Chapter 4: Turbulence at Small Scales
Part 8: Structure functions

6.1.4 Restatement of the Kolmogorov hypotheses

In order to deduce precise consequences from them, it is worthwhile to
provide here more precise statements of the Kolmogorov (1941) hypotheses.
Kolmogorov presented these in terms of an N-point distribution in the four-
dimensional x-t space. Here, however, we consider the N-point distribution
in physical space (x) at a fixed time ¢ — which is sufficiently general for most
purposes.

Consider a simple domain G within the turbulent flow, and let x9,
*0, .., x™ be a specified set of points within G. New coordinates and

velocity differences are defined by

y=x—i0, (620)

v(y) = Ux,1) — U,0), (6.21)
and the joint PDF of v at the N points y, @, ..., y™ is denoted by fx.

The definition of local homogeneity. The turbulence is locally homo-
geneous in the domain G, if for every fixed N and y*(n = 1,2,...,N),
the N-point PDF f is independent of x© and U(x, ).

The definition of local isotropy. The turbulence is locally isotropic in
the domain G if it is locally homogeneous and if in addition the
PDF fy is invariant with respect to rotations and reflections of the
coordinate axes.

The hypothesis of local isotropy. In any turbulent flow with a suffi-
ciently large Reynolds number (Re = U/L/v), the turbulence is, to a
good approximation, locally isotropic if the domain G is sufficiently
small (ie., [y < L, for all n) and is not near the boundary of the
flow or its other singularities.

The first similarity hypothesis. For locally isotropic turbulence, the
N-point PDF fy is uniquely determined by the viscosity v and the
dissipation rate &.

The second similarity hypothesis. If the moduli of the vectors ™ and
of their differences y™ — y™ (m % n) are large compared with the
Kolmogorov scale 7, then the N-point PDF fy is uniquely determined
by & and does not depend on v.

It is important to observe that the hypotheses apply specifically to velocity
differences. The use of the N-point PDF fy allows the hypotheses to be
applied to any turbulent flow, whereas statements in terms of wavenumber
spectra apply only to flows that are statistically homogeneous (in at least
one direction).

For inhomogeneous flows, local isotropy is possible only ‘to a good ap-
proximation’ (as stated in the hypothesis). For example, taking ¥V = el and
y@ = —ef (where £ is a specified length and e a specified unit vector), we
have

™) —o(y?)) = (UEM) - (™)
~ 2% -LV(U). (6.22)

Evidently this simple statistic is not exactly isotropic, but instead has a

small anisotropic component — of order £/L — arising from large-scale
inhomogeneities.




6.2 Structure functions

To illustrate the correct application of the Kolmogorov hypotheses, we
consider — as did Kolmogorov (1941b) — the second-order velocity structure

functions. The predictions of the hypotheses are deduced, and then compared
with experimental data.
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Fig. 6.3. A sketch showing the points x and x + r in terms of x" and y™. All points
are within the domain G.

By definition, the second-order velocity structure function is the covariance
of the difference in velocity between two points x + r and x:

Dij(r,x,8) = ([Ui(x +r,1) = U(x, )] [Uj(x +r.1) — Uj(x, 0)]). (6.23)

6.3 Two-point correlation

The Kolmogorov hypotheses, and deductions drawn from them, have no di-
rect connection to the Navier-Stokes equations (although, as in the previous
section, the continuity equation is usually invoked). Although, in the de-
scription of the energy cascade, the transfer of energy to successively smaller
scales has been identified as a phenomenon of prime importance, the precise
mechanism by which this transfer takes place has not been identified or
quantified. It is natural, therefore, to try to extract from the Navier-Stokes
equations useful information about the energy cascade. The earliest attempts

(outlined in this section) are those of Taylor (1935a) and of von Karman
and Howarth (1938), which are based on the two-point correlation. The next
two sections give the view from wavenumber space in terms of the energy
spectrum ~ the Fourier transform of the two-point correlation.

Autocorrelation functions

Consider homogeneous isotropic turbulence, with zero mean velocity, r.m.s.

velocity /(t), and dissipation rate &(t). Because of homogeneity, the two-point
correlation

Rij(r, 1) = (ui(x + 1, t)uy(x, 1)), (6.41)

is independent of x. At the origin it is

R;j(0,t) = (uu;) = u5y;. (6.42)



Kolmogorov spectra can be obtained via two paths:

1. Use Fourier transforms of structure functions (physical space)
2. Apply Kolmogorov hypothesis directly to the spectra (wave number space)

The second approach is less rigorous but simpler as we have done. The first
approach was originally used by Kolmogorov.

Second order velocity structure function is co-variance of the difference in velocity
between two points x + r and x: 2" order tensor which is determined by all eddies
with size less than or comparable with r.

Dij(x,1,7) = [wi(x +1,t) —w;(x, O] [w(x + 1, t) —u;(x, 8)]

To within scalar multiples, the only second-order tensors that can be formed from
the vector r are §;; and r;7;. Consequently D;; can be written as

T'l'T'j
D;; (r.t) = Dun(r, t)0;j + [Dy,(r,t) — Dyy (7, t)] —

Where the scalar functions D;; and Dy are called, respectively, the longitudinal
and transverse structure functions. If the coordinate system is chosen so that r =
ré;

Dy1 =Dy, Dy =D33=Dyy Dijj=0i#]j

U, U,

. - —~ D1 =Dy,
2 U, J U,
. Dy = Dyy
1 X x +er
3 Dy = Dyy
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Fig. 6.4. A sketch of the velocity components involved in the longitudinal and trans-
verse structure functions for r = er.



As for R;;,

aD
I

ij = 0 Due to incompressibility

Combining isotropic theory with the incompressibility condition

1 0
Dyn(r,t) = Dy (1, t) + 5 r I Dy, (r,t)

i.e., Di;(r,t) = f(Dy.(r,t)) determined by simple scalar function.

According to the 1 similarity hypothesis, given r (|r| « L), D;; is uniquely
determined by € and v.

(er)?/3 has dimensions of velocity squared, and so can be used to make D;; non-
dimensional. There is only one independent non-dimensional group that can be

formed from 7,&,v which can be taken to be rel/*v3/* =r/n, where n =
g—1/4,,-3/4

Thus,

Dy (r,t) = (er)**Dy(r/n)

where D;; (r/n) is a universal, non-dimensional function.



According to the 2" similarity hypothesis, for large r/n (L > r > 1), D, is
independent of v and there is no non-dimensional group that can be formed from
gandr

Dy, (r,t) = Cy(er)?/?

Where C, is a universal constant — For large 7/, D,; (r/n) asymptotically goes
to a constant value C,.

Dyy(r,t) = iD (r,t) = éC (er)?/3 in inertial subrange

4 1 rr;
Dij(r,t) = Cp(er)*/? <§5ii - _#) = f(Cp6,7)
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Fig. 6.5. Second-order velocity structure functions measured in a high-Reynolds-
number turbulent boundary layer. The horizontal lines show the predictions of the
Kolmogorov hypotheses in the inertial subrange, Eqs. (6.33) and (6.34). (From Sad-
doughi and Veeravalli (1994).)

the above predictions can readily be examined. Taking the value C, = 2.0
suggested by these and other data, we draw the following conclusions.

(1) For 7,000 n = 3£ > r > 20, D,/(er)** is within +15% of C..
(ii) There is no perceptible difference between D, and Ds;.
(1) For 1,200 n ~ 5:L£ > r > 12y, Dy /(er)?? is within +15% of 1C.

Over the ranges of r given above, D, and D1, change by factors of 50 and 20,
respectively, and so +15% variations can be considered small in comparison.



T T T Figure 4.10 Compensated
longitudinal structure functions

10 computed in isotropic turbulence [24].
SL/(e,r)*P3, top curves; =S, /(e,n),
bottom curves. Constant, dotted line is
0.8. The sequence of curves in each
group covers an increasing r/n domain
correspond to

R, = 167,257,471,732,1131.
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Figure shows the compensated structure functions Sk (r)/(g,7)?/3and —Sk(r)/

(&,1) withn = (v3/e)'/*

, 100, . . .
Compensated structure functions nearly constant for% > o which is appropriate

for inertial subrange.

The constant values achieved by the curves match the coefficients in Bernard Eq.
(4.101) and (4.102), but there is a slight tilt, such that the observed power laws are
close to an r™3 behavior, but do not exactly have this trend.

This suggests that a(2/3) and a(1) do not vanish. Measurements of structure

n/3

functions for larger n show that the departure from r"*/° behavior becomes more

significant.

The trends in Sk(r) are the physical space analogue to the discrepancies in the -
5/3 wave number spectrum in Figure 4.8. Also in this case, it is believed that these
are a consequence of intermittency.

10 prerr———rrrr——rrr— g 100 Figure 4.8 Compensated energy
E 3 spectrum as given in [21]. With

increasing R, the simulations used
512%,10242,2048% and 4096° meshes.
Scales on the left and right are for the
upper and lower curves, respectively.
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