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Chapter 4 Turbulence at Small Scales 

Part 0 The Energy Cascade and Kolmogorov Hypotheses (Pope 6.1) 

 

Assume large 𝑅𝑒 = 𝑈𝐿/𝜈 for large scale flow with geometries and flows of interest: 

wall (channel, pipe, or boundary layer) or free shear flows. 

 

Largest size eddies: 

𝑙0~𝐿,     𝑢0(𝑙0)~𝑢 = (
2

3
𝑘)

1

2
~𝑈,     𝜏0 =

𝑙0

𝑢0
 

𝑘 =
1

2
< 𝑢2 + 𝑣2 + 𝑤2 > 

 if isotropic = 𝑘 =
3

2
< 𝑢2 > 

𝑢𝑟𝑚𝑠 = [
2

3
𝑘]

1/2

≈  𝑘1/2 

Smallest size eddies: 

𝜂, 𝑢𝜂 , 𝜏𝜂 

 

 

Kolmogorov scales 
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Energy Cascade: 

Energy transferred from the largest to successively smaller scales until 𝑅𝑒𝜂 =
𝑢𝜂𝜂

𝜈
~1 such that eddy motion is stable and viscosity dissipates the TKE. 

 

Leonardo’s Da Vinci: sketch of water falling into a pool. Note the different scales 

of motion, suggestive of the energy cascade. 

 

Rate of dissipation ε is determined by the largest scales with energy 𝑢0
2 and time 

scale 𝜏0 =
𝑙0

𝑢0
; therefore, 

 

𝜀 =
𝑢0

2

𝜏0
=

𝑢0
3

𝑙0
≠ 𝑓(𝜈)!    (m2/s3) 

 

Important assumption is that both 𝑢(𝑙) and 𝜏(𝑙) decrease as 𝑙 decreases. 
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Kolmogorov’s hypothesis of local isotropy: 

At high Reynolds number, the small-scale turbulent motions (𝑙 ≪ 𝑙0) are 

statistically isotropic . 

 

Define length scale 𝑙𝐸𝐼 as the demarcation between the anisotropic large eddies 

and the isotropic small eddies 

 

𝑙 > 𝑙𝐸𝐼~
1

6
𝑙0  anisotropic large eddies 

𝑙 < 𝑙𝐸𝐼  isotropic small eddies → information mean flow and BCs is lost 

→ statistics of the small-scale motions are universal. i.e., 

similar all high-Reynolds number turbulent flows. 

 

Two important parameters: energy transfer from large scales 𝒯𝐸𝐼 ≈ 𝜀 and viscous 

dissipation ν (m2/s). 

 

Kolmogorov’s first similarity hypothesis1: 

at high Reynolds number, small-scale motions (𝑙 < 𝑙𝐸𝐼) have universal form 

uniquely f(ε, ν) = universal equilibrium range. 

 

The size range 𝑙 < 𝑙𝐸𝐼  is referred to as the universal equilibrium range.  

 

 

 

 

 

 
1 Paraphrased 
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Thus, Kolmogorov scales are only function of  𝜀 and ν, i.e., 𝜂(𝜀, ν), 𝑢𝜂(𝜀, ν), and 

𝜏𝜂(𝜀, ν) can be determined by dimensional analysis: 

 

𝜂 = (
𝜈3

𝜀
)

1
4

 

𝑢𝜂 =  (𝜀ν)
1
4 

𝜏𝜂 = (
𝜈

𝜀
)

1
2

 

 

The ratios of the smallest to largest scales can be obtained using 𝜀 =
𝑢0

3

𝑙0
 

 

𝜂/𝑙0~𝑅𝑒−3/4 

𝑢𝜂/𝑢0~𝑅𝑒−1/4 

𝜏𝜂/𝜏0~𝑅𝑒−1/2 

 

which shows how scales decrease with 𝑅𝑒 =
𝑢0𝑙0

𝜈
. 

 

Thus, 

𝑅𝑒𝜂 =
𝑢𝜂𝜂

𝜈
= 1 

𝜀 = 𝜈 (𝑢𝜂/𝜂)
2

= 𝜈/𝜏𝜂
2 

𝑢𝜂

𝜂
= 𝜏𝜂 

 

Velocity gradient dissipative eddies 



5 
 

How large is η?   

Cases Re η /lo lo η 
Educational experiments 103 5.6×10-3 ~ 1 cm 0.056 mm 

Model-scale experiments 106 3.2×10-5 ~ 3 m 0.095 mm 
Full-scale experiments 109 1.8×10-7 ~ 100 m 0.018 mm 

 
The smallest fluid motion scales for ship and airplane: 

 U(m/s) L(m) v (m2/s) Re 
(mm) 

u

(m/s) 

 (s) 

Ship 

(Container: 
ALIANCA MAUA) 

11.8 (23.3 

knots) 

 

272 9.76E-7 3.3E09 0.02 0.05 4E-4 

Airplane 

(Airbus A300) 

216.8 

(Ma=0.64) 

56.2 3.7E-5 

(z=10Km) 

0.3E09 0.023 1.64 1.4E-5 

 
Much of the energy in this flow is dissipated in eddies which are less than fraction 

of a millimeter in size!!  

 

Alternative reasoning: 

𝜀 =
𝑢0

2

𝜏0
=

𝑢0
3

𝑙0
 

                            = 𝜈𝜀𝑖𝑗𝜀𝑖𝑗 =  𝜈 (𝑢𝜂/𝜂)
2
 

𝑢0
3

𝑙0
= 𝜈 (𝑢𝜂/𝜂)

2
 but 𝑅𝑒𝜂 =

𝑢𝜂𝜂

𝜈
= 1 

 

𝜂 = 𝑙0𝑅𝑒−3/4

𝑢𝜂 = 𝑙0𝑅𝑒−1/4} 

 

𝑅𝑒 =
𝑢0𝑙0

𝜈
 

Largest scales 

Smallest scales, as per TKE equation 

𝜂 = (𝜈3/𝜀)1/4 

𝑢𝜂 = (𝜀ν)
1
4 

http://www.containership-info.com/vessel_9283239.html
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Kolmogorov’s second similarity hypothesis2: 

at high Reynolds number, the statistics of the motions 𝑙0 ≫ 𝑙 ≫ 𝜂 are uniquely 

determined by ε and not f(ν). 

 

 

In the inertial subrange, viscous effects are negligible. 

𝑙𝐸𝐼 = 𝑙0/6 and 𝑙𝐷𝐼 = 60𝜂 based peak and centroid of Energy and Dissipation 

spectrums, respectively. 

E=energy range 

I=inertial range 

D=dissipation range 

 

EI is boundary between E and I 

DI is boundary between I and D 

 

Length, velocity, and time scales 𝑙, 𝑢, 𝜏 cannot be formed using 𝜀 only, but using 𝜀 

and 𝑙 (in the inertial sub range) 

𝑢(𝑙) = (𝜀𝑙)1/3 = 𝑢𝜂(𝑙/𝜂)1/3~𝑢0(𝑙/𝑙0)1/3 

𝜏(𝑙) = (𝑙2/𝜀)1/3 = 𝜏𝜂(𝑙/𝜂)2/3~𝜏0(𝑙/𝑙0)2/3 

That is both 𝑢(𝑙) and 𝜏(𝑙) decrease as 𝑙 decreases. 

 
2 Paraphrased 
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𝒯(𝑙) is the rate at which energy is transferred from eddies larger than 𝑙 to those 

smaller than 𝑙. 

 

𝒯(𝑙) =
𝑢(𝑙)2

𝜏(𝑙)
= 𝜀 ≠ 𝑓(𝑙) in the inertial subrange 

𝒯𝐸𝐼(𝑙𝐸𝐼) =  𝒯(𝑙) =  𝒯𝐷𝐼(𝑙𝐷𝐼) = 𝜀 

 

Rate of energy transfer from the large scales determines the constant rate of 

energy transfer through the inertial subrange and that which enters the dissipation 

range. 

 

 

 

𝑙𝐸𝐼 > 𝑙 > 𝑙𝐷𝐼 
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The energy spectrum: TKE distribution as 𝑓(𝑒𝑑𝑑𝑦 𝑠𝑖𝑧𝑒) 

 

𝑘(𝜅𝑎,𝜅𝑏) = ∫ 𝐸(𝜅)𝑑𝜅
𝜅𝑏

𝜅𝑎

 

Where 𝜅 = 2𝜋/𝑙= wave number and 𝑘 =TKE. 

 

𝜀(𝜅𝑎,𝜅𝑏) = ∫ 2𝜈𝜅2𝐸(𝜅)𝑑𝜅
𝜅𝑏

𝜅𝑎

 

 

In the universal equilibrium range (𝜅 > 𝜅𝐸𝐼 ≡ 2𝜋/𝑙𝐸𝐼), E(𝜀,𝜈); and  in the inertial 

range (𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼 ≡ 2𝜋/𝑙𝐷𝐼) E(𝜀)only such that using dimensional analysis 

 

𝐸(𝜅) = 𝐶𝜀2/3𝜅−5/3    (m3/s2) 

 

where 𝐶 is a universal constant.  Which is in the form of a power-law spectrum  

 

𝐸(𝜅) = 𝐴𝜅−𝑝 

 

with 𝐴 and 𝑝 are constants. The energy contained in wave numbers greater than 

𝜅 is 

𝑘(𝜅,∞) = ∫ 𝐸(𝜅′)𝑑𝜅′ =
𝐴

𝑘 − 1
𝜅−(𝑝−1)

∞

𝜅

 

 

for 𝑝 > 1, whereas the integral diverges for 𝑝 ≤ 1. 
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Similarly, the dissipation in wavenumbers less than 𝜅 is 

 

𝜀(0,𝜅) = ∫ 2𝜈𝜅′2𝐸(𝜅′)𝑑𝜅′
𝜅

0

=
2𝜈𝐴

3 − 𝑝
𝜅3−𝑝 

 

for 𝑝 < 3, whereas the integral diverges for 𝑝 ≥ 3. 

 

Thus, 𝑝 = 5/3 = the Kolmogorov spectrum, is around the middle of the range 

(1,3) for which the integrals 𝑘(𝜅,∞) and 𝜀(0,𝜅) converge. 

 

For 𝑝 = 5/3, 𝑘(𝜅,∞) =
𝐴

2/3
𝜅−2/3 i.e., amount of energy for high wave numbers 

decreases as 𝑘(𝜅,∞)~𝜅−2/3 as 𝜅 increases, whereas the dissipation for low wave 

numbers decreases as 𝜀(0,𝜅) =
2𝜈𝐴

4/3
𝜅4/3 as 𝜅 decreases towards zero. 

 

Thus, the bulk of energy is at large scales 𝑙 > 𝑙𝐸𝐼 or 𝜅 < 2𝜋/𝑙𝐸𝐼 

and the bulk of dissipation is in small scales 𝑙 < 𝑙𝐷𝐼 or 𝜅 > 2𝜋/𝑙𝐷𝐼 
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