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Chapters 1 Preliminary Concepts & 2 Fundamental Equations of 

Compressible Viscous Flow 

 

(6.1) Reference Frames and Coordinate Systems 

 

Reference frame → state of motion of the observer.   

 

Coordinate system → set of numbers used to map the space points 

within a reference frame.  

 

For any given reference frame, multiple coordinate systems are possible 

(e.g. Cartesian, spherical, etc.) 

 

In classical physics and special relativity, an inertial frame of reference 

is a frame of reference that is not undergoing acceleration. In an inertial 

frame of reference, a physical object with zero net force acting on it 

moves with a constant velocity (which might be zero)—or, equivalently, 

it is a frame of reference in which Newton's first law of motion holds.  

 

Non-inertial Reference Frame:  A non-inertial reference frame is a frame 

of reference that undergoes acceleration with respect to an inertial frame. 

 

Thus far we have assumed use of an inertial reference frame (i.e. fixed 

with respect to the distant stars in deriving the CV and differential form 

of the momentum equation).  However, in many cases non-inertial 

reference frames are useful (e.g. rotational machinery, vehicle dynamics, 

geophysical applications, etc.). 

https://en.wikipedia.org/wiki/Classical_physics
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Physical_object
https://en.wikipedia.org/wiki/Net_force
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Newton's_first_law
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
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Geometry of fixed (inertial) vs. accelerating (non-inertial) coordinates 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙 

∑ 𝐹 = 𝑚𝑎𝑖 = 𝑚 (
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙) 

∑ 𝐹 − 𝑚𝑎𝑟𝑒𝑙 = 𝑚
𝐷𝑉

𝐷𝑡
 

 

 

 

 

 

𝑉 = relative velocity in non-inertial reference frame (x,y,z) 
𝐷𝑉

𝐷𝑡
 = non-inertial 𝑎 that must be added to 𝑎𝑟𝑒𝑙 

 
The absolute fluid particle position vector is 
 

𝑆𝑖 = 𝑅 + 𝑟  

 

Such that 

𝑉𝑖 = 𝑉 +
𝑑𝑅

𝑑𝑡
+ Ω × 𝑟 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+

𝑑2𝑅

𝑑𝑡2
+

𝑑Ω

𝑑𝑡
× 𝑟 + 2Ω × V + Ω × (Ω × 𝑟) 

=
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙  

  

i.e Newton’s law 

applies to non-

inertial frame with 

addition of known 

inertial force terms  

3rd term from fact that 

(x,y,z) rotating at Ω(t). 
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2

2

dt

Rd
  = acceleration (x,y,z) 

 

Bodies in non-inertial reference frames are subject to so-called fictitious 

forces (pseudo-forces); that is, forces that result from the acceleration of 

the reference frame itself and not from any physical force acting on the 

body. Examples of fictitious forces are the centrifugal force and the 

Coriolis force in rotating reference frames. 

 

d
m r

dt


−    = Euler force due to angular acceleration (x,y,z) 

 

2m V−    = Coriolis force 

 

( )m r−     = centrifugal force (directed away from the 

particle normal distance to the axis of rotation with magnitude -Ω2L, 

where L = normal distance from r to axis of rotation Ω). 

 

Since R and Ω assumed known, although more complicated, we are 

simply adding known inhomogeneities to the momentum equation. 
 

CV form of Momentum equation for non-inertial reference frame: 

rel R

CV CV CS

d
F a d V d V V n dA

dt
  −  =  +      

where RV  is the velocity of the CV relative to the non-inertial reference 

frame (x,y,z). 

 

 

 

 

 

https://www.bing.com/search?q=Coriolis+force&filters=sid%3a9f878ddb-1246-17e9-c949-a7de9261a993&form=ENTLNK
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Differential form of momentum equation for non-inertial 

reference frame: 

           
( ) 2

rel

body force

V
V V a p z V

t
   

 
+  = − −  + +       

where                                                                  

𝑎𝑟𝑒𝑙 = �̈� + 2Ω × V + Ω × (Ω × 𝑟) + Ω̇ × 𝑟 
 

All terms in rela  seldom act in unison (e.g. geophysical 

flows): 

 
••

R  ~ 0  earth not accelerating relative to distant stars 

 
•

  ~ 0  for earth 

 

( )r  ~ 0   g nearly constant with latitude 

 
2 V     most important! 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+ 𝑅0

−1(2Ω × V)    
0

0

,
tVV

V t
V L

= =  

2

0 0
0

0

#
V L V

R Rossby
V L

= = =
 

 
if L is large, i.e., comparable to 

the order of magnitude of the 

earth radius, R0<1, then Coriolis 

term is larger than the inertia 

terms and is important.  
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Examples of Non-inertial Reference Frames 

 

1. Geophysical fluids dynamics: Geophysics is a subject of 

natural science concerned with the physical processes and physical 

properties of the Earth and its surrounding space environment, and the 

use of quantitative methods for their analysis. 

 

Atmosphere and oceans are naturally studied using non-

inertial coordinate system rotating with the earth.  Two 

primary forces are Coriolis force and buoyancy force due 

to density stratification ρ = ρ(T).  Both are studied using 

Boussinesq approximations (ρ = constant, except ( ) ˆT gk−  

term; and μ, k, Cp = constant) and thin layer on rotating 

surface assumption 








L

H

U

W
~  where w/H are vertical, and 

U/L are horizontal scales. 

 

Differences between atmosphere and oceans: lateral 

boundaries (continents) in oceans; currents in ocean (gulf  

and Kuroshio stream) along western boundaries; clouds 

and latent heat release in atmosphere due to moisture 

condensation; Vocean = 0.1~1 or 2 m/s and Vatmosphere
 10~20 

m/s 

 

H << L ≈ 0 (radius of earth = 6371 km) 

Therefore, one can neglect curvature of earth and replace 

spherical coordinates by local Cartesian tangent plane 

coordinates. 
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x = eastward (into plane of paper) 

y = northward tangent earth surface) 

z = upward (opposing gravity) 

|Ω| = Ω = 2rad/day = 0.73x10-4 rad/s-1 around polar axis 

ccw above north pole 

Ωx = 0 

Ωy = Ωcos 

Ωz= Ωsin 

 = latitude > 0 northern hemisphere and <0 southern 

hemisphere and = 0 at equator 
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Coriolis force = 2 V  

 

     =

wvu

kji

zyx


^^^

 

 

     = ( )






−+−  cossinsincos2

^^^

ukujvwi  

     = 
^^^

cos2 kujfuifv −+−   sin2=f  

 

 

 

  f > 0 northern hemisphere 

  f < 0 southern hemisphere 

  f =   at poles 

  f = 0 at equator 

 

 

 
The Coriolis force acts in a direction perpendicular to the 

rotation axis and to the velocity of the body in the rotating frame 

and is proportional to the object's speed in the rotating frame 

(more precisely, to the component of its velocity that is 

perpendicular to the axis of rotation). 

 

 

0 since w << v 

= planetary 

vorticity 

= 2 * vertical 

component Ω 

Person 

spins at 

Ω 

Person translates with inertial 

period 
f

T
i

2
=  

https://www.bing.com/search?q=Gaspard-Gustave+Coriolis&filters=sid%3a96366b07-5b3f-224b-6277-5ffb078fa3c5&form=ENTLNK
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Equations of Motion 

 

0V =  

w
g

z

p

Dt

Dw

v
y

p
fu

Dt

Dv

u
x

p
fv

Dt

Du

2

00

2

0

2

0

1

1

1

+−



−=

+



−=+

+



−=−














 

 )(1
00

TT −−=     

 

p, ρ = perturbation from hydrostatic condition 
 

Z momentum (assuming w = 0) → 
p

g
z




= −


baroclinic 

fluid (such as the atmosphere) in which surfaces of 

constant pressure intersect those of constant density.  p = 

p(T) since ρ = ρ(T) and can be used to eliminate p in 

above equations whereby (u,v) = f(T(z)), which is called 

thermal wind but not considered here. 
 

Geostrophic Flow:  quasi-steady, large-scale motions in 

atmosphere or ocean far from boundaries = wind/current 

due balance of grad(p) and Coriolis force 

 

x

p
fv




−=−

0

1


   

y

p
fu




−=

0

1


 

vertical component Coriolis force 

negligible due to thin layer 

assumption, i.e.,  

magnitude of 2 cos u << other terms 
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2

~ 0
DV U

Dt L

 
 
 

 ~ 0 ( )f V fU  U, L = horizontal scales 

Rossby number = 
fL

U
 

Atmosphere:  U ~ 10 m/s; f = 10-4 Hz; L ~ 1000 km;  

    and R0 = 0.1 

Ocean:   U ~ 0.1 m/s; f = 10-4 Hz; L ~ 1000 km;  

    and R0 = 0.01 

 

Therefore, neglect 
𝐷𝑉

𝐷𝑡
 and since there are no boundaries,  

neglect 𝜈𝛻2𝑉. 

 

If we neglect ρ=ρ(T) effects, (u,v) = f(p) and can be 

determined from measured p(x,y).  Not valid near the 

equator (+ 3o) where f is small. 

 

(𝑢𝑖̂ + 𝑣𝑗̂) ⋅ 𝛻𝑝 =
1

𝜌0𝑓
(−

𝜕𝑝

𝜕𝑦
𝑖̂ +

𝜕𝑝

𝜕𝑥
𝑗̂) ⋅ (

𝜕𝑝

𝜕𝑥
𝑖̂ +

𝜕𝑝

𝜕𝑦
𝑗̂) = 0 

 

i.e., V is perpendicular to p  → horizontal velocity is 

along (and not across) lines of constant horizontal 

pressure, which is reason isobars and streamlines coincide 

on a weather map!  If f = constant, then  = 
0

p

f
can be 

regarded as a stream function x = -v and y = u. 
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Geostrophic flow around low- and high-pressure centers 

in the northern hemisphere.  Coriolis force acts to the 

right of the velocity vector.  Thus, the flow is 

counterclockwise (viewed form above) around low 

pressure and clockwise around high-pressure regions.  

The sense of circulation is opposite in the southern in the 

southern hemisphere where the Coriolis forces acts to the 

left of the velocity vector. 
 

p=p(r) and ∇𝑝 =
𝜕𝑝

𝜕𝑟
𝑒�̂� 

𝑉 = 𝑢𝜃(r)𝑒�̂�     

-𝜌2Ω × V=-∇𝑝 

𝜌2Ω𝑢𝜃𝑒�̂� = −
𝜕𝑝

𝜕𝑟
𝑒�̂� 

𝜕𝑝

𝜕𝑟
< 0 RHS + 

𝜕𝑝

𝜕𝑟
> 0 RHS - 

Right hand rule: Coriolis force acts to the right of the 

velocity vector; therefore, when Coriolis force + 𝑢𝜃 CCW 

and when Coriolis force - 𝑢𝜃 CW. 
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2. Wind-Driven Flows:  Impulsive start up and Ekman 

layers for free surface viscous flows. 

 

 Viscous layers: 

 

 Sudden acceleration flat plate: t yyu u=  

        3.64 t =  
 

 Layer grows in time due viscous diffusion 

 

 Oscillating flat plate: 
yyt

uu =  

      6.5 /  =  
 

 Layer confined constant thickness 

 

Stagnation point flow: 2.4 / B =  and layer not a 

function of x since convection balances diffusion. 

 
𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +  𝜐(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝑝𝑦 +  𝜐(𝑣𝑥𝑥 + 𝑣𝑦𝑦) 

    u(x,o) = 0 and v(x,0) =0 
 

 Flat plate boundary layer:  

 

    𝛿 = 4.9√𝜈𝑥/𝑈 

 

 Layer grows with √𝑥 due convection. 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝜐𝑢𝑦𝑦 

𝑢(𝑥, 0) = 0 
𝑢(𝑥, ∞) = 𝑈 

0),(

),0(

0)0,(

=

=

=

tu

Utu

yu

 

0),(

cos),0(
0

=

=

tu

tUtu 
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For Ekman layer viscous effects due to wind shear τ in x 

direction.  Assume horizontal uniformity (i.e., px = py = 

0), which is justified for L ~ 100 km and H ~ 50 m.  The 

wind stress acts in the x direction. 

 

−𝑓𝑣 = 𝜈𝑢𝑍𝑍    𝑓𝑢 = 𝜈𝑣𝑍𝑍  

 

   =
z

u   at z = 0 

 

  0=
z

v   at z = 0 

 

  0),( =vu   at z =-∞ 

 

Multiply v-equation by 1−=i  and add to u-equation: 

 
2

2

d V i f
V

dz 
=  

V u i v

complex velocity

= +

=     

 

 
(1 ) / (1 ) /i z i zV Ae Be + − += +  

 

 
2

f


 = =  Ekman layer thickness 

 

 B = 0 for u(-∞), v(-∞) = 0 

 

 
dV

dz
 =  at z = 0  
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(1 )

2

i
A





−
→ =  

 

 i.e.  







+−=

4
cos

/ / 



  z
e

f
u z    and  

 

  







+−=

4
sin

/ / 



  z
e

f
v z  

 

0

/
V

f

 


=  is the surface-water speed and 

2

f


 = is the 

penetration depth. 

 

F. Nansen (1902) observed drifting arctic ice drifted 20-

400 to the right of the wind, which he attributed to 

Coriolis acceleration.  His student Ekman (1905) derived 

the solution.  Recall f < 0 in southern hemisphere, so the 

drift is to the left of τ. 
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The surface water velocities are 

 

0 cos
4

u V
 

=  
 

 

0 sin
4

v V
 

=  
 

 

 

Showing that the surface velocity vector is 45 deg. angle 

to the right of the wind in the northern hemisphere.  As 

we move below the surface the resultant current vector 

moves uniformly to the right and decreases exponentially 

in magnitude forming a logarithmic spiral.  At z=-3/4 the 

current is exactly opposite to the wind and has magnitude 

𝑉0𝑒−3𝜋/4 ≈ .095𝑉0. 
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The components of the volume transport are: 

 

∫ 𝑢
0

−∞
𝑑𝑧 = 0 =

1

𝜌𝑓
∫

𝜕𝜏𝑦

𝜕𝑧

0

−∞
𝑑𝑧=

1

𝜌𝑓
∫ 𝑑𝜏𝑦

0

−∞
=

1

𝜌𝑓
(0 − 0) = 0 

 

∫ 𝑣
0

−∞
𝑑𝑧 = −

𝜏

𝜌𝑓
=

1

𝜌𝑓
∫

𝜕𝜏𝑥

𝜕𝑧

0

−∞
𝑑𝑧=

1

𝜌𝑓
∫ 𝑑𝜏𝑥

0

−∞
=

1

𝜌𝑓
(0 − 𝜏) =

−
𝜏

𝜌𝑓
 

 

Which shows that the net transport is to the right of the 

applied stress and independent of  due to the fact that the 

depth integrated Coriolis forces are directed to the right of 

the depth-integrated volume transport which balances the 

wind stress. 

 

The horizontal uniformity can be removed easily if 

assume p is not function p(z) such that geostrophic 

solution is additive and combined solution recovers 

former for large depths −→


z . 
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For a Rhode Island Ekman layer Vwind = 6 m/s and T=20o 

C with latitude θ = 410 N: Laminar solution V0 = 2.7 m/s 

and  = 45 cm, which are too high/low; however, using 

turbulent νt, V0 = 2 cm/s and  = 100 m, which is more 

realistic.  However, constant eddy viscosity and steady 

flow are unrealistic such that Ekman layers are not often 

observed. 
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