Chapter 4: Turbulence at Small Scales

Part 4: Inertial Subrange

Recall:

K(t) = fooE(k, t)dk
0

E (k,t) shows how the TKE is distributed among the different scales of the flow.

k~! =length scale of eddy associated with wave number k.

Richardson cascade, Kolmogorov hypotheses, theory of isotropic turbulence and
dimensional analysis lead to the “most famous and prominent” feature of high Re
turbulence: the universal power law form of the energy spectrum in the inertial
subrange.

1. KolmogoroV’s first similarity hypothesis.
In every turbulent flow at sufficiently high Reynolds number, the statistics of
the small-scale motions ( | < l,) have a universal form that is uniquely
determined by v and «.

In the universal equilibrium range, the turbulence is isotropic:
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or:

Using €, v to non-dimensionalize E and k:
E(k) = (ev®)*@(kn) = nuy* ¢ (kn)
Where u,, = v, and @ (kn) = Kolmogorov spectrum function.
Alternatively, using &, k to non-dimensionalize E’
E(k) = e?/3k=53Y(kn)
Where W(kn) = compensated Kolmogorov spectrum function.

(k) = (kn)*P(kn)

And kn > 2nn/L,.

. Kolmogorov’s second similarity hypothesis

In every turbulent flow at sufficiently high Reynolds number, the statistics of
the motions of scale l in the range l; <l < [, have a universal form that is
uniquely determined by &, independent of v.
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In the inertial subrange E (k) = f (&) only; thus, for kn < 1, ¥ becomes
independent of k7, i.e., = constant=C.

E(k) = Ce?/3k™>/3 | Kolmogorov -5/3 spectrum

C~1.5 = Kolmogorov universal constant.

E(k) is a power law spectrum = CAk™P, wherep = 5/3, A = £?/3,

Most turbulence data come from stationary single point time series, which are
converted to spatial data using Taylor’s frozen turbulence hypothesis to obtain
one-dimensional spectra that can be related to the 3D spectra using theory of
isotropic turbulence (tensors).
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.
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Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.



