stable nodes, which implies that the solutions of the k and ¢
equations are unaffected by small changes in G* and S, during the isotropic decay.

Fixed points Ry, are solutions of

R} (c;g —2-5; ,R;w) —0 (5)

which is satisfied by either,
Ry =0 (6)

or

Solutions beginning with IC R7.(0) will move toward one or the other depending
on the value of G;.

Eq. (6) is reached for all ICif Gy < 2. Whereas Eq. (7) is reached for all IC if Gy >
2. As is evident from Eq. (4).

Since for Gy < 2 RHS of Eq. (4) is negative, R must decay to zero, whereas for
Go > 2 the RHS is positive for R, < Ry and negative for Ry > Rr_. In either

case the RHS will raise or lower Ry until it converges to Rr_.

The two fixed-point solutions represent different equilibrium states of isotropic
turbulence decay.



Note that for G, > 2 the decay process cannot achieve R;oo = 0; therefore, it is
implied that self-similarity throughout the entire decay process is not feasible,
which is likely due to using L = A, since A cannot characterize turbulence at larger
scales, where anisotropy is important and 4 is more relevant.
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. k : - :
Note that even though Ry = f = constant, i.e., not f(t) during fixed point

[e)

analysis k and € are f(t) but must decay such that R; = constant.

Final Period of Isotropic Decay (also see Pope Ex. 6.10)

Fixed point (equilibrium solution) R;oo = (0 is the end point of the decay process, in

which there is no motion. Near this end point Ry, = k3/ve, < 1, but # 0 and itis
of interest to examine the properties of turbulence in this weakened condition.

. de " %52 . 2.
Rewriting Eq. (3) (E = SkoRTf - G, ?) in the form,

de _ SI);()R;"/Z _ * i
= (— 1)6;= (®)

dt Gy
Vortex Dissipation of
stretching dissipation
For
« nl/2
ko''T
o T &1 (9)
GO

vortex stretching is negligible. Note that,

k? 3 AU
Rew = — = — R, 2 R, =9 ™S
er ve 20 A (’1 v



Low Re; experiments measured S, = 0.5 and G = 3, so that S,t0 ~ 0.3and Gy =
1.4 < 2. Using these values in Eq. (9) yields,

1
0.3 x RZ

7 = 021/Rp = 0.21 X 032 = 0.07 for Ry = 0.1

Note that the above estimates for S,’éo and G are only used to confirm Eq. (9), i.e.,
the vortex stretching term can be neglected.

Therefore, for Ry, < 0.1, i.e., in the vicinity of Ry, = 0, the coupled equations for
k and € reduce to

dk B 10
de G*ez "




where,

a =g =f(G) (2

and kg, & and Ty, = ko /&g are the initial values of the flow properties, i.e., IC.
After t advances several multiples of Tto, such that t/(aTtO) > 1, the solution
simplifies to

k~t=% (13)
e~t717%  (14)

Thus, for Gy < 2, so that @ > 1, and Ry small, the self-similar solution for k and ¢
consists of power laws with exponent depending on G, which still needs to be
determined.
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Figure 5.1 Measured and predicted f(r/A,) in the final period [2]. With permission of the Royal Society.



EFD and theory (solution isotropic/self-similar Karman-Howarth equation using
assigned value for G, as per Section 5.6; and other solution approaches) shows
that f is Gaussian in the final period of decay:

2
—  ulx, Hulx +rt)

far.0)=e * = (15)
u2

And substituting this relation into

G = f"(0)
Yields

G=3
So that
i 7

and @ = 5/2, according to Eq. (12). Using Eq. (13), k obeys a -5/2 decay law in the
final period if the decay is self-similar.

Using @ = 5/2 and kj and ¢, IC:

t>» Ty,
k=ko (14— - T Ko -3
- 2T, 2Ty,
-7/2
5t 5¢
ce (14 a) N2
© g"( 2Tt0> | 2,
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difficult.

Figure 5.2 Confirmation of the —5/2 decay law in the final period [2]. », (U2 /u?)%/5; +, A2. With
permission of the Royal Society.

Fig. 5.2 shows EFD for grid turbulence with mesh spacing M. Decay time t =
x1/U,,, where U,,, represents the mean velocity and x; the distance along the wind

tunnel.

—_\2/5
Linear behavior of (Urzn/uz)

indicates that u? satisfies a -5/2 decay law, and

therefore, so will k for isotropic turbulence. It is concluded that the equilibrium
solution associated with Rt = 0 when Gy = 7/5 is consistent with EFD.

As per Chapter 4 Part 3,

10vk
£

15vu? 3
2 with k =Eu2)

(From e = v
g
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Substituting Eqgs. (13) and (14) shows that in the final period
A2 ~t

Where 4 can be either 4, or A¢, so that A « /¢, i.e., grows V't with explanation that

small-scale motions vanish faster than large-scale motions, causing the scale of the
surviving turbulence to increase. As the flow relaminarizes, f(r) - 1 and 4 - o,
as per Fig. 5.2, where Af varies linearly with x;.

Also, since

The following is obtained,

Whichis < 0 forr > \/Exlg.

For small R = Gy < 2, the Rt = 0 solution shows reasonable physics. However,
thisis not the case for large R since solutions for Gy < 2 and large Ry, display non-
physical results.

dR7
d_rT = R7(G; — 2 — S; /R})

. . . . dR; .
Note in this case since Ry, large and Sk0 cannot be neglected, dTT # 0,i.e., nota

fixed-point solution.
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Exact solution

R: = R;. (G — 2)exp((G — 2)T/2) (16)

Go — 2 — Si, |Rz, (1 —exp((G5 —2)1/2))

When G, # 2, and

R} =R}, (17)

1
1+S,’20 ’R;OT/Z

when Gy = 2. When Gy < 2, Ry, is large, and if 7 is large enough, Eq. (16) gives,
Ry ~e (G52
i.e., Ry will gradually decrease no matter how large R;O. And since

7(t) = In(k(0)/k(t))
or

k(0) k(0)
= m = k(t) = ot

T

i.e., k(t) «< k(0) and most energy gone.
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Figure 5.4 Self-similar decay corresponding to G = 5 and Ry =1000:— K/Ky —— e/egi— - —,

Figure 5.3 Self-similar decay corresponding to Gy = 7/5 and Ry =1000: —, K/Ky; —- = R /Ry . R /R line of <l 1
o 1/Ryi - line of slape —1.
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Fig. 5.3 shows the self-similar solution for small R}, with R;ioo given by Eq. (7). On
the abscissa of the figure, time is scaled by initial eddy turnover Ty = k¢ /&g such
that when tey/ky = 1, one eddy turnover has occurred. During this time, k drops
5 orders of magnitude in one time unit and Ry falls to values representative of final
decay.

In the next section, the equilibrium solution for high Ry is determined. In this
solution, as shown in Fig. 5.4, k drops by ~3 order of magnitude in one eddy
turnover, while Ry approaches Ry, . For Gy = 5, Ry, = 103 and Sk, = 0.23

G -2\ -
R: = 0 170 Drops by 1 order of magnitude,
Teo — S+ ~ as shown in Fig. 5.4
ko

Therefore, the drop in k obtained from the low Ry solution is unphysical.

Conclusion for G<2:

dR7
R R (G~ 2 51,/ )

Cannot apply to the initial high Re stage of isotropic decay. In contrast to the -5/2
decay law predicted by self-similar theory and fixed-point solution, Saffman
approach leads to -3/2 decay law. Both laws justified EFD depending on choice of
virtual origin. Rise in A during the final stage of decay makes it difficult to resolve
this issue.

High Re Equilibrium: fixed point solution

For Gy > 2, Ry, approaches R;oofrom above or below depending on whether Ry,
is<or>Rr_.

de . 172 g2 , €
a = SkoRT T - GO T (18)
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But

Gy — 2
G =G
/R;w
Therefore
de G 2)82 G*EZ
a - ° kK %k
Vortex Dissipation
stretching of €
And thus
de g2 (G; - 2)2
- — _9__ R; = 7
i 2 k (19) Too st )

According to Eq. (7), large Rt_ requires large Gg, assuming EFD S;’;O values. Ry =
10* gives G§ = 25, which gives near balance between vortex stretching and
dissipation of € terms in % equation which is an important result = if Gy > 2 =
Gy — 2 = Gy.

Similar analysis as for Gy < 2, solutions for k and € are asymptotic power laws,
where comparing with Egs. (10) and (11), gives Gy = 2

14



where the decay rate is independent of the initial conditions, differently from the
Rr_ = 0 case.

Tto Tto
0 -2
e=¢& |1+— ~—t
° ( Tto) Tto

Since final solution independent Rr # Ry, a transient period exists prior to
reaching Ry, wherein the coefficient in Eq. (3) Si /Ry = Sk,+/Rt, = Gg — 2. The
equations show that Ry, — Ry, in very short time, i.e., just a few eddy turnover
times.

1074 . .
102 1071 1070

1 2
e/ Ky 10 10

Figure 5.4 Self-similar decay corresponding to G; = 5and Ry = 1000: —, K/Ky; ——, e/egi — - —,
RT/RT.); - -+, line of slope —1.

Fig. 5.4 shows k, & and Ry for G5 = 5 and Ry, = 1000 with S, = 0.3. In contrast
to the low G solution, large Ry, solution shows k — t~1 quickly. Ry shows initial

drop and then converges to value predicted by Eq. (7). While Ry is falling,
k~constant and ¢ is increasing.
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Figure 5.5 A, in isotropic decay 101
corresponding to the conditions in
Fig. 5.4.

1004

Ag initially decreases, then increases due to insufficient IC energy in the dissipation
range scales at the outset of the simulation.

Solution shows how after initial stage where energy from vortex stretching
decreases A, and increases ¢, after which stretching ~ dissipation and energy
decays as per t 1.

, 10vk 10v  5ky _5 10vk,
Ag = = 3 t 2 = t
3 D& 1772 2Ty, £o
2T,
10vk,
g = t
€o

If ? = é — Ay = V4vt recovers form from Hinze p.210.
0

Eventually, high Re solution no longer reasonable as self-similarity is lost such that
Go must decrease to Ry, = 0 solution, i.e., Gg = 7/5.
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Figure 5.6 Measured power law exponents in decaying homogeneous turbulence from numerous
experiments [9]. Filled symbols represent traditional turbulence behind a grid of bars. Open symbols
are other turbulence sources. The symbols with x,*, and + are from three different probes used in
decaying turbulence behind a grid of bars for which the Reynolds number was changed only by
altering the viscosity of the working fluid. Used by permission of AIP.

Many EFD wide range Re, 1000 < Ry, < 5 X 10”6, where Ry, = MU /v. Average
decay rate is —1.18 + 0.02, which suggests k~t ~°/> decay law.

A small subset of the data supports the t~! decay at high Re. Many complications
in determining decay rate from EFD, such as IC and shift between decay laws for
large and small Re.
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RESEARCH NOTES

Note on Decay of Homogeneous Turbulence

P. G. SAFFMAN

California Institute of Technology, Pasadena, California
(Received 23 February 1967)

The assumption of self-similarity and the existence of an
exact invariant are combined to predict the decay rate of
homogeneous turbulence,

ON the assumptions that turbulence remains self-
similar during decay and that the “‘Loitsianskii
integral”

u’ ./;. r'i(r) dr

remains invariant, Kolmogorov' predicted for iso-
tropic turbulence that «* « ¢ and L « {*7
during decay. Here, u = < u? >1!is the root-mean-
square velocity, f(r) is the longitudinal correlation
function®, and L is an integral length scale. An
alternative deriviation of the Kolmogorov decay
law based on equivalent assumptions has been
given recently by Comte-Bellot and Corrsin®, who
have also discussed extensively the comparison with
experiment.

Now, it has been known for some time"® that the
Loitsianskii integral is not invariant, so that the
Kolmogorov decay law is of particularly doubtful
significance unless it can be shown that the change
in the Loitsianskii integral is slow compared with
the energy decay. However, a more important
objection is that recent work by the author’ has
confirmed the speculation by Birkhoff” that the
Loitsianskii integral is in general divergent, and
that it is only for a restricted type of isotropic
turbulence that the Loitsianskii integral exists.®

On the other hand, for general homogeneous
turbulence it was found that another invariant
exists, namely

f " ARG & =0, )

where

RO) = g [ R d4@;

R ;(r) is the velocity covariance tensor, and dA(r)
is the element of area on a sphere of radius r. The
equivalent statement to (1) for the energy spectrum
function is that E(k) ~ (2C/x) k* as k — 0, where
C is a constant which will not in general be zero.
For isotropic turbulence, R(r) = 3 u* (3f + rf’);
and the condition for the Loitsianskii integral to
exist is C = 0, since from (1) f(r) ~ (6C/u*)r™® as
r— o,

If we now follow Kolmogorov', or Comte-Bellot
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and Corrsin’, but replace the invariance of the
Loitsianskii integral by the invariance of (1) or the
equivalent condition on E(k), we find for the decay
rate

u! ey KCﬂ/S’—O/&' 11 - K’C“,t,/‘, (2)

where K, K' are constants that depend upon the
structure of the turbulence. A simple way of deriving
these results is to write R(r) = «’¢(r/L) from the
assumption of self-similarity and du’/dt = — Au®/L
from the further assumption of Reynolds number
independence (this is basically equivalent to the
assumption"* that an inertial subrange exists). The
results (2) follow immediately with K, K’ related to
A and [50" ¥(p)dp.

Notice that there is no need to assume that the
turbulence is isotropie, but the assumption of
self-similarity is of course crucial. Comparison with
the experimental data® shows that the results (2) fit
the measurements for the initial period of decay at
least as well and probably better than the
Kolmogorov decay law. Indeed, the agreement is
much closer than the nature of the assumptions
would entitle one to expect.

' A. N. Kolmogorov, C. R. Akad. Sci. SSSR 30, 301 (1941).

* (4. K. Batchelor, Homog T'urbul (Cambridge
University Press, London, 1953).
& 9;“9) Comte-Bellot and 8. Corrsin, J. Fluid Mech. 25, 657
¢ I. Proudman and W, H. Reid, Phil. Trans. Roy. Soc.
A247, 163 (1954).

¢ G. K. Batchelor and I. Proudman, Phil. Trans. Roy.
Soc. A248, 369 (1956).

¢ P. G. Saffman, J. Fluid Mech. 27, 581 (1967).

? G. Birkhoff, Commun. Pure Appl. Math. 7, 19 (1954).

* Similar conclusions have been reached independently
by Professor O. M. Phillips.

Turbulent Flow Measurements Utilizing
the Doppler Shift of Scattered
Laser Radiation

R. J. Gorpstein axp W. F. Hagen
Mechanical Engineering Department, University of Minnesota,
Minneapolis, Minnesota
(Received 12 December 1966; final manuseript
received 3 April 1967)

The probability function for the turbulent velocity in a
duct flow is from the frequency shift of laser
illumination scattered by small particies contai in the
flow. From this, the mean turbulent velocity and the intensity
of turbulence are obtained.

THE feasibility of measuring steady fluid velocities
from the Doppler shift of scattered laser radia~
tion was first demonstrated by Yeh and Cummins.!



Implications for Turbulence Modeling

Isotropic turbulence theory used for modeling € equation as used for general flows.
The two main results developed previously consist of the isotropic formulas:

1.2
P} = S,’(*R%?
And
2
Y. =G"—

For general applications, it is assumed that,

1
SiRZ—G* = —C,, (20)

Where C,, is a constant. This leads to the model,
4 * % * 82 82
Ps —Yg = SkRT_G ?= _6827

Which yields an equation identical to Eq. (19), i.e., high Re equilibrium, except that

the constant on the RHS is —C,,.

In isotropic turbulence, as per Chapter 5 Part 1, ¥; = v¥; which can be shown using

the identity,
azui 2 _ a(,()i 2
dx;0x B dx;
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Next, using € = v(, it follows that,

Y;/¢ Fractional rate of change of {

G*

€/k  Fractional rate of change of energy

Since ¢ dissipation influenced mostly by small-scale phenomena — numerator

scales with tgl = (v/e)_l/2 and substituting this into the previous equation
gives,
L k2
G Ry Ry = —
VE
For large Re.

Recall again for isotropic turbulence,

dg * 1282 *82
— = S;RY — =G

— (S*Rl/z _ G*)i
- kT k

= [siRy/? - (SiRy? + cgz)]§

82
= —Cep -

i.e., coefficient —Cy, chosen to cancel vortex stretching term, i.e., the assumption

in Eqg. (20) is equivalent to imposing equilibrium structure on the turbulent decay
process, which imposes a decay law of the form,

20



1
k~t ng—l

i.e., Cg2 sets the decay rate. e.g., for ng = 11/6, Saffman t~%/5 |]aw recovered.

Other values can be achieved via specification of C,,. In all cases, without vortex
stretching. If vortex stretching is included, then eventually t~! decay law will
develop.

Another problemis forv = 0

de 0

dat
i.e., € and ¢ are constant. This outcome is unphysical since it is expected that {
should grow due to vortex stretching in the absence of dissipation.

de L 1/2 N E
E—(SkRT —G)? Forv =0
Can be written as
de
=S8 @) =e/y

Integrating Eq. (21) shows that,

- S,:w\/c(mt)

C(t):C(O)( >

i.e., { > oofort=2/S; /{(0).
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This suggests vortex stretching should be included in de/dt equation.
Grid turbulence (Pope 5.4.6)

A good approximation to decaying homogeneous turbulence can be achieved in
wind-tunnel experiments by passing a uniform stream through a turbulence
generating grid.

Fig. 5.32. A sketch of a turbulence-generating grid composed of bars of diameter d,
with mesh spacing M.

In reference frame moving with U, the turbulence is homogeneous and evolves

Ideally
G==u
wuu; =0 [#j
EFD:
And

22



107

A

\\

| P—

10 500
XM

Fig. 5.33. The decay of Reynolds stresses in grid turbulence: squares, (u?)/U?; circles
(v?)JU2: triangles k/UZ; lines, proportional to (x/M)~"3, (From Comte-Bellot and
Corrsin (1966).)

V{ug?) = 10% > /(uy?)

However, some improvements are possible.

Fig. 5.33 shows that normal stresses and k decay as power laws,

k X — Xg\

Uz~ A ( M )
Where x, is the virtual origin, and 1.15 < n < 1.45. Some suggest n = 1.3 and
xo = 0, whereas the value of A varied widely depending on grid geometry and Re.

In moving frame

k(t) = ko(t/te)™
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Where k, = k(0).

Differentiating, the following equation is obtained,

dk (nko) ( t)
at \ty /) \t,

—-(n+1)

And comparing with % = —¢

—-(n+1)

e(t) =& (é)

Where gy = nky/t,.

Final period of decay: Re goes down, such that inertia < viscous effects. Karman-
Howarth equation neglects inertia term and assuming self-similarity

f(r,t) = exp(—r?/8vt)
Such thatn = 5/2.
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5.42

EXERCISE
For grid turbulence, given the decay laws for k and ¢ (Egs. (5.274)
and (5.277), and taking n = 1.3), verify the following behaviors:

]
Il

Nf,

o | &

k3/2

t (1—n/2) t 0.35
€ (1'0) B (fu) ’
K2y AN £\ 03

v (fu) - (To) '

(Note that the Reynolds number k'/2L/v decreases. The increase of
L and t should not be misunderstood. It is not that the turbulent
motions become larger and slower. Rather, the smaller, faster motions
decay more rapidly, leaving behind the larger, slower motions.)

L

I
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