Chapter 5: Energy Decay in Isotropic Turbulence

Part 6: Limitations, shortcomings, and refinements

Scales of the turbulent motions provide a conceptual framework: energy cascade,
vortex stretching, and Kolmogorov hypotheses. Some issues still under
investigation, which are of interest, although have somewhat limited impact for the
study of practical turbulent flow applications since small scale motions [ < lg; do
not directly influence the large-scale motion anisotropy and production of
turbulence. However, do have important implications for turbulence modeling.

The Reynolds number:

An important limitation of the Kolmogorov hypotheses is that they apply only for
high Re, but a criterion for “sufficiently” high Re is not provided. Laboratory flows
Re~10* and R;~150 show dissipative scales to be anisotropic. Note IIHR towing
tank and wave basin usually use 3 m model with Re ~ 5 X 10% (Re; ~2000)

Experiments show that E (k) ~ kP, but the Kolmogorov -5/3 (p = 1.7) spectrum is

approached slowly as Re increases = p = g — 8R,1_3/4, such that for R; = 200 —

p = 1.5. Note Re; = %Rf ~RZ.
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Fig. 6.29. The spectrum power-law exponent p (E(x) ~ x7F) as a function of the
Reynolds number in grid turbulence: symbols, experimental data of Mydlarski and
Warhaft (1998); dashed line, p = 2; solid line, empirical curve p = 3 — 8R; %,



DNS shows that energy transfer occurs not only from large to small [, but also from
small to large [, with net transfer from the larger to the smaller scales.

In wave number space, as shown previously, the energy transfer is accomplished
by triad interactions among modes:

k+k +xk"=0

DNS results show that the transfer is predominantly local, with |k| = |k'|, but that

is affected by interactions with a third mode of significantly smaller wave number
k"] < K| = |K'].

Higher-order statistics

We have mostly (other than skewness S and palenstrophy G) considered only
second order velocity statistics (i.e., statistics that are quadratic in velocity), which
are of primary importance, e.g., as per the TKE k and Reynolds stresses (uiuj).

Simplest examples of higher-order statistics are the normalized velocity-derivative

moments:
n/2

My = (u1,)" /(uy,1)°

Forn = 3 and n = 4, these are the velocity-derivative skewness S and kurtosis K.

3/2
M; = (u1,1)3/(u1,1)2 = Skewness (S = 0 for Gaussian)

S < 0 = f( vortex stretching and related energy transfer between scales) and
measure of the bias or asymmetry in the velocity fluctuations between + and —
values.

2
M, = (u1,1)4/(u1,1)2 = Kurtosis (K = 3 for Gaussian)

Measure of how much the velocity fluctuations are congregated at large and small
values.



If, as Kolmogorov originally assumed, the PDF of the velocity fluctuations is a
normal distribution, then for even n, M,, is a constant and for odd n, M,, = 0.

Recall S (odd M,,) for u;, plays a major role in the equation for the decay of
isotropic turbulence, as does G (even M,,). Thus, non-Gaussian processes must be
considered to predict the transfer term.

As shown in Part 1, S is related to the vortex stretching term in the € equation and
in Part 3 to the triple velocity correlation terms in the similarity form of the K-H
equation. Fig. 6.32 compares the distribution of the normalized velocity derivative
with a Gaussian distribution. The effect of the tails is fundamental to obtain a
negative skewness, i.e., transfer of energy.

An equivalent definition of the skewness in wave number space is:

3v30 |, k*T(k,t)dk

S(t) = >
W [[2 k2B (k, ¢)dk]”

Appendix A.1

K = 4 for low R; and K = 40 for high R;. Kurtosis does not reach an asymptotic

value, but it increases as ~R,13/8. It is expected that K is related to G

G = u? (u1,112)2

(ul,l)z

Fig. 6.30. Measurements (symbols) compiled by Van Atta and Antonia (1980} of
the velocity-derivative kurtosis as a function of Reynolds number. The solid line is

K ~R}"



For Ry < 10, S decreases rapidly and it should go towards zero for R; < 1, as

shown in Part 3.
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Sx = 0.5 was used
tosolve k — ¢
equations and K-H
equation.

T T T T o9 o
049 s -
[ ] uH [=} E -
07 = L] -

ag-o @
06 - =2 n
05 x -

O 4n
4 = -1
a l&. 4
.l
S ik - -
L
0 -
L ]
01 L_ Il Il 1 1
I 100 1000 10 000

Ry

Fiaure 1. Measurements of the velocity-derivative skewness in various turbulent flows plotted

va. the turbulent Reynolds number {eee table 1 for symbaols).

Type of flow

Nearly isotropic
grid turbulence

Homogeneous shear flow
Duet flow

Mixing layers
Axisymmetrie jet

Boundary layer
Atmosphere

Author(s)

Batchelor & Towngend (1949)
Stewart & Townsend (1951)

Mills et al. (1958)

Frenkiel & Klebanoff (1971)

Kuo & Corrsin (1971)

Betchov & Lorenzen (1874)
Bennett & Corrsin (1978)

Present data

Tavoularis (1978)

Comte-Bellot (1965)

Elena, Chauve & Dumas (1977)
Wyngaard & Tennekes (1970)
Champagne, Pao & Wygnanski (1976)
Friehe, Van Atta & Gibson (1972)
New measurements

Ueda & Hinze (1975)

Gibson, Btegen & Williams (1970)
Wyngaard & Tennekes (1970)
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Higher order statistics pertaining to the inertial subrange are provided by the
longitudinal velocity structure functions (Chapter 4 Part 8):

Dy (r) = (A,w)"
Where:

Au= Ul(g + ér, t) — Ul(g, t)

Recall for the second (Chapter 4, Part 8) and third (Part 3, pg.19) order structure
functions D, (), D;(r) in the inertial sub-range:

D, = Dy, (r,t) = Cy(er)?/3
D3 = Dy, (1, t) = Czer

Which were determined according to Kolmogorov’s second hypothesis, for L >
r > 1, D,,(r) based on the assumption that they depend only on e and 7, i.e.,

Dp(r) = (A, W)" = Cy(er)™?

Where C,, are constants (C, = 2,C3 = —4/5).

More generally in the inertial subrange,

D, (r)~7r$n



But the measured exponents differ from the Kolmogorov prediction, i.e., {,, =

w3

as clearly ¢, # %for nx4.
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Fig. 6.31. Measurements (symbols) compiled by Anselmet et al. (1984) of the longi-
tudinal velocity structure function exponent {, in the inertial subrange, D,(r) ~ o,
The solid line is the Kolmogorov (1941) prediction, {, = %n; the dashed line is the
prediction of the refined similarity hypothesis, Eq. (6.323) with u = 0.25.

It is instructive to examine the PDFs that underlie M,,. For example, for n=1, the
PDF is denoted by f,(z), where Z is the standardized derivative

——1/2
Z = u1,1/(u1,1)

10
107
A2
107}
107}
1074 &
:D &{‘CD
o oMo a
lo_su-w 4 =
-12 8 12
z

Fig. 6.32. The PDF fz(z) of the normalized velocity derivative Z =
(Ouy /8x1)/ {(Ou; /8x;)*)"/* measured by Van Atta and Chen (1970) in the atmospheric
boundary layer (high Re). The solid line is a Gaussian; the dashed lines correspond
to exponential tails (Egs. (6.309) and (6.310)).



The tails of the distribution (beyond 4 SD) follow straight lines — exponential tails:

fz(z) = 0.2exp(—1.1|z|), forz>4
f7(z) = 0.2exp(—1.0|z|), forz<4

Where the slower decay for negative z is consistent with § < 0. This clearly shows
the importance of these rare events is the determination of S that has been shown
to play a major role in the energy cascade.

The tails represent rare events, the probability of |Z| exceeding 5 is equal to 0.3%.
However, these low probability tails can make vast contributions to higher
moments. For example, compare the tails for

M,(f’) = 2.[ z"f,(z)dz M, = 2[ z"f,(z)dz
5 0

and considering only even moments so we can compare with Gaussian values.

Table 6.3. Contributions M'® from the exponential tails (|Z| > 5) of the
PDF of Z to the moments M, according to Eqs. (6.310) and (6.311)

Tail contribution  Gaussian value

Moment n MP" M,
0 0.003 1
2 0.1 1
4 4.2 3
6 220 15
8 1.5 x 10* 105
10 1.4 x 108 945

Mg = 220, while Gaussian value is 15.



Dissipation intermittency

Discrepancies between M,, and D,,(r) with EFD are attributed to the phenomenon
of internal intermittency and accounted for in the refined similarity hypotheses,
which introduce several new quantities related to dissipation.

Instantaneous dissipation

g = 2vsysy; (1)
And

3

4mr? Jﬂv(rfo (x+rt)dr (2)

&(xt) =

which represents the average of &, within a sphere V(7) of radius r.

One-dimensional surrogates for these quantities are represented by:

N <6u1)2
o = IV dx,

1 r
&(xt) = ;J &(x+eér,t)dr
0

And in locally isotropic turbulence, each of these quantities have mean ¢,
ie., (&)= (ér(g, t)) = €.

&, intermittently attains high values.

R, laboratory (moderate) = &,/ € = 15

R, atmosphere (high) = &,/ € = 50



Kolmogorov conjectured that:

Where L = k3/2/e. For the inertial subrange, i.e, N&<r <L and u>0 =
constant=intermittency exponent. Note above equations are for mean square &,
and &,.

~ 2
EFD for%showsu = 0.25 + 0.05.

Note that &,°/e% = K (as shown later) and for 4 = 0.25, and recalling that
L/n~Ry*'*:

Which is consistent with EFD shown in Fig. 6.30. Recall discussion Chapter 4 Part

6 pg. 18 that bottleneck effect and departure small-scale turbulence for -5/3 law
related to € intermittency.
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Figure 4.9 Dissipation rate on a plane showing intermittency within a region of isotropic turbulence
computed in a vortex filament simulation of flow in a periodic box.



Refined similarity hypotheses
Original first hypothesis: A,u for r <« L are universal and f (¢, v).
Refined first hypothesis: A, u for r <« L are universal and f (&, v).

Refined second hypothesis: A, u forn < r < L are universal and f (&,.).
The structure functions in the inertial subrange are:
Dp(r) = (A, w)") = (Cp(er)™?|e=,) = Cule, "3 )r"/3

Where C,, are universal constants and ¢, is a volume averaged variable, as per Eq.

(2).

For n = 3, since &, = ¢, the original and the refined hypotheses make the same
prediction, i.e., C3 = —4/5, which represents the Kolmogorov 4/5 law.

Forn = 6, using

£.>
8—2~(L/7”)“
Such that

D¢(r) = C6(Sr6/3>r6/3 = Col&, )2 ~e?Lir*#

A power law in 7 as per D, (r)~r‘n with {¢ = 2 — p = 1.75 for p = 0.25. (See Fig.
6.31)

For other n, £,™/3 can be determined from the PDF of &,, which is assumed to be
log-normally distributed, i.e., In(¢,./€) has Gaussian distribution such that:

g n
gr_n ~(L/T')n(n_1)“/2 (3) Pope Ex 6.37
r
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Consequently, the structure function is predicted to scale as D,,(1r)~7, with

n n
Dn(r) =Cy <3r3>r3
— Cngrn/g (L/r)n(n—l)u/6rn/3

n/3-nn-1)u/6
Cngrn/3Ln(n—1)u/6r

1 1
o =3n|l-zum—3)

Forn < 10, this prediction is in reasonable agreement with Fig. 6.31. For large
n, the large errors are due to the assumption of the log-normal distribution.

For D, (r):
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Applying a Fourier transform to D, () results in an expression for the energy
spectrum in the inertial range of the form:

n 5
E(k) = Ae, 3k 3(Lk)™*

This shows that in the inertial-range the spectrum is predicted to be a power law
E(k)~k~P with

L1 5. 1
9"~ 3

P= 36

w| Ul

Hence, only small correction to the -5/3 spectrum.
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For the velocity-derivative moments, using Eq. (1) for i = j = 1 (Chapter 4 Part 3)

(6u1>2 &
dx,)  15v
And for a general exponent n

n/2 n/2

(Cu) = ()" = ()

Using the refined hypotheses yield

With C,, = constants, and hence

NS

u C, €
— ( 1,1)n/2 — n (V ) _ ‘ner 7 (4)

() G (@)

M,

NS

Where the fact that (sr(g, t)) = & was used in the last step.
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Substituting Eq. (3) into Eq. (4) forn =3 (S) andn =4 (K):

—S~(L/1)3+/8
K~(L/r)*

Hence

—S~K3/8

Which is consistent with EFD:
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Fig. 6.33. Measurements of the velocity-derivative skewness S and kurtosis K compiled
by Van Atta and Antonia (1980). The line is —S ~ K3/,
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Appendix A
A.l

Definition of Skewness of u; ;:

2

3 2>/
S(t) =— (u1,1) /(u1,1) (14)

Using the relation obtained in Chapter 4 Part 3:

u f"(0) = —uy.?  (24)

And substituting Eq. (2A) into (1A) gives

3
S(t) = & (34)
(wr©)

N W

Next, the relation between f''(0) and € is given by

£ = —15vi2f"(0) = f(0) = ———  (44)
15vu?

Substituting Eq. (4A) into (3A) yields

3 3 3
S(t) = (u1,1) _ (u1,1) _ (u1,1)3 (54)
(w1 @)

(=)
15vu?

14

3
2

N W

(=)




Where € can be related to the 3D energy spectrum using

€= ZVJ K2E(k,t)dk  (6A4)
0

And substituting Eq. (6A) into (5A) gives

3 3/2 3
1
§S=— (1) ;= — 75 (1) 4
<2v fooo K2E (k, t)dk)E (J, K2E(x,t)dx)?
15v

Next, (um)3 can be related to k'’ (0) as shown in Chapter 4 Part 2

3 24
(u1,1) =S8111 = Urmsk'' (0)  (84)
Moreover, in Chapter 5 Part 4 the quantity S;; was defined as

aS

Sii(f; t) — . ik,i

ik,i
QL) Bl 1))

Or equivalently S; ;(r, t) is the Fourier transform of T'(k, t) /k where T (k, t) is
the transfer term:

®sinkr
’ o kr

15



Next, sin(kr) can be approximated using a Taylor series expansion as:

3,.3

6

sin(kr) = kr — + 0(r>)

Such that Eq. (9A) becomes:

K373
(o5
Si,i(r' t) = ZJ T(k, t)dk

0 kr

00 K'ZT'Z
=zj (1— )T(k,t)dk
0 6
00 [ere} KZT'Z
=2W—2j (
0 6

Where the first term on the RHS is zero in view of the reasoning shown in Chapter
5 Part 4.

) T(k,t)dk

Sii(r,t) = —J

0

0o K'ZT'Z
( z )T(k,t)dk (104)

Isolating fooo k2T (k, t)dk on the RHS of Eq. (10A) gives

(ee)

3
Zsu == [ @Todk  (114)

0

In Appendix A.7 of Chapter 5 Part 4 it was shown that:

35 3 21,111
Sii(r,t) = ?urmsr k"'(0,t) (124)
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Substituting Eq. (12A) into (11A) yields

[00]

—ud, r%k'"(0,t) = —J k2T (k,t)dk

0

3 35
r2 6
35

7u§msk”’(0) = —j k2T (k,t)dk
0

k'"(0) = — j OOKZT(k, Hdk (134)
0

35u3, .

Substituting Eq. (13A) in the RHS of Eq. (8A) gives

(00]

2
()" = wdmsk"(0) = =52 | W2T(k,Ddk  (144)
0

Finally, substituting Eq. (14A) into (7A) an expression for S(t) as a function of the
transfer term and the energy spectrum is obtained:

S(t) = —

(5w 2 sy erod

i (fooo KZE(K, t)dK) (fOOO KZE(K, t)dl{)

2 15 3/2
35 / f 14‘/_

S(t) - > 30 )y x T(k't)dkyz
14 (fOOOKZE(K, t)dx)

3 3
2 2
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A.2

Characterization of random variables

p=P(B)=PU<Vp)
0<p<1

O=impossible, 1=sure thing

CDF = Cumulative Distribution function=F (V) = P(U < V) or P(B) =

P(U<V,)=FW)

F(—) = 0since (U < —) =0

Also F(V,) > F(V,) for V, >V, sincep
F(0) =1since (U< ) =1

>0

F(V,)—F(V,)=P(V,<U<V,)>0

CDF is non-decreasing function.

PDF = Probability Density function

dF (V)

fv) =

dv

>0

f_ O:Of(V)dV =1

f(=) = f(0) =0

Vb

P(Vag sV <=Vp)=F(Vp) —F(p) = | f(V)dv

Va

PV <U<V+dV)= F(V+dV)-F) = f(V)dv

AF

av
PDF has dimensions U1,

CDF and f(V)dV are non-dimensional.

f)
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Fig. 3.3. Sketches of the sample space of U showing the regions corresponding to the
events (a) B={U < Vp}, and (b) C = {Va < U < W4}

Sample space: B = (U <Vy), C =V, <U <V forV, <V,
(a)

() =7

Vi Vv
Fig. 3.4. Sketches of (a) the CDF of the random variable U showing the probability

of the event C = {V, < U < V}}, and (b) the corresponding PDF. The shaded area in
(b) is the probability of C.
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Means and moments.

Mean or expectation or EV of U:

U = j_o:on(V)dV

Represents the probability weighted average over all values U.

EV of Q(U):

W) = j QW (V)aV

Properties:

[aQ(U) + bR(U)] = aQ(U) + bR(V)

=U

<

FluctuationinU: u=U—-U

Variance of U:

var(U) = u? = foo (v - ﬁ)zf(V)dV

Standard deviation of U:

SD(U) = +/var(U) = /ﬁ =rms =u' = gy,

nth central moment:

W, =u = f vV -0)"f)av

20



Where iy =1, u; =0, p, = 0,2

Standardization

It is often convenient to work with standardized random variables, which, by
definition, have zero mean and unit variance.

(U_ﬁ):i=i

w0 @

U=

The PDF of U is:

f(V) = auf(ﬁ + O'u]?)

The moments of U are:

Un Mo (% on2i0n a0
== =—p=| V*f(7)dV
.un O_{J, O_lrtl j_oo f()

Where (i, = 1, fi; =0, i, = 1. The third standardized moment [i5 is called the
skewness, and the fourth fi, is the flatness or kurtosis.
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Examples of probability distributions
Uniform distribution

U =uniformfora <V <b

(a) F(V)
1

® AV

a b v
Fig. 3.5. The CDF (a) and the PDF (b) of a uniform random variable (Eq. (3.39)).

1
—— fora<
FO)=13"a" ora<V <bp,

0, forV<aandV >=b»
c=a<sV<b
P(c)=F(b)—F(a)=0

dF (V)

fOV)=—,—
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The normal distribution

U normal with EV=u and SD=a.

PDF
F0) = N Vi 0) = —p=exp 3 OV~ )%/0?]
N oV2m 2
We can standardize U if it is normally distributed:
U=U-w/o
And the corresponding PDF is:
A 1 2
V) =NW;01) =—e "/
/ V2m
The corresponding CDF is:
_ V1 X2/ 1
F() =J NoT dx =§[1+erf(V/\/§)]
(@ EF(V)

-3

(b) SV)

Fig. 3.7. The CDF (a) and PDF (b) of a standardized Gaussian random variable.
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