Chapter 4 Turbulence at Small Scales

Part 0 The Energy Cascade and Kolmogorov Hypotheses (Pope 6.1)

Different scales in a urbulent flow
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Figure 1.14 A schematic representation of 7

the energy cascade (after Frisch 1995). See

i Wiscosity
also Leonardo's sketch—Plate 3,

Assume large Re = UL /v for large scale flow with geometries and flows of interest:
wall (channel, pipe, or boundary layer) or free shear flows.

Largest size eddies:
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n,uy, Ty Kolmogorov scales




Energy Cascade:

Energy transferred from the largest to successively smaller scales until Re, =

uz_n ~1 such that eddy motion is stable and viscosity dissipates the TKE.

Leonardo’s Da Vinci: sketch of water falling into a pool. Note the different scales
of motion, suggestive of the energy cascade.

Rate of dissipation € is determined by the largest scales with energy u2 and time

l
scale Ty = u—°; therefore,
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Important assumption is that both u(l) and 7(l) decrease as [ decreases.



Kolmogorov’s hypothesis of local isotropy:

At high Reynolds number, the small-scale turbulent motions (I < l,) are
statistically isotropic .

Define length scale lg; as the demarcation between the anisotropic large eddies
and the isotropic small eddies

[ > l51~%l0 anisotropic large eddies

[ <lg isotropic small eddies = information mean flow and BCs is lost
— statistics of the small-scale motions are universal. i.e.,
similar all high-Reynolds number turbulent flows.

Two important parameters: energy transfer from large scales J;; = € and viscous
dissipation v (m?/s).

KolmogoroV’s first similarity hypothesis?:

at high Reynolds number, small-scale motions (Il < lg;) have universal form
uniquely f(g, v) = universal equilibrium range.

The size range | < lg; is referred to as the universal equilibrium range.

1 paraphrased



Thus, Kolmogorov scales are only function of € andv, i.e., (e, v), u, (¢, v), and

T, (&, v) can be determined by dimensional analysis:

The ratios of the smallest to largest scales can be obtained using € = l

which shows how scales decrease with Re =

Thus,
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How large is n?

Cases Re n/lo lo n
Educational experiments 103 5.6x103 ~1cm 0.056 mm
Model-scale experiments 108 3.2x10° ~3m 0.095 mm
Full-scale experiments 10° 1.8x107 ~100 m 0.018 mm
The smallest fluid motion scales for ship and airplane:
U(m/s) L(m) | v (m?s) Re n U r
n n (8)
(Mm) 1 ()

Ship 11.8 (23.3 | 272 |9.76E-7 3.3E09 | 0.02 0.05 4E-4
(Container: knots)
ALIANCA MAUA)
Airplane 216.8 56.2 | 3.7E-5 0.3E09 | 0.023 |1.64 1.4E-5
(Airbus A300) (Ma=0.64) (z=10Km)

Much of the energy in this flow is dissipated in eddies which are less than fraction
of a millimeter in size!!

Alternative reasoning:
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http://www.containership-info.com/vessel_9283239.html

Kolmogorov’s second similarity hypothesis:

at high Reynolds number, the statistics of the motions L, > | > n are uniquely
determined by € and not f(v).
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Fig. 6.1. Eddy sizes £ (on a logarithmic scale) at very high Reynolds number, showing
the various lengthscales and ranges.

In the inertial subrange, viscous effects are negligible.

lg; = 1y/6 and lp; = 607 based peak and centroid of Energy and Dissipation
spectrums, respectively.

E=energy range
I=inertial range

D=dissipation range

El is boundary between E and |

Dl is boundary between | and D

Length, velocity, and time scales [, u, T cannot be formed using € only, but using ¢
and [ (in the inertial sub range)

u()) = (eDV? = u, (M3 ~uo (/1) '3
(1) = (12/e)® = 1, (/M2 ~1o(1/15)?/?

That is both u(1) and 7(l) decrease as | decreases.
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T (1) is the rate at which energy is transferred from eddies larger than [ to those
smaller than .

2
T = % = & # f (1) in the inertial subrange

Terg) = T = TpUp) = € lpr > 1> lp,

Rate of energy transfer from the large scales determines the constant rate of

energy transfer through the inertial subrange and that which enters the dissipation
range.
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Fig. 6.2. A schematic diagram of the energy cascade at very high Reynolds number.
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The energy spectrum: TKE distribution as f (eddy size)

Kb
k(Ka:Kb) =J E(K)dK
K

a

Where k = 2m/l= wave number and k =TKE.

Kb
kg kp) =f 2vk?E (k)dk
Ka

In the universal equilibrium range (k > kg; = 21t /lg;), E(g,v); and in the inertial
range (kg < k < Kp; = 21t /lp;) E(¢)only such that using dimensional analysis

E(x) = Ce?Pk=5/3  (m3/s?)
where C is a universal constant. Which is in the form of a power-law spectrum
E(k) = Ak7P
with A and p are constants. The energy contained in wave numbers greater than

K is

K_(p_l)

* ! ! A
k(;c,oo) = j E(K )dK = e —
K

for p > 1, whereas the integral diverges forp < 1.



Similarly, the dissipation in wavenumbers less than k is

2vA

K
E0.5) =J 2vk'2E (k) dk' = 3 k3P
0

for p < 3, whereas the integral diverges for p > 3.

Thus, p = 5/3 = the Kolmogorov spectrum, is around the middle of the range
(1,3) for which the integrals k(, ) and &g ) converge.

A
FOf'p = 5/3, k(K,oo) = mK

~2/3 35 k increases, whereas the dissipation for low wave

=2/3 j.e., amount of energy for high wave numbers

decreases as Ky o) ~K

2vA
numbers decreases as (g ;) = v k*/3 as i decreases towards zero.

Thus, the bulk of energy is at large scales | > lz; or k < 2w /lg;

and the bulk of dissipation is in small scales [ < lj; or k > 21/,



6.1.4 Restatement of the Kolmogorov hypotheses

In order to deduce precise consequences from them, it is worthwhile to
provide here more precise statements of the Kolmogorov (1941) hypotheses.
Kolmogorov presented these in terms of an N-point distribution in the four-
dimensional x—t space. Here, however, we consider the N-point distribution
in physical space (x) at a fixed time ¢ — which is sufficiently general for most
purposes.

Consider a simple domain G within the turbulent flow, and let x(,
x0, ., x™ be a specified set of points within G. New coordinates and

velocity differences are defined by

p=x—10, (620)

o(y) = Ux,t) — U, 1), (6.21)
and the joint PDF of » at the N points y®, y@, ...,y is denoted by f.

The definition of local homogeneity. The turbulence is locally homo-
geneous in the domain G, if for every fixed N and y*(n = 1,2,...,N),
the N-point PDF fy is independent of x® and U(x,1).

The definition of local isotropy. The turbulence is locally isotropic in
the domain @ if it is locally homogeneous and if in addition the
PDF fy is invariant with respect to rotations and reflections of the
coordinate axes.

The hypothesis of local isotropy. In any turbulent flow with a suffi-
ciently large Reynolds number (Re = U/L/v), the turbulence is, to a
good approximation, locally isotropic if the domain G is sufficiently
small (ie., [y™| < L, for all n) and is not near the boundary of the
flow or its other singularities.

The first similarity hypothesis. For locally isotropic turbulence, the
N-point PDF fy is uniquely determined by the viscosity v and the
dissipation rate .

The second similarity hypothesis. If the moduli of the vectors y®™ and
of their differences y™ — y® (m # n) are large compared with the
Kolmogorov scale 7, then the N-point PDF fy is uniquely determined
by & and does not depend on v.

It is important to observe that the hypotheses apply specifically to velocity
differences. The use of the N-point PDF fy allows the hypotheses to be
applied to any turbulent flow, whereas statements in terms of wavenumber
spectra apply only to flows that are statistically homogeneous (in at least
one direction).

For inhomogeneous flows, local isotropy is possible only ‘to a good ap-
proximation’ (as stated in the hypothesis). For example, taking y = el and
y@ = —el (where £ is a specified length and e a specified unit vector), we
have

(O™ — 26 = (UOM) — (UO™)
~ 2%" - LV{D). (6.22)

Evidently this simple statistic is not exactly isotropic, but instead has a

small anisotropic component — of order £/L — arising from large-scale
inhomogeneities.
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6.2 Structure functions

To illustrate the correct application of the Kolmogorov hypotheses, we
consider — as did Kolmogorov (1941b) — the second-order velocity structure

functions. The predictions of the hypotheses are deduced, and then compared
with experimental data.

x+r=2x?

Fig. 6.3. A sketch showing the points x and x + r in terms of x" and y™. All points
are within the domain G.

By definition, the second-order velocity structure function is the covariance
of the difference in velocity between two points x + r and x:

Dyj(r,x,1) = ([Ui(x + r,t) = Ui(x, O] [Uj(x +r.1) — Ujlx, ). (6.23)

6.3 Two-point correlation

The Kolmogorov hypotheses, and deductions drawn from them, have no di-
rect connection to the Navier-Stokes equations (although, as in the previous
section, the continuity equation is usually invoked). Although, in the de-
scription of the energy cascade, the transfer of energy to successively smaller
scales has been identified as a phenomenon of prime importance, the precise
mechanism by which this transfer takes place has not been identified or
quantified. It is natural, therefore, to try to extract from the Navier-Stokes
equations useful information about the energy cascade. The earliest attempts

(outlined in this section) are those of Taylor (1935a) and of von Karman
and Howarth (1938), which are based on the two-point correlation. The next
two sections give the view from wavenumber space in terms of the energy
spectrum ~ the Fourier transform of the two-point correlation.

Autocorrelation functions

Consider homogeneous isotropic turbulence, with zero mean velocity, r.m.s.

velocity /(t), and dissipation rate &(t). Because of homogeneity, the two-point
correlation

Rij(r, 1) = (ui(x + 1, t)uy(x, 1)), (6.41)

is independent of x. At the origin it is

R;j(0,t) = (uu;) = u5y;. (6.42)
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