Turbulent flows HW #2

Problem 5.19

Starting from the Reynolds equation show that the mean-kinetic-energy equation is:
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Solution:
Reynolds equation:
ﬂ = UVZ _] — % — la_p
Dt dox;  pax;
By definition, mean-kinetic-energy is:
E=-0-U
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Let’s focus on term (A). Decompose the mean substantial derivative:
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Which can be rewritten as:
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Let’s now focus on term (B):
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By definition of Laplacian operator, we get:
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Now, we can add and subtract the transpose of the mean velocity gradient:
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Using the symmetry of second derivatives, we can rewrite the last term as:
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And it is equal to zero since we are considering incompressible flow. Therefore, (B) becomes:
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and using the definition of mean rate of strain:
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We can rewrite (B) as:
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Let’s move to (C), we can write:
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For (D), it is necessary to use the continuity equation to obtain:
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Note that we used i instead of j, because the index is repeated, so any letter can be used
without distinction.



Now, we can put all the 4 terms in the same equation:
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We can rewrite the RHS as:
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The first term on the RHS is now equal to minus the divergence of T.

The second term on the RHS can be rewritten as:
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The third term on the RHS is equal to —P. Therefore, the equation becomes:
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Problem 5.20
Solution:
Reynolds equation:
ﬂ = UVZ _] — —aulu] — l@
Dt dx;  pox;
Navier-Stokes equation:
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Using continuity, we can rewrite the second term on LHS as:
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Rewrite Reynolds equation using continuity as:

ou, aUU, <0217}> 10p

at | ox,

Subtract Reynolds equation to NS:
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Where U; = U, + ujandp = p + p’
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Removing terms with opposite sign:
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Rewrite (1) as:
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Therefore, (1) becomes:
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Turbulent kinetic energy definition:

Multiply the equation for the fluctuating velocity by w;:
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Using continuity equation:
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Taking the mean of this equation:
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We can rewrite the last term as:
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Therefore, we get:
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Problem 5.25

Obtain the following relationship between the dissipation € and the pseudo-dissipation &:
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Solution:
The pseudo-dissipation £ is defined by:
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The true dissipation is defined by:
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Where the first term on the RHS is exactly equal to €. To obtain the desired relationship, it is
sufficient to proof that
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Let’s rewrite the LHS:

0* Wy, 0 (ou,
v =v—
axiaxj (')xi ax]

d (ouuy, Jd (ou, N ou,
UV— =Vv—|=—u +u—
axi ax] axi ax} ] lax]
where the second term on the RHS is zero, according to the continuity equation for the velocity
fluctuation field. Using the product rule again:
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Now, the first term on the RHS is zero using the symmetry of second derivatives and the
continuity equation for the velocity fluctuation field.

Using the product rule:
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Problem 5.28

| will use the index P instead of L since it could be confusing to have both i and | indices because
they look similar.

Solution:

ou, 0uy,
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Considering the continuity equation:
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We can rewrite:
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8;; is the trace of the unit 2" order tensor and it is equal to 3.
The product of §;,6;, and 6,6y is equal to §y,, because i is a repeating index.
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Which leads to the condition:

Ba+p+y)=0
For homogeneous turbulence:
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Therefore, we can show that:
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by using the product rule on (3):

3] ou, du, 0y, 0%y,
—l|uz— =5 +u; =0
ax,- 0x, ax] 0x, ax,-ax,,

The second term on the RHS is zero using the symmetry of second derivatives and the
continuity equation for the velocity fluctuation field.
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Therefore:
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8;; is the trace of the unit 2" order tensor and it is equal to 3.

The product of §;;6;, is equal to §;;, because j is a repeating index.
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Which leads to the condition:
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Now, consider Eq. (2):
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We can use the two conditions we obtained before:
Ba+p+y)=0
(a+B+3y)=0
To generate a system of 2 equations in 3 unknowns. Leaving 8 as the free parameter of the system,

weget:a =y = —%ﬁ. Substituting into Eq. (2):
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Eq. 5.169
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Problem 11.1

Solution:
Poisson equation:
v2p = _an aU;
dx; 0x;
Divide by p:
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p dx; 0x;

Using the product rule for differentiation
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Where the second term is zero using the symmetry of second derivatives and the continuity

equation.
Now, use Reynolds decomposition for p and U
p=p+p

Rewrite the Poisson equation as:
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Apply time average to all terms to obtain:
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And using continuity equation for the first term on RHS, we get:
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Which is equal to 11.17.

For the fluctuation pressure, subtract the Poisson equation for p to the total Poisson equation:
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