This exam is open book test only. Class notes or on-line material cannot be used
Following Taylor and Green (1937), consider the two-dimensional vortex flow field with constant density ρ :

$$
\mathbf{u}=(u, v)=(A \sin (k x) \cos (k y), B \cos (k x) \sin (k y))
$$

a) If the flow is steady and inviscid, and A and B are constants, explicitly determine the pressure, $p(x, y)$, in terms of x, y, A, ρ and k from below equations in two dimensions.
b) If the flow field is unsteady and viscous (with viscosity μ), A and B are functions of time t, and $A=A_{0}$ at $t=0$, determine $A(t), B(t)$ and $p(x, y, t)$ so that the given \mathbf{u} is an exact solution of below equations in two dimensions.
c) How long does it take for $A(t)$ to fall to $A_{0} / 2$?

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{\mu}{\rho}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
\end{gathered}
$$

Hint: (a) Use the continuity equation first, and find the relation between A and B.
Use this result along with given velocity profiles in the momentum equations and integrate to find a pressure field. Equations will have $\mathrm{f}(\mathrm{y})$ and $\mathrm{g}(\mathrm{x})$ that can be eliminated by comparison.
(b) Use the continuity equation first, and find the relation between A and B .

Assume the pressure field from part (a) is still valid but with $\mathrm{A}(\mathrm{t})$, i.e., $u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}$ and $u \frac{\partial v}{\partial x}+$ $v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}$; thus, $\frac{\partial u}{\partial t}=+\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$ and $\frac{\partial v}{\partial t}=\frac{\mu}{\rho}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$; and use this result to solve for A(t)
(c) set $\mathrm{t}=1 / 2$ in result for (b)

Extra credit: prove that the $2^{\text {nd }}$ part hint (b) is correct, i.e., solve for the unsteady pressure field.

