Chapter 2 Describing Turbulence: Averages, Correlations and Spectra

Supter al tempaval veloag os persue fuele for incompersble tworvent flow orveg the wasu- Stoken egutioun

$$
\begin{aligned}
& \nabla \cdot \underline{u}=\frac{\partial u_{i}}{\partial x_{i}}=0 \\
& e \frac{\Delta \underline{U}}{\partial t}=e\left(\frac{\partial \underline{u}}{\partial t}+\underline{u} \cdot \partial \underline{u}\right)=e \underline{g}-\nabla p+\mu \nabla^{2} \underline{u} \\
& e\left(\frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial u_{i}}{\partial x_{i}}\right)=e g_{i}-\frac{\partial p}{\partial x_{i}}+\mu^{\frac{\partial^{2} u_{i}}{\partial x_{i}^{2}}} \\
& \underline{u(x, t)=\left(u_{1}, u_{2}, u_{3}\right) \quad \underline{x}=\left(x_{1}, x_{2}, x_{3}\right)} \\
& =(u, v, w) \quad=(x ; y, z) \\
& P=P(\underline{x}, t)
\end{aligned}
$$

inentix $=$ sof fone - prewnuve + viscons wergory goouctpae defphon
contix uncluler U.VY hatreinew mechonitum of which peatusbatum morg peff-reuppree
vistoren defpequin deaiver foom mobecuber momextum defpecurn: for hondense goren due to moleculer collisem, whereon for lequider due to local untan molecular eokesion ariseng from hear close proxumatg

Affesw smoothe flow pertustwen, wherean nonlinear meatio may strengthen them sweh nut their efyate we offer in conflict

$$
\begin{aligned}
& \underline{x}^{*}=\underline{x} / L \quad \underline{U}^{*}=\underline{U} / v \\
& \mu \frac{\partial^{2} U_{i}}{\partial x_{i}^{2}}=\mu U / L^{2} e^{U} \frac{\partial U_{i}}{\partial x_{i}}=e^{U^{2} / L} \\
& \mu \frac{\partial^{2} u_{i}}{\partial x_{i}^{2}} / u_{i} \frac{\partial u_{i}}{\partial x_{i}}=\mu \frac{U}{L^{2}} / e v^{2} / L \\
& U=\mathrm{m} / \mathrm{s} \\
& =\frac{1}{R} \\
& R_{e}=U L / v \\
& x=m \\
& \nu=\mu / \rho
\end{aligned}
$$

$\mu=\frac{w_{s}}{m^{2}}=\frac{h_{y}}{m s} \quad$ Smbil Re viscous effuctoon chomenater, where as for lape
$e=\log / \mathrm{m}^{3}$

$$
v=m^{2} / s
$$

re weatia domenater, i.e.,
Re most umporit prometer destmpuish stotrletr os torntimon to traviolarex

Recall viscous diffusion layers:
Viscous layers:
Sudden acceleration flat plate: $u_{t}=v u_{y y}$

$$
\begin{array}{ll}
u_{t}=v u_{y y} & u(y, 0)=0 \\
\delta=3.64 \sqrt{v t} & u(0, t)=U \\
& u(\infty, t)=0
\end{array}
$$

Layer grows in time due viscous diffusion

Oscillating flat plate: $u_{t}=v u_{v v}$

$$
\begin{array}{ll}
\delta=6.5 \sqrt{v / \omega} & u(0, t)=U_{0} \cos \omega t \\
& u(\infty, t)=0
\end{array}
$$

Layer confined constant thickness
Stagnation point flow: $\delta=2.4 \sqrt{v / B}$ layer not a function of x since convection balances diffusion

Flat plate boundary layer: $\quad u_{x}+v_{y}=0$

$$
\begin{array}{ll}
\delta=4.9 \sqrt{v x / U} & \begin{array}{l}
u u_{x}+v u_{y}=v u_{y y} \\
\\
u(x, 0)=0 \\
\\
\\
u(x, \infty)=U
\end{array}
\end{array}
$$

Layer grows with x due convection
Ekman Layer on Free Surface: effects due to wind shear $\tau(\mathrm{x})$

$$
\delta=\sqrt{\frac{2 v}{f}}=\text { Ekman layer thickness }
$$

Coriolis force $=2 \underline{\Omega} \times \underline{V}=-f \hat{v i}+f u \hat{j}-2 \Omega \cos \theta u \hat{k} f=2 \Omega \sin \theta$
$=$ planetary vorticity $=2 *$ vertical component Ω
$-f v=v u_{Z Z} f u=v v_{Z Z}$
$\mu u_{z}=\tau \quad$ at $\mathrm{z}=0 \underline{\tau}=\tau i=.002 \rho_{\text {air }}\left(v_{\text {wind }}-u(0)\right) i$
$\nu_{z}=0 \quad$ at $\mathrm{z}=0$
$(u, v)=0 \quad$ at $\mathrm{z}=-\infty$
The Ekman layer thickness is constant in time and space since vortex diffusion balances the Coriolis force.

Averages:

For turbulent flow $\underline{V}(\underline{x}, t), p(x, t)$ are random runctions of time and must be evaluated statistically using averaging techniques: time, ensemble, phase, or conditional.

Time Averaging

For stationary flow, the mean is not a function of time and we can use time averaging.
$\bar{u}=\frac{1^{1}}{T} \int_{t_{0}}^{t_{0}+t} u(t) d t \quad \mathrm{~T}>$ any significant period of $u^{\prime}=u-\bar{u}$ (e.g. 1 sec . for wind tunnel and 20 min . for ocean)

Ensemble Averaging

For non-stationary flow, the mean is a function of time and ensemble averaging is used
$\bar{u}(t)=\frac{1}{N} \sum_{i=1}^{N} u^{i}(t) \mathrm{N}$ is large enough that \bar{u} independent
$u^{\prime}(t)=$ collection of experiments performed under identical conditions (also can be phase aligned for same $t=0$).

Fig. 6.1 Schematic representation of the triple decomposition: \longrightarrow instantaneous signal; ---, conditionally averaged; \quad, mean. The numerals in circles characterize the phase for later reference.

Statistically stationary process $=$ the statistical properties, such as mean, variance and autocorrelation, do not change over time.

Fi. 12.2 Stationary and nonstationary time serics.

Phase and Conditional Averaging

Similar to ensemble averaging, but for flows with dominant frequency content or other condition, which is used to align time series for some phase/condition. In this case triple velocity decomposition is used: $u=\bar{u}+u^{\prime \prime}+u^{\prime}$ where $u^{\prime \prime}$ is called organized oscillation. Phase/conditional averaging extracts all three components.

Averaging Rules:

$$
\begin{array}{lccc}
f=\bar{f}+f^{\prime} & g=\bar{g}+g^{\prime} & s=x \text { or } t \\
\overline{f^{\prime}}=0 & \bar{f}=\bar{f} & \overline{f g}=\overline{f g} & \overline{f^{\prime} g}=0 \\
\overline{f+g}=\bar{f}+\bar{g} & \overline{\frac{g}{g}}=\frac{\Delta \bar{f}}{\bar{f}} & \overline{f g}=\overline{f g}+\overline{f f^{\prime} g^{\prime}} \\
\overline{\int f d s}=\int \bar{f} d s & &
\end{array}
$$

(a)

(b)

FIGURE 6-3
Hot-wire measurements showing turbulent velocity fluctuations: (a) typical trace of a single velocity component in a turbulent flow; (b) trace showing intermittent turbulence at the edge of a jet.

Othe urepal $5 t_{2}$ turterl definituon

$$
\bar{u}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} u d t
$$

$u^{\prime}=u-\bar{u}$ Reynolch Rawrmpostion $\overline{u^{\prime}}=0$

$$
\sqrt{u^{\prime 2}}=R_{m} \leq u^{\prime}=\text { Stonkard deartion sD } u
$$

SD\%/omean = datfur t io ravetwon

If unteghe watelent to z^{\prime} in Statistraceg stationary

$$
\begin{aligned}
& \text { one-poit SAtintien } \\
& \text { Statesteal ameysin nealel fr } \underline{U}, \underline{\Omega}=\nabla \times \underline{V} \text {, } \\
& P \text { al other wavebler of interest } \\
& \text { Regnoler Decomposition } \\
& \underline{u}=\underline{u}-\underline{\underline{U}} \quad \underline{u}=\text { turgent fluctuation } \\
& a \underline{U}=\overline{\underline{U}}+\underline{u} \text { where } \bar{u}=0 \text { ar } \overline{\bar{u}}=\overline{\underline{v}} \\
& \text { The TKE }=K=\frac{1}{2}\left(\overline{u^{2}}+\overline{u^{2}}+\overline{w^{2}}\right)=\overline{u_{i}} \bar{u}_{i} / 2 \\
& =\overline{\underline{u} \cdot \underline{u}} / 2 \\
& \text { in of central ampartonce as it } \\
& \text { chavacteryen de strength of the turtuleme } \\
& \text { where } \overline{u_{i}^{2}} \text { we de rravionuer in te } \\
& x_{i} \text { Corrdenate directions, ecg., de flow } \sqrt{\bar{u}^{2}} / v \\
& \text { charatayes de flee stwom turnberee } \\
& \text { in a lond tuque experiment. } \\
& \text { If } \overline{u^{2}}=\overline{v^{2}}=\bar{w}^{2} \text { de turbulence is Iso tropic, } \\
& \text { woe on mane generally } \bar{u}^{2} \neq \bar{v}^{2} \neq \overline{w^{2}} \text { of } \\
& \text { de tudulence ir notisodrypir, es., } \\
& \text { free near col turtreme } \overline{v^{2}}<\bar{u}^{2}, \bar{s}^{2}
\end{aligned}
$$

Homogeneous turbulence: the time-averaged properties of the flow are uniform and independent of position. For example, whereas $\overline{u^{2}}, \overline{v^{2}}, \overline{w^{2}}$ may differ from each other, each must be constant throughout the system.

Isotropic turbulence: Turbulence in which the products and squares of the velocity components and their derivatives are independent of direction, or, more precisely, invariant with respect to rotation and reflection of the coordinate axes in a coordinate system moving with the mean motion of the fluid. Then all the normal stresses are equal, and the tangential stresses are zero.
$\overline{u^{2}}=i \overline{v^{2}}=i \overline{w^{2}}, \overline{u v}=\overline{u w}=\overline{v w}=0$
Isotropy implies homogeneity, but not vice versa.

The nornal sasumer in combinction withe de off deranal gueadvatie troslut form de Rynole stur tensor $=$ symmitric seeond wen tangor

$$
\begin{aligned}
& v_{i j}=\overline{u_{i} u_{i}}=\frac{\overline{u^{2}} \overline{u_{v}} \overline{u_{w}}=}{\overline{\overline{w u}} \overline{w^{2}} \overline{v_{w}}} \overline{\overline{\omega v}} \overline{\omega^{2}} \\
& \sigma_{t}=-e R_{i}
\end{aligned}
$$

$R_{12}=\overline{u_{1} u_{2}}=\overline{u \sim}$ in of cantril unpritome fr Juvtulene model fo fuandomentl ylowe suah on shean layeur a wall flows
o $R_{i}{ }_{i}$ seprecente turbulent monentum fluxes

$$
\begin{aligned}
& m_{i}=\int e v_{i} v_{i} u_{i} d \overrightarrow{w_{1}} \quad v_{i}=\bar{v}_{i}+u_{i}=(\bar{v}+u, v, w) \\
& \frac{d \overline{w_{x y}}}{\partial k}=\overline{e(\bar{v}+u) v}=\overline{u v} \quad \overline{v_{v}}=0
\end{aligned}
$$

flux of x momentum un the y divection due to tursulet $u_{2}=v$ jexurition
turtulet tronspat of momentum at oder guontities in one so de pumany plupienal tuetwent flom praseren!

Higher vile statutius

$$
\begin{aligned}
& S=\text { shewnen }=\overline{u_{1}^{3}} /{\overline{u_{1}^{2}}}^{3 / 2} \\
& F=\text { fetren } r \text { bur } t \text { sin }=\overline{u_{1}^{4}} / \bar{u}_{1}^{2}
\end{aligned}
$$

$S=$ bier a symmety betwean $+\mu$ - volues $F=$ Congegation at large in smele valuer

Probalif densef funitum povie inforurtion about songe of volues n, takes al te eckelihores to asmume spercyic voluer in the songe
$p(u)=$ probalatg densig function u_{1}
$p(x) d x=$ poselilitg x_{1} in between u a utd x ∞
$\int_{-\infty} p(x) d x=1$ simee u mut tile en some volue

$$
\begin{aligned}
& \overline{u_{1}}=\int_{-\infty}^{\infty} u p(x) d u=0 \quad \overline{u_{1}^{2}}=\int_{-\infty}^{\infty} u^{2} r(u) d u \\
& \overline{u_{1} u_{2}}=\iint u v p(x, v) d u d v
\end{aligned}
$$

$=$ joint parbabletg function for $\overline{u v}$

Tun-Pount Sthtretuen

In aden to seveal the structural
charataistien of tuctulase such in portel ifcesuien (eld sige) two-pant correctum ne requirel
$R_{i} i(x, y-t)=\overline{u_{i}(x+t) x_{i}^{\prime}(y+t)} \quad 2$ point 2 velocity

$$
S_{i i z}(\underline{x}, \underline{y}, t)=\overline{u_{i}(\underline{x}, t) u_{i}(\underline{x}, t) u_{k}(\underline{y}, t)}
$$

for $\underline{x}=y \quad R_{i} ;(\underline{x}, t)=\overline{u_{i} \eta_{i}}=$ Reppolen sten tenfor Eq. (2.19)

Lettry $r=y-\underline{x}$ which is approputer pre homogensous Inviclense where $R(t, t)$
is de some for all x (but deo umpul. t now homoscrions fhas
Contral unurtance

$$
R_{i ;}(\underline{r}, t)=\overline{u_{i}(\underline{x}, t) u_{i}(\underline{x}+\underline{v}, t)} \text { where } f(\underline{x})
$$

$$
s_{i i t}(\underline{v}, t)=\overline{u_{i}(\underline{x}, t) u_{i}(\underline{x}, t) u_{2}(\underline{x}+\underline{v}, t)}
$$

wode nut

$$
R_{i} ;(0, t)=\overline{u_{i} u_{i}}
$$

$$
\begin{aligned}
R_{i j}(\underline{\text { large }, t)=0} & \text { velocition uncorveltel } \\
\text { velue } & \text { prestancen greater hon } \\
& \text { enget esorsige }
\end{aligned}
$$

Two point longiduclual a trons revs e aeffuents $f(v)$ ot $g(v)$

$$
\begin{aligned}
& \overline{u^{2}} f(v)=R_{11}\left(v \hat{e}_{1}\right) \\
& {\overline{v^{2}}}^{2} g(v)=R_{22}\left(v \hat{e}_{1}\right)
\end{aligned}
$$

Where Do the w $f(t)$ far non stitronavy flam

Figure 2.1 (a) Longitudinal and (b) transverse velocities appearing in the definitions of $f(r)$ and $g(r)$, respectively.

(a)

(b)

$$
\begin{array}{ll}
f(v)=\overline{u(x) u(x+v)} / \overline{u^{2}(x)} & f(0)=1 \\
f(v)=\overline{v(x) u(x+r)} \sqrt{v^{2}(x)} & f(0)=1 \\
f(v)=1+r f_{v}(0)+\frac{v^{2}}{2!} f_{r v}(0)+\cdots \\
\overline{u^{2}} f_{v}(v)=\overline{u(x) u(x+r)_{r}}=\overline{u(x) u x(x+v)} \\
\bar{u} u^{2} f_{v}(0)=\overline{\frac{1}{2}} \overline{\frac{\partial \bar{u}}{\partial x}}
\end{array}
$$

\therefore for homisenerus tuvtulence where $\overline{u^{2}}=$ enstont

$$
f(v)=1+\frac{v^{2}}{2} f_{v v}(0) \quad \text { ie for) in }
$$

More generale for two sondom variaber

$$
u_{i}\left(\underline{x}_{1}, t_{1}\right) ~ \& v_{i}\left(\underline{x}_{2}, t_{2}\right)
$$

$$
R_{i} ;\left(\underline{x}_{1}, t_{1}, \underline{x}_{2}, t_{2}\right)=\overline{u_{i}\left(\underline{x}_{1}, t_{1}\right) u_{i}\left(\underline{x_{2}}, t_{2}\right)}
$$

$R_{i j}$ specfer how similav $u_{i}\left(\underline{x}_{1}, t_{1}\right) \wedge u_{i}\left(\underline{x_{2}}, t_{2}\right)$ to eech other
$i \neq i$ eross correlation

$$
i=1 \text { auto corselation } \quad \frac{R_{12}\left(\underline{x}, t_{1}, x_{2}, t_{2}\right)}{u_{1}\left(\underline{x}_{1}, t_{1}\right) u_{2}\left(\underline{x_{2}}, t_{2}\right)}
$$

$$
r_{12}=R_{12} / \sqrt{k_{11} k_{22}}=u_{1} u_{2} / \sqrt{u_{1}^{2} \tilde{u}_{2}^{2}}
$$

$$
r_{11}=R_{11} / \sqrt{R_{11} R_{11}}=u_{1} u_{1} / \sqrt{\pi_{1}^{2} \widetilde{u}_{1}^{2}} \quad \frac{k_{11}\left(\underline{x}_{1}, t_{1}, \underline{x_{2}}, t_{2}\right)}{u_{1}\left(\underline{x}_{1}, t_{1}\right) u_{1}\left(\underline{x}_{2}, t_{2}\right)}
$$

$$
-1(\text { anti cirselition }) \leq v_{i j} \leq 1 \text { (divalation) } r_{11}\left(x_{1}, z_{1}, x_{1}, t_{1}\right)
$$

$$
\begin{aligned}
& R_{i j}=0 \quad u_{i}>0 \text { a } u_{i} \text { equelf laff }+n- \\
& \text { ie uncrellated } \\
& \text { or weate correlath } R_{i j}>0 \text { small } \\
& R_{i j} \gg 0 \quad u_{i}<0 \quad \perp u_{i}<0 \text { ie stronglg } \\
& \text { un } u_{i}>0 \text { i } u ;>0 \text { corvelated } \\
& R_{i j} \ll 0 \quad u_{i}>0 \text { a } u_{i}<0 \text { ie onti ewrebatch } \\
& \text { ar } u_{i}<0 \text { d } u_{i}>0
\end{aligned}
$$

Sumer to de longitulend correlation eveffrunt $f(r)$ in te tempunel correlation coffunt $R_{e}(t)=r_{11}(\tau)$

$$
r_{11}(\tau)=R_{11}(\tau) / R_{11}(0)=\overline{u(t) u(t+\tau)} / \overline{u^{2}}
$$

which icon le ostanal A A Aixal pant in space. Smulave for v_{22} \& v_{33}. Taylor miens al intogul mano time "duration" Scales con le comptal similarf us dove perouey fo be corresponding patio length scales

$$
\begin{aligned}
\Lambda_{t} & =\int_{0}^{\infty} v_{11}(\tau) d \tau=\frac{\downarrow}{\bar{u}^{2}} \int_{0}^{\infty} R_{11}(\tau) d \tau \\
& =\text { messes if te memory of de dur tulane }
\end{aligned}
$$

FIGURE 12.5 Sample plot of an autocor- $r(t)$ relation coefficient showing the integral time scale Λ_{t}, and the correlation time t_{c}. The normalization requires $r(0)=1$. In the limit $\tau \rightarrow \infty, r(\tau) \rightarrow 0$ and thereby indicates that the random process used to construct r becomes uncorrelated with itself when the time shift τ is large enough.

$$
r_{11}(t) \text { fut }=0
$$

$$
\lambda_{t}^{2}=-2 / r_{11}(0) \quad \tau_{t}
$$

obtimet from curvature of the $r_{11}(\tau)$ pet at undecter where $u_{1}(t)$ is well corveldtel with itself.

Spatial Syutsar

$$
R_{i_{i}}(\underline{x}, \underline{v}, t)=\overline{u_{i}(\underline{x}, t) u_{i}(\underline{x}+s, t)}\left[\mathrm{m}^{2} / \mathrm{s}^{2}\right]
$$

Jo hamosenarus duscuence $R_{i ;} \neq f(x) \therefore$ pax non-homogeneres founs.
wore numele space vectur $k=\left(k_{1}, k_{2}, k_{3}\right)$. ohe puppere of te Fouren tionsporm n to mop annour funtion from physecel space $\underline{x}=\left(x_{1}, x_{2}, x_{3}\right)$ to \underline{s} syene, which is unefue pir structurie argeyier such cas distritition of ally siges efc.

spatimar
$\underline{L}=\mu_{1} \mu_{2} \lambda t_{s}$

$$
R_{i i}(\underline{\varepsilon}, \underline{1}, t)=\int_{\left.\psi\right|_{-\infty} ^{\infty}} \varepsilon_{i j} e^{-i \underline{1} \cdot 1} \lambda \underline{\varepsilon}
$$

$$
\text { for } r=0
$$

$$
R_{i j}(\underline{x}, 0, t)=\int_{\forall 10} \sum_{i j}(\underline{x}, \underline{\imath}, t) 1 \underline{2} \quad \begin{gathered}
\text { sprtile fowim } \\
\text { morle, whal }
\end{gathered}
$$

$$
\begin{aligned}
& =\text { auto correltion tensor } \overline{u_{1}^{2}}, \overline{u_{2}^{2}}, \overline{u_{3}^{2}}, \bar{\lambda}=\frac{2 \pi}{1 \pm 3} \\
& \text { with components: }
\end{aligned}
$$

$$
\overline{u_{1} u_{2}}, \overline{u_{1} x_{3}}, \overline{x_{2} u_{3}}
$$

$$
K=\frac{1}{2}\left(\overline{u_{1}^{2}}+\overline{u_{1}^{2}}+\overline{u_{3}^{2}}\right)\left[m^{2} / s^{2}\right] \quad \text { t } \underline{x} u t
$$

$$
=T \angle E \text { qu rint mans (ulne whequition }
$$

$$
\text { in } \left.1_{0}^{\infty}\right)
$$

$R_{i j}$ ars $\Sigma_{i i}$ are $f(\underline{x})$ such ont they frovile the abrtif of decomposing the the sueleme covrectiom wto a Cantinues sange of senen on reqpeceded ly de fonvien componente $e^{i \underline{v} \cdot \underline{r}}$

Calculate the surface area of a sphere with a radius of R :

$$
\begin{align*}
& d S=C d l \\
& \text { where } d l=R d \theta ; C \text { is the perimeter } \\
& \text { (circumference) of the red circle, and } \\
& C=2 \pi x=2 \pi R \sin (\theta) \\
& d S(R)=2 \pi R \sin (\theta) R d \theta
\end{align*} \qquad \begin{array}{r}
\oint d S(k)=\int_{0}^{\pi} 2 \pi k \sin (\theta) k d \theta \\
=-\left.2 \pi k^{2} \cos (\theta)\right|_{0} ^{\pi} \\
=2 \pi k^{2}-\left(-2 \pi k^{2}\right)=4 \pi k^{2} \\
\oint d S(k)=4 \pi k^{2}
\end{array}
$$

Alternately, the area element can be written as $d S(k)=k^{2} \sin \varphi d \theta d \varphi$ according to the following figure.

Time Spectra

Fourier
Tronsporm

$$
\begin{aligned}
& \hat{R}_{\in}\left(\omega^{\prime}\right)=\int_{-\infty}^{\infty} e^{-i \tau \omega^{\prime}} R_{E}(\tau) d \tau \quad[s] \quad R_{E}(\tau)=\frac{\overline{u(t) u(t+\tau)}}{\overline{u^{2}}} \\
& R_{\in}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \tau \omega^{\prime}} \hat{R}_{\epsilon}\left(\omega^{\prime}\right) d \omega^{\prime} \quad \omega^{\prime}=2 \pi \omega \quad \frac{\mathrm{Vad}}{\mathrm{~s}} \\
& \begin{aligned}
& R_{E}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{R}_{E}\left(\omega^{\prime}\right) d \omega^{\prime}=I=\int_{-\infty}^{\infty} \hat{R}_{E}(2 \pi \omega) d \omega \\
&=\hat{E}_{11}(\omega) / 2 \bar{u}^{2}
\end{aligned} \\
& \int_{-\infty}^{\infty} \frac{\hat{E}_{n}(\omega)}{2 \bar{x}^{2}} d \omega=1 \\
& \overline{u^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} \hat{E}_{n}(\omega) d \omega \\
& \widehat{E_{11}}(\omega)=2 \overline{u^{2}} \widehat{R_{E}}\left(\omega^{\prime}\right) \\
& \widehat{E_{11}}\left[\mathrm{~m}^{2} / \mathrm{s}\right] \\
& \text { for stadtoxang flow: } u(t) x(t+\tau)=x(t-\tau) u(t) \\
& R \in(\tau)=R \in(-\tau) \\
& \Rightarrow \hat{R}_{E}\left(\omega^{\prime}\right)=2 \int_{0}^{\infty} \operatorname{art} \omega^{\prime} R_{E}(\tau) d \tau \\
& \hat{R}_{E}\left(-\omega^{\prime}\right)=\widehat{\widehat{R}}_{E}\left(\omega^{\prime}\right) \\
& R_{E}(\tau)=\frac{1}{\pi} \int_{0}^{\infty} \operatorname{en} \tau \omega^{\prime} \hat{R}_{\leq}\left(\omega^{\prime}\right) d \omega^{\prime} \\
& \overline{u^{2}}=\int_{0}^{\infty} \hat{E}_{11}(\omega) d \omega
\end{aligned}
$$

Wote: $R \in L \tau)$ ohum $\hat{E}_{11}(\omega)$ conce ostaind sungle poit meaqutemet ar $E(\Omega, t)$ negiin workine on line mereniementer as Tryor prowen dartience hyputhein war con he twonspornd from Lume to spece ar appronition if spatirel spertwa.

