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Chapter 4: Turbulence at Small Scales 

Part 8: Structure functions 
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Kolmogorov spectra can be obtained via two paths: 

1. Use Fourier transforms of structure functions (physical space) 

2. Apply Kolmogorov hypothesis directly to the spectra (wave number space) 

The second approach is less rigorous but simpler as we have done. The first 

approach was originally used by Kolmogorov. 

 

Second order velocity structure function is co-variance of the difference in velocity 

between two points 𝑥 + 𝑟 and 𝑥:  2nd order tensor which is determined by all eddies 

with size less than or comparable with 𝑟. 

 

𝐷𝑖𝑗(𝑥, 𝑟, 𝜏) = [𝑢𝑖(𝑥 + 𝑟, 𝑡) − 𝑢𝑖(𝑥, 𝑡)][𝑢𝑗(𝑥 + 𝑟, 𝑡) − 𝑢𝑗(𝑥, 𝑡)] 

 

To within scalar multiples, the only second-order tensors that can be formed from 

the vector 𝑟 are 𝛿𝑖𝑗 and 𝑟𝑖𝑟𝑗. Consequently 𝐷𝑖𝑗  can be written as 

 

𝐷𝑖𝑗(𝑟, 𝑡) = 𝐷𝑁𝑁(𝑟, 𝑡)𝛿𝑖𝑗 + [𝐷𝐿𝐿(𝑟, 𝑡) − 𝐷𝑁𝑁(𝑟, 𝑡)]
 𝑟𝑖𝑟𝑗

𝑟2
  

 

Where the scalar functions 𝐷𝐿𝐿 and 𝐷𝑁𝑁 are called, respectively, the longitudinal 

and transverse structure functions. If the coordinate system is chosen so that 𝑟 =

𝑟𝑒1̂ 

𝐷11 = 𝐷𝐿𝐿     𝐷22 = 𝐷33 = 𝐷𝑁𝑁     𝐷𝑖𝑗 = 0  𝑖 ≠ 𝑗 
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As for ℛ𝑖𝑗,  

 

𝜕

𝜕𝑟𝑗
𝐷𝑖𝑗 = 0 

 

Combining isotropic theory with the incompressibility condition 

 

𝐷𝑁𝑁(𝑟, 𝑡) = 𝐷𝐿𝐿(𝑟, 𝑡) +
1

2
𝑟

𝜕

𝜕𝑟
𝐷𝐿𝐿(𝑟, 𝑡) 

 

i.e., 𝐷𝑖𝑗(𝑟, 𝑡) = 𝑓(𝐷𝐿𝐿(𝑟, 𝑡)) determined by simple scalar function. 

 

According to the 1st similarity hypothesis, given 𝑟 (|𝑟| ≪ 𝐿), 𝐷𝑖𝑗  is uniquely 

determined by 휀 and ν.  

 

(휀𝑟)2/3 has dimensions of velocity squared, and so can be used to make 𝐷𝑖𝑗  non-

dimensional. There is only one independent non-dimensional group that can be 

formed from 𝑟, 휀, 𝜈 which can be taken to be 𝑟휀1/4𝜈3/4 = 𝑟/𝜂, where 𝜂 =

휀−1/4𝜈−3/4. 

 

Thus,  

𝐷𝐿𝐿(𝑟, 𝑡) = (휀𝑟)2/3�̂�𝐿𝐿(𝑟/𝜂) 

 

where �̂�𝐿𝐿(𝑟/𝜂) is a universal, non-dimensional function. 

 

Due to incompressibility 
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According to the 2nd similarity hypothesis, for large 𝑟/𝜂  (𝐿 ≫ 𝑟 ≫  𝜂), 𝐷𝐿𝐿 is 

independent of 𝜈 and there is no non-dimensional group that can be formed from 

휀 and 𝑟 

 

𝐷𝐿𝐿(𝑟, 𝑡) = 𝐶2(휀𝑟)2/3 

 

Where 𝐶2 is a universal constant → For large 𝑟/𝜂, �̂�𝐿𝐿(𝑟/𝜂) asymptotically goes 

to a constant value 𝐶2. 

 

𝐷𝑁𝑁(𝑟, 𝑡) =
4

3
𝐷𝐿𝐿(𝑟, 𝑡) =

4

3
𝐶2(휀𝑟)2/3 

 

𝐷𝑖𝑗(𝑟, 𝑡) = 𝐶2(휀𝑟)2/3 (
4

3
𝛿𝑖𝑗 −

1

3

 𝑟𝑖𝑟𝑗

𝑟2
) = 𝑓(𝐶2, 휀, 𝑟)  

 

in inertial subrange  
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Figure shows the compensated structure functions 𝑆2
𝐿(𝑟)/(휀𝑟𝑟)2/3and −𝑆3

𝐿(𝑟)/

(휀𝑟𝑟) with η = (𝜈3/휀)1/4 

Compensated structure functions nearly constant for 
𝑟

𝜂
>

100

𝜂
 which is appropriate 

for inertial subrange.  

The constant values achieved by the curves match the coefficients in Bernard Eq. 

(4.101) and (4.102), but there is a slight tilt, such that the observed power laws are 

close to an 𝑟𝑛/3 behavior, but do not exactly have this trend.  

This suggests that 𝛼(2/3) and 𝛼(1) do not vanish. Measurements of structure 

functions for larger 𝑛 show that the departure from 𝑟𝑛/3 behavior becomes more 

significant.  

The trends in 𝑆𝑛
𝐿(𝑟) are the physical space analogue to the discrepancies in the -

5/3 wave number spectrum in Figure 4.8. Also in this case, it is believed that these 

are a consequence of intermittency. 

 


