Chapter 4: Turbulence at Small Scales

Part 7: Analysis of Kolmogorov spectra

(1) 1D Dissipation spectra
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Fig. 6.14. Measurements of one-dimensional longitudinal velocity spectra (symbols),
and model spectra (Eq. (6.246)) for R; = 30,70, 130,300,600, and 1,500 (lines). The
experimental data are taken from Saddoughi and Veeravalli (1994) where references
to the various experiments are given. For each experiment, the final number in the
key is the value of R;.

Scaled Kolmogorov spectrum log-log plot: @1 (i1n) = E;1 (k1) /(ev®)* vs. k47
Universal f (k1) for high Re and for k; > kg;: universal equilibrium range.
Data lie on a single curve for k17 > 0.1: exponential decay.

Power law for k;17 < 0.1 and extent of region increases with R;: inertial subrange
(cym) ™33,

The model spectrum is accurate.
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Fig. 6.15. Compensated one-dimensional velocity spectra. Measurements of Comte-
Bellot and Corrsin (1971) in grid turbulence at R; = 60 (triangles), and of Saddoughi
and Veeravalli (1994) in a turbulent boundary layer at R; = 600 (circles). Solid
line, model spectrum Eq. (6.246) for R; = 600; dashed line, exponential spectrum
Eq. (6.253); dot—dashed line, Pao’s spectrum, Eq. (6.254).

Scaled compensated spectrum linear-log plot: Wy, = E; (k1) /%31, 753 vs. k4
Emphasizes dissipation range.

For k;n > 0.1, agreement different flows support universality of large k spectra.
Straight line behavior for k;1 > 0.3 indicates exponential decay for highest k.

Model spectrum represents the data accurately.



Alternative models for f, (kn) (Pope Ex. 6.33):

fo(kn) = exp(—Pokn)

3
fn(km) = exp [— 5C (km)*/ 3]

Not as good as model spectrum.

(2) 3D Dissipative spectrum

D(x) = 2vk?E(k) (m?/sxm?xm3/s?=m3/s3)

Cumulative dissipation
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Fig. 6.16. The dissipation spectrum (solid line) and cumulative dissipation {dashed

line) corresponding to the model spectrum Eq. (6.246) for R; = 600. ¥ = 2n/k is the
wavelength corresponding to wavenumber x.



Table 6.1. Characteristic wavenumbers and lengthscales of the dissipation
spectrum (based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumbers kn  £/n
Peak of dissipation spectrum 0.26 24
gk = 0.1e 0.10 63
T (.5¢ 0.34 18
Ejow) = 0.9¢ 0.73 8.6

Peak of dissipation spectrum kn = 0.26, corresponding to [/n = 24, while the

centroid (where £ ) = %e) occurs at kn = 0.34, corresponding to [/n = 18.

Thus, most of € occurs for 0.1 < kn < 0.75, or 60 > [/n > 8 which is > 7.

Therefore, dissipative motions scale with 7, but are not equal ton. The boundary
between the inertial subrange and the dissipation range is taken to be [,; = 601.
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.



(3) 1D Spectra Inertial Subrange
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Fig 6.17. Compensated one-dimensional spectra measured in a turbulent boundary
layer at R; = 1,450. Solid lines, experimental data Saddoughi and Veeravalli (1994);
dashed lines, model spectra from Eq. (6.246); long dashed lines, C; and C; correspond-
ing to Kolmogorov inertial-range spectra. (For E;;, Ey; and Ei; the model spectra are
for R; = 1,450, 690, and 910, respectively, corresponding to the measured values of
(i), (), and (u3).)

Second Kolmogorov hypothesis predicts a -5/3 spectrum in the inertial subrange,
which is best examined using the compensated spectrum.

W11 = Eq1 () /e*P1, 733 = €, = 0.49

Data is within 20% of the predicted value over two decades of k, over which
range of K1_5/3 increases by a factor of 2000.

Kk =10"3 - k;7%3n = 1075
- 2.2-1072/107>~2000

k=107t -k, 7%3n =2.2-1072

Forxn > 2 x 1073, E,, = E33, i.e., isotropic behavior.
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(4) 3D Spectra energy-containing range

10”51_1(’0)

Kk dk

E (x)= function of flow at hand = %K3 (

Better to evaluate, but requires differentiation of E;;.
E (k) is better since E;,(x;) only depends on |k| > k;.
Appropriate scales for normalization are the turbulent kinetic energy k and L,;.

For isotropic turbulence

k= j:oE(K)dK

foo E(k) dx = %KLII (Pope Ex. 630)
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Fig. 6.18. The energy-spectrum function in isotropic turbulence normalized by k
and L;;. Symbols, grid-turbulence experiments of Comte-Bellot and Corrsin (1971):
O,R; =171;0,R; = 65;A,R; = 61. Lines, model spectrum, Eq. (6.246): solid, po = 2,
R, = 60; dashed, pp = 2, R; = 1,000; dot-dashed po = 4, R, = 60.
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Fig. 6.19. The cumulative turbulent kinetic energy k) against wavenumber x and
- wavelength £ = 27 /xk for the model spectrum.




Figure 6.18: model spectrum accurate and kL, scaling shows almost no change
with Re.

Figure 6.19: the cumulative kinetic energy.
K
k(O,K) =f E(K,)dk,
0

Table 6.2. Characteristic wavenumbers and lengthscales of the energy
spectrum ( based on the model spectrum Eq. (6.246) at R; = 600)

Defining wavenumber kL £/Lj
Peak of energy spectrum 1.3 5.0
kox = 0.1k 10 6.1
Koy = 0.5k - 39 1.6
ki = 0.8k 15 0.42
ko) = 0.9k 38 0.6

The centroid of the spectrum is at kL,; = 4 (LL ~ 1.5) and 80% of the energy is
11

. . . 1
contained in motions of length scale gLn <l < 6L,y.
Therefore, length scales characterizing the energy-containing motions are lg; =

1 : -
gL11 and l, = L4, according to Pope. However, as it will be shown later [j~2L,4

is @ more appropriate choice.

Energy-containing
range

Universal equilibrium range

|

|
|
l
|
| Rervayger |
¢

Dissipation range | Inertial subrange
T ! L | I
=Ls
] lpp = Lo == & L

Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.



(5) 3D Spectra Effects of the Reynolds number
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Fig. 6.20. The model spectrum for various Reynolds numbers, scaled by (a) k and L,y,
and (b) Kolmogorov scales.

Figure 6.20 (a): model spectrum normalized by k and L, for a range of Re shows
that energy-containing ranges of the spectra (0.1 < kL;; < 10) are very similar,
whereas for increasing R;, the extent of the -5/3 region increases, and the
exponential decay region moves to higher values of kL,;.

Figure 6.20 (b): same spectra normalized by k7, shows dissipation ranges (kn >
0.1) are very similar, whereas the -5/3 region and the energy range move to lower
values of k7 for increasing R;.
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Fig. 6.21. Model energy and dissipation spectra normalized by the Kolmogorov scales
at R; = 1,000 (solid lines) and R; = 30 (dashed lines). (Note the scaling of E(k).)



Figure 6.21: contrasts high Re and low Re energy and dissipation spectra.

The energy in the wave number range (x4, kj)
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High Re spectrum contains more energy.

Low Re, energy and dissipation spectra overlap (no clear separation of scales),
whereas for high Re there is a significant separation of scales.

Fig. 6.22: quantifies overlap between the energy and dissipation spectra.
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Fig. 6.22. The fraction of the energy at wavenumbers greater than x (kx0)/k) and
the fraction of the dissipation at wavenumbers less than x  (ggq,/¢) for the model
spectrum at R; = 1,000 (solid line) and at R; = 30 (dashed line). For the two Reynolds
numbers, the horizontal bars identify the ‘decade of wavenumbers of most overlap’
between the energy and dissipation spectra.

1

k (x,0)/k = fraction of energy due to wave number > k
E0,x)/€ = fraction of dissipation due to wave number < k

If there were a complete separation of scales then, with increasing k, k(. «)/k
would decrease to zero before g /€ rose from zero.

For large R, small overlap, but large overlap for small R;.
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Fig. 6.23. The fraction f; of the energy and dissipation contributed by the wavenumber
decade of maximum overlap as a function of R; for the model spectrum.
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Very large R, required for there to be a decade of wave numbers in which both

energy and dissipation are negligible.

Energy cascade:

&

3

=7,

Uy

Where u, and [, are characteristic velocity and length scales of energy containing
eddies. Taking uy = k*/? and I, = L1; = € = k3/?/L,, and using the definition

L=k3?/¢

k3/2
E=——=¢

L

k3/2

L11)
=

That is, scaling € = k3/?/L,4is equivalent only if % = 1.
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Fig. 6.24. The ratio of the longitudinal integral lengthscale Ly, to L = k3%/¢ as a
function of the Reynolds number for the model spectrum.

Fig. 6.25. Turbulence Reynolds numbers Re;. (solid line) and Rer (dashed line) as
functions of R; for the model spectrum.

However, Fig. 6.24 shows that L, /L only approaches 1 for small R; < 10%, which

is the requirement for turbulent flow and L;; /L = 0.43 as R; increases.
3/2
Therefore, for turbulent flow, [, = L = kT is the proper definition of the length

scale for large eddies.

Fig. 6.25: Shows relation between different Reynolds numbers.
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However, considering [, = L~2L,,, and L as the characteristic length scale of the
flow (usually based on the geometry of the problem), it is more reasonable to
estimate L~6L,4, since 80% of the flow energy is contained in motions of length

scaIe%Lll < | < 6L44, as discussed previously.
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(6) The shear-stress spectrum (Pope Ex. 6.35)
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.
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Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.

Dissipation + inertial subrange: E (k) = £%/3k~>/3¥ (kn)

Inertial subrange: E (k) = Ce?/3k~5/3

Dissipation range: D (k) = 2vk?E (k)

Locally isotropic grid turbulence, i.e., isotropy only at small scales: u,u, = 0,

€12 (E) =0, Ey5(x1) = 0.

. oU, . . .
For flow with § = a_xl > (0 = non-isotropic turbulence and for simple shear flows,
2

e.g., homogeneous shear flow u;u, /k = —0.3; therefore,

UiU; =j Eip (k) diy
0

Where E;, (k) is anisotropic at least over part of the wave number range.
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T = time scale of motions of wavenumber k = eddy turnover time.

ST = non-dimensional mean shear (rate of strain) characterizes influence S, i.e.,
small St then level of anisotropy created by § small.

Dissipation range 7 = 7, = (v/e)l/z: ST, K 1 forlocal isotropy
= 3Re, /2
=9R,™*

~1/3

Inertial range 7(x) = (x2¢) (formed from k and &) and for local isotropy at k

St(k) = S(K?e) /3 « 1

Using length scale Lg = €Y/2572/3 = /6 (L = k3/?/¢) for local isotropy

K'ch > 1

For high Re, Lg_l & k <1~ for wave number range within inertial subrange
wherein anisotropy only a small perturbation due S on background isotropy f(¢).
Therefore,

Eip(k1) = f(Kk1,6,8) xS
From dimensional analysis

E12(Kq)
u§L5

= E,,(x,Ls) = nondimensional function

us = velocity scale = (¢/8)Y/? =~ k'/2 /2

14



The linearity of E;, with S determines E,:

Eqp(k¢1) —-7/3
2L —Cy2(kq Ls) /3 or
SLS
1/3 -7/3 .
Ei,(ky) = —C1,8° Ky where C;, is a constant.
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Fig. 6.26. Shear-stress spectra scaled by us and Lg: line, Eq. (6.277) with Cj» =
0.15; symbols, experimental data of Saddoughi and Veeravalli (1994) from turbulent
boundary layers with R; ~ 500 to 1,450.
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Fig. 6.27. The spectral coherency measured in a turbulent boundary layer at R; =
1,400 (Saddoughi and Veeravalli 1994).

Fig. 6.26:
Agrees data for k;Lg > 0.5 with C;, = 0.15.

Shows that E;, (k;) decays more rapidly than E;;(x,), i.e., —=7/3 vs. —=5/3, so
that anisotropy decreases with k.

Conclusion: dominant contribution u;u, is from k in the energy containing range,
and at higher k, E;, (k) decays more rapidly than E (x;), which is consistent with
local isotropy.
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