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Why are ICs and BCs needed?
• Solutions to ODEs are usually not unique (integration 

constants exist), which is also a problem for PDE’s. 

• PDE’s are usually specified through a set of ICs and BCs. 

• A BC expresses the behavior of a function on the 
boundary of the domain. An IC specifies the value of the 
function in time direction, at time t = 0.0.

• The GDEs to be discussed next constitute an IBVP for a 
system of 2nd order nonlinear PDE, which require IC and 
BC for their solutions, depending on physical problem and 
appropriate approximations. 

𝑑2𝑇

𝑑𝑥2 = 0, 𝑇 𝑥 = 𝑐1𝑥 + 𝑐2

1). 𝑥 = 0, 𝑇 = 𝑇0 

2). 𝑥 = 𝑙, 𝑇 = 𝑇𝑙  
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Initial Conditions

• Initial conditions (ICs, steady/unsteady flows)

o ICs should not affect final results and only 
affect convergence path, i.e. number of 
iterations (steady) or time steps (unsteady) 
need to reach converged solutions.

o More reasonable guess can speed up the 
convergence

o For complicated unsteady flow problems, 
CFD codes are usually run in the steady 
mode for a few iterations for getting a better 
initial conditions



5

Boundary Conditions
Types of BCs: can be defined/categorized 
mathematically, physically, and numerically. 

•Mathematical definitions

•For flow variables 

o Kinematic BCs: motion without regard for the cause

o Dynamic BCs: the causes of motion

Name Form 

Dirichlet 𝜙 = 𝑓

Neumann 𝜕𝜙

𝜕𝑛
= 𝑓

Robin
𝐶0𝜙 + 𝐶1

𝜕𝜙

𝜕𝑛
= 𝑓

Mixed 𝜙 = 𝑓 ,  𝐶0𝜙 + 𝐶1
𝜕𝜙

𝜕𝑛
= 𝑓

Cauchy 𝜙 = 𝑓 and 𝐶0
𝜕𝜙

𝜕𝑛
= 𝑔
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Boundary Conditions
•Physical domain boundaries:

o Solid Surface

▪ Fixed, moving wall, Deforming wall, FSI

▪ Permeable Interface, Porous Surface

o Free Surface, Wave Boundary

o Two-Phase Interface Internal Jump conditions

o Inlet/exit/outer

o Fairfield/Open

5

44-52
0

x/H

z/H Inlet

Non-slip Wall

Slip Wall

Jump Conditions Outlet 
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Boundary Conditions
•For grid and numerical treatment:

o Symmetric BC 

o Periodic BC

o Numerical beach, absorbing BC  

o Multiblock/Overset overlapping grid BC

o Convection BC

o Pole BC (singularity)

o Global mass conservation enforcing BC

Overset and patched multiblock 

grids for airfoil.

Symmetric BCPole BC
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Examples of Boundary conditions
1. Solid Surface

▪ Fixed, moving wall

▪ Permeable interface, porous surface

▪ Deforming wall, FSI

2. Single phase flows: Free surface BCs 

3. Multiphase flows: Two-phase interface 
jump conditions

4. Inlet/exit/outer

Free surface flow: droplet 

Two-phase interfacial flow: bubble

Pipe flow with no-slip (A) and slip (B) boundary conditions. (Berg et al., 2021). 
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Examples of Boundary conditions
1. Solid Surface

No-slip BCs: No-slip BC widely used for most 
macroscopic flows without loss of accuracy 

• ℓ = mean free path of a moving molecular 
particle << fluid motion; therefore, macroscopic 
view is “no slip” condition, i.e. no relative motion 
or temperature difference between liquid and 
solid.

• Exception for gas and contact line problem

liquid solidV V=
solidliquid

TT =

Smooth wall: 
Specular reflection
Conservation  of tangential 
momentum
uw=0=fluid velocity at wall

Rough wall: 
Diffuse reflection.  Lack 
of reflected tangential 
momentum balanced by 
uw
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Examples of Boundary conditions
Slip-wall BCs:

w

w

dy

du
lu =



The no-slip boundary condition (BC) is usually used at 
the solid surfaces for the numerical simulation of viscous 
flows.

It is assumed that fluid velocity is zero relative to the 
solid surface. 

This assumption is accurate and acceptable for most 
macroscopic fluid flows but may be invalid and pose 
problems for microscopic-scale flows. 

For small scale flows where the mean free path of the fluid is 
close to the characteristic length (Rothstein, 2010), e.g., flows of 
rarified gases, gas molecules on the solid surface can move freely. 

The no-slip BC also fails for viscous flows with a moving 
contact line. 

The moving contact line is defined as the interface between two 
immiscible fluids that intersects with the solid surface. 

For example, the air-water interface on the ship surface will not 
move if the no-slip BC is used.

No-slip boundary condition and 
contact line problem* 
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Smooth wall: 
Specular reflection
Conservation  of tangential 
momentum
uw=0=fluid velocity at wall

Rough wall: 
Diffuse reflection.  Lack 
of reflected tangential 
momentum balanced by 
uw

*Wang, Z. and Stern, F., “Moving contact line and no-slip boundary conditions for high-speed planing hulls,” X 

International Conference on Computational Methods in Marine Engineering,” Special Issue of Ships and Offshore 

Structures, under review, 2024.



For small scale flows, slip BC with a finite slip length is usually used: 𝑢0 = 𝑏
𝜕𝑢

𝜕𝑦
.  The 

contact line movement is also dependent on the contact angles when surface 
tension  force is dominant, but the mechanism is not fully understood. 

Most previous studies have been focused on small scale flows, such as flows within 
microfluidic or nanofluidic devices, and small bubbles/droplets (Mohammad Karim, 
2022; Rothstein, 2010). 

Few studies have been reported for large scale flows, such as ship flows. 

For large scale flows with high Reynolds numbers, very small grid spacing is usually 
used near the wall in order to resolve the boundary layer,  the numerical treatments 
used for the small-scale flows are not suitable.
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Contact angles for a droplet

No-slip boundary condition and 
contact line problem 



One of the issues caused by the no-slip BC is the numerical ventilation (Cucinotta et al., 
2021), especially serious for the algebraic volume-of-fluid (VOF) method. 

VOF slip velocity is used by Wheeler et al. (2021) to minimize the numerical ventilation 
effect.

In the present study, a numerical strategy to handle the no-slip BC and moving contact line 
problem for high-speed planing hulls is proposed. 

A blanking distance from the solid surface is used when solving the interface modeling 
equations, which is chosen based on the y+ values and the velocity profiles in the boundary 
layer. 

Numerical tests show if the blanking distance is y+ < 30, the air-water interface will be 
unstable and numerical ventilation will occur. For the blanking distance y+ > 30 (outside 
the buffer layer), a smooth air-water contact line can be obtained without air entrainment. 
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Numerical ventilation using STAR-CCM+ (Wheeler et al., 
2021) 

No-slip boundary condition and 
contact line problem 
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No-slip Wall Boundary Conditions for Ship Flows

• High Reynolds number multi-phase turbulent flows are involved in ship flows and no-slip 
wall BC with proper turbulence models (e.g., RANS) and very small grid spacing (y+ ∼ 1) 

near the surface of the hull are needed in order to resolve the boundary layer. 

• Numerical ventilation usually does not cause serious problems for the CFD prediction of 
displacement hulls. 

• For small planing craft, however, the wetted area of planing hulls can change 
abruptly and significantly due to slamming, and the size of which is also comparable to 
the jets and sprays generated. 

• Special numerical treatment is needed to handle the no-slip BC and moving contact line 
problem for high-speed planing hulls, which is critical for the correct prediction of jets, 
sprays, wave breaking, and ventilation near and around hulls, and their effects on forces 
and ship motions.

No-slip boundary condition and 
contact line problem 
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Moving Contact Line and wave 
blanking

• A geometric VOF method (Wang et al., 2012) is 
used for the interface modeling with a distinct and 
sharp air-water interface defined

• This differs from the smeared air-water interface 
usually obtained using the algebraic VOF method

• Fluid particles near the wall move at a slower speed 
than those away from it. 

• Air entrainment will occur when an air-water 
interface is present, ultimately leading to numerical 
ventilation.

Velocity profile and air-water interface on a ship hull.

No-slip boundary condition and 
contact line problem 
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Moving Contact Line and wave 
blanking

• Herein, a wave blanking distance, dblank, is used when 
solving the VOF interface equations. 

✓ The dblank is defined as the distance in the normal direction 
of the wall.

✓  The VOF interface equations will not be solved if the 
computational cells are located within the blanking distance

✓ The values of the VOF and distance functions in these cells 
will be extrapolated from the cells outside of the blanking 
region. 

✓ The dblank will be chosen based on the y+ values and the 
velocity profiles in the boundary layer. 

Wave blanking for interface contact line on the wall of a ship 
hull.

No-slip boundary condition and 
contact line problem 
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Grids of a flat plate slamming onto a water 
surface

𝑑𝑏𝑙𝑎𝑛𝑘 = 0.6 × 10−4 𝑦+ = 1.0  𝑑𝑏𝑙𝑎𝑛𝑘 = 1.0 × 10−4 𝑦+ = 3.5  𝑑𝑏𝑙𝑎𝑛𝑘 = 3.0 × 10−4 𝑦+ = 10.0  

𝑑𝑏𝑙𝑎𝑛𝑘 = 9.0 × 10−4 𝑦+ = 30.0  𝑑𝑏𝑙𝑎𝑛𝑘 = 2.0 × 10−3 𝑦+ = 67.0  𝑑𝑏𝑙𝑎𝑛𝑘 = 3.0 × 10−3 𝑦+ = 100.0  

Numerical Tests: slamming plate

A deadrise angle of 10◦ and a pitch angle of 0◦ are considered;  Froude 
number of Fr = 0.42.

• Very thin water jets are created for small blanking distances with y+ 
< 30. Air can be entrapped under the plate when the jet breaks up. 

• The nonphysical air entrainment will affect the accuracy of the force 
calculations and computational stability.

• For the large blanking distances with y+ > 30, water jet is not 
formed, and the contact line is smooth, especially for y+ > 100.

No-slip boundary condition and 
contact line problem 

Movie

https://user.engineering.uiowa.edu/~me_260/2024_Spring/Chapters 1 & 2/movies_zhaoyuan/IC_BC_movies/Media1.mp4
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Boundary layer velocity profile
Stream-wise normal Reynolds stress near a surface-
piercing flat plate (Longo et al., 1998).

• Note that the wave blanking distances chosen based on the y+ values correspond to different 
regions of the wall boundary layer velocity distribution.

• If the wave blanking distance is inside the buffer layer and viscous sub-layer regions, non-
smooth contact line with a very thin water jet and non-physical ventilation will occur. 

• The flows within these layers are not stable and very large Reynolds stress can be observed 
as shown for a surfacing-piercing flat plate. 

• Therefore, the blanking distance should be chosen outside of the buffer layer with y+ > 30 
for a smooth air-water interface and to avoid nonphysical ventilation

Numerical Tests: slamming plate

GPPH, wave blank , 𝑦+ = 

2320, 

No-slip boundary condition and 
contact line problem 
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• A single step planing craft is chosen. 

• The Found number is Frb = 1.463. 

• 2DoF motions of heave and pitch are considered using the dynamic overset 
grid. 

• The grid size is 11.34M with 6 blocks of overset grids.

• All the wave blanking distances used herein outside of the buffer layer with 
y+ > 30.

• Details of the geometry, grids, and computational setup in the study by 
Park et al. (2022). 

Application Examples: step planing hull

No-slip boundary condition and 
contact line problem 
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𝑑𝑏𝑙𝑎𝑛𝑘 = 1.0 × 10−3 𝑦+ = 228  𝑑𝑏𝑙𝑎𝑛𝑘 = 5.0 × 10−4 𝑦+ = 113  

𝑑𝑏𝑙𝑎𝑛𝑘 = 2.0 × 10−4 𝑦+ = 46  
𝑑𝑏𝑙𝑎𝑛𝑘 = 3.0 × 10−4 𝑦+ = 68  

• Top view of the 
wave profiles 
of a single step 
planing hull

Application Examples: step planing hull

No-slip boundary condition and 
contact line problem 
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𝑑𝑏𝑙𝑎𝑛𝑘 = 1.0 × 10−3 𝑦+ = 228  𝑑𝑏𝑙𝑎𝑛𝑘 = 5.0 × 10−4 𝑦+ = 113  

𝑑𝑏𝑙𝑎𝑛𝑘 = 2.0 × 10−4 𝑦+ = 46  𝑑𝑏𝑙𝑎𝑛𝑘 = 3.0 × 10−4 𝑦+ = 68  

• The wave spread increases 
with the wave blanking 
distance. 

• The air ventilation region 
under the step of the hull 
also increases with the 
wave blanking distance. 

• Generally, the size of the 
ventilation region is 
comparable to the 
experimental observation

Application Examples: step planing hull

No-slip boundary condition and 
contact line problem 



22

The slices of the wave profile and pressure distribution cut in the stream-wise direction.

Application Examples: step planing hull

𝑑𝑏𝑙𝑎𝑛𝑘 = 1.0 × 10−3 𝑦+ = 228  𝑑𝑏𝑙𝑎𝑛𝑘 = 5.0 × 10−4 𝑦+ = 113  

𝑑𝑏𝑙𝑎𝑛𝑘 = 2.0 × 10−4 𝑦+ = 46  𝑑𝑏𝑙𝑎𝑛𝑘 = 3.0 × 10−4 𝑦+ = 68  

• The water jet 
separates from the 
hull with the 
increase of the wave 
blanking distance. 

• For a small wave 
blanking distance, a 
water film is formed 
and stuck on the 
hull. 

• The computation 
using a large wave 
blanking distance is 
more stable as 
compared to that 
using a small one.

StarCCM+

No-slip boundary condition and 
contact line problem 
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Force 
(N)

Error 
(%)

Heave  
(mm)

Error 
(%)

Pitch 
(deg)

Error 
(%)

EFD 49.469 0.445 4.216

y+=228 47.69 3.596 4.336 874.4 3.542 15.99

y+=113 48.51 1.938 4.305 867.4 3.589 14.87

y+=68 48.32 2.322 3.889 754.7 3.725 11.64

y+=46 48.58 1.797 4.065 793.4 3.723 11.69

• Generally, both forces and motions improved with decrease of the wave blank value
• For y+<100, results are comparable.
• 30 < 𝑦+ < 200 in consideration of accuracy and stability, and a value of 𝑦+ ∼ 100 

can be used in practice.

Comparison of the force and motions for singe step hull Frb=1.463.

Application Examples: step planing hull

No-slip boundary condition and 
contact line problem 



24

Examples of Boundary conditions
Permeable interface, porous surface:

Suction or Injection

𝑢 = 0, 𝑛𝑜 𝑠𝑙𝑖𝑝

𝑣 = 𝑣𝑠 or 𝑣 = 𝑣𝑖  , 𝑓𝑙𝑜𝑤 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙

𝑇𝑓𝑙𝑢𝑖𝑑 = 𝑇𝑤𝑎𝑙𝑙,  no temperature jump

𝑞𝑤 = ℎ𝑇𝑦|𝑤 = 𝜌𝑖𝑣𝑖𝑐𝑝(𝑇𝑤 − 𝑇𝑖), energy at the 

wall
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Examples of Boundary conditions
Fluid Structure Interaction (FSI) BCs:

Kinematic continuity between the fluid and the structure is ensured by the non-slip wall condition:

𝑢𝑤 =
𝜕𝑥

𝜕𝑡
, 𝑣𝑤 =

𝜕𝑦

𝜕𝑡
, 𝑤𝑤 =

𝜕𝑧

𝜕𝑡
                   

where 𝒖𝑤 = {𝑢𝑤, 𝑣𝑤 , 𝑤𝑤} is the velocity of the fluid particle and 𝒙 = {𝑥, 𝑦, 𝑧} are the coordinates of 

the solid wall.

The continuity of the momentum is ensured by the continuity of the stress across the fluid-structure 

interface:

𝜏𝑖𝑗 ∙ 𝑛𝑖|𝑤 = 𝜏𝑖𝑗 ∙ 𝑛𝑖|𝑠 

The energy conservation, considering the first law of thermodynamics (not currently implemented 

within CFDShip-Iowa )

𝛿𝑄 − 𝛿𝑊 = 𝑑𝐸

The energy equation for adiabatic CV, 

−
𝛿𝑊

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝜕

𝜕𝑡
𝑉 𝑡

𝑒𝜌 𝑑𝑉 + 𝑆 𝑡
𝑒𝜌 𝒖 ∙ ො𝑛 𝑑𝑆  

𝑒 = 𝑘𝑒 + 𝑝𝑒 + 𝑝𝑒𝑔. 𝑘𝑒  , 𝑝𝑒  and 𝑝𝑒𝑔 are the kinetic and elastic and gravitational potential energies. 
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Examples of Boundary conditions
Fluid Structure Interaction (FSI) BCs:

The work rate flows are exchanged between the water CV and the structure CV.

ሶ𝑊 = ሶ𝑊𝑠ℎ𝑎𝑓𝑡

𝑝𝑢𝑚𝑝/𝑡𝑢𝑟𝑏𝑖𝑛𝑒

+ ดሶ𝑊𝑝

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

+ ดሶ𝑊𝜈

𝑣𝑖𝑠𝑐𝑜𝑢𝑠

      

ሶ𝑊𝑝 and ሶ𝑊𝑣 are the pressure and viscous work rates done by the CV. 

Within the fluid CV, ሶ𝑊𝑠ℎ𝑎𝑓𝑡 = 0.  Within the structure CV, ሶ𝑊𝑠ℎ𝑎𝑓𝑡 is the work rate done by the plate’s 

mount on the system and is hereafter named ሶ𝑊𝑀. 

The pressure and viscous work done on solid = pressure and viscous work done on fluid and vice 

versa, which are equivalent to separate dE/dt for solid which includes 𝑒 = 𝑘𝑒 + 𝑝𝑒 + 𝑝𝑒𝑔 and fluid 

which only includes 𝑒 = 𝑘𝑒 + 𝑝𝑒𝑔.  In most cases net outflux of energy from the CV is zero.

Thus for the fluid                                
𝑑𝐸

𝑑𝑡
=

𝜕

𝜕𝑡
𝑉𝑤

𝜌𝑤 𝑔𝑧 +
𝒖𝑤

2

2
 𝑑𝑉𝑤

And for the solid                                        
𝑑𝐸

𝑑𝑡
=

𝜕

𝜕𝑡
𝑉 𝑡

𝑒𝜌 𝑑𝑉
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Examples of Boundary conditions
Single flow free surface BCs:

• Free surface problems since interface is unknown 
and part of the solution, but effect gas on liquid 
idealized.

• Assume the upper fluid (air) is an “atmosphere” that 
merely exerts pressure on the lower fluid (water), 
with shear and heat conduction negligible.

• Kinematic FSBC: free surface is stream surface

• Dynamic FSBC: stress continuous across free surface 
(similar for mass and heat flux)

Approximations:

𝑝 ≈ 𝑝𝑎 = 0, neglect air viscosity and surface tension

𝜉𝑥~𝜉𝑦~0, small slope

𝑤𝑥~𝑤𝑦~𝑤𝑧 = 0,
𝜕𝑢

𝜕𝑧
=

𝜕𝑣

𝜕𝑧
= 0

small normal velocity gradient
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Examples of Boundary conditions
Single flow free surface BCs: (CFDShip-Iowa  
V6.0)

•Pressure Poisson equation on an irregular 

domain with Dirichlet boundary conditions

[Gibou et al., JCP, 2002], [Balay et al., 1997] 

•Velocity extension to the void (gas) cells

[Sussman et al., JCP, 2007], [Chen et al., JCP 

1995]

•Physical property treatment: density, viscosity, 

and surface tension

Chen et al., 1995

𝑝 ≈ 𝑝𝑎 = 0



29

Examples of Boundary conditions
Single flow free surface BCs: (CFDShip-Iowa  V6.0).

Static droplet pressure distribution
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Examples of Boundary conditions
Single flow free surface BCs: (CFDShip-Iowa  V6.0).
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Examples of Boundary conditions
Single flow free surface BCs (CFDShip-Iowa V4.5)

• Free surface is tracked by level set method*.

• Velocity boundary conditions at the free surface
∇𝑣 ∙ 𝐧 = 0

• Pressure jump conditions

• Neglect air viscosity and surface tension, the pressure at the free surface

                                          𝑝 ≈ 𝑝𝑎 =0

• Dimensionless piezometric pressure, at the fluid/fluid interface the pressure

                                         𝑝 = 𝑧/𝐹𝑟2

*Carrica, P. M., Wilson, R. V., & Stern, F. (2007). An unsteady single‐phase level set method for viscous free surface 

flows. International Journal for Numerical Methods in Fluids, 53(2), 229-256.

(Carrica et al., 2007)
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Examples of Boundary conditions

Velocity extension

• Total time derivative in grid points in which 
the level set function changes from air to 
water is replaced by

• Velocity extension in the normal direction in 
air

∇𝐯 ∙ 𝐧 = 0

𝐧 =
∇𝜙

∇𝜙

• Convective extension only in air,

𝐮 𝐫𝑝, 𝑡 − Δ𝑡 ∙ ∇𝐮(𝐫𝑝, 𝑡 − Δt)=0

(Carrica et al., 2007)

Single flow free surface BCs: (CFDShip-Iowa  V4.5).
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Examples of Boundary conditions
Single flow free surface BCs: (CFDShip-Iowa  V4.5).

Piezometric pressure distribution of bump wave breaking Total pressure distribution of bump wave breaking

Velocity vector field of bump wave breaking 
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Examples of Boundary conditions
Two-phase interface jump conditions:

The velocity fields in fluids 1 and 2 are continuous across the interface if there is no phase 
change and mass transfer across the interface,

𝐮𝟏 = 𝐮𝟐                                                                   (1)

where 𝐮 is the velocity vector. The interface velocity 𝑉𝐼 is the normal velocity and is the 
same on both sides of the interface:  

𝑉𝐼 = 𝐮𝟏 ∙ 𝐧 = 𝐮𝟐 ∙ 𝐧                     (kinematic condition)    (2)

where n is the unit normal vector. 

The continuity of the tangential velocities is analogous to the no-slip boundary condition 
on a wall,  

𝐮𝟏 − 𝐮𝟏 ∙ 𝐧 𝐧 = 𝐮𝟐 − 𝐮𝟐 ∙ 𝐧 𝐧          (continuity of the tangential velocity)    (3)

n
Fluid 1 

Fluid 2

σ 
u1 

u2 T2 

T1 
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Examples of Boundary conditions
Stress conditions:
The stress tensor is defined in terms of the local fluid pressure and velocity field as

𝐓 = −𝑝𝐈 + 𝛕 = −𝑝𝐈 + 𝜇[∇𝐮 + ∇𝐮 𝑇]                                                  (4)

where 𝐈 is the unit tensor, 𝛕 is viscous stress tensor, 𝑝 is pressure, and 𝜇 is the dynamic viscosity. The stress 

vector, the force (per unit area) exerted by the fluid on the interface, is defined as,

               𝐭 𝐧 = 𝐧 ∙ 𝐓                                                                            (5)

Note that the stress vector in the above equation generally includes both the normal and tangential stress 

components.

The exact interface stress condition is given in the stress balance equation below:

         𝐧 ∙ 𝐓𝟏 − 𝐧 ∙ 𝐓𝟐 = σ𝐧 ∇ ∙ 𝐧 − ∇σ                                                      (6)

where ∇σ is tangential stress associated with gradients of the surface tension. The divergence of the unit 

normal is related to the mean curvature:

         𝛁 ∙ 𝐧 = 𝜅                                                                             (7)

The stress jump condition can be rewritten as

𝐧 ∙ (𝐓𝟏 − 𝐓𝟐) = σ𝜅𝐧 − ∇σ                                                           (8)
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Examples of Boundary conditions

Note that both normal and tangential stresses must be balanced at the interface. The condition can 

be written separately as the “normal stress balance” and “tangential stress balance”.

Normal stress balance

Projection of Eq. (8) along the unit normal n obtains,

𝐧 ∙ 𝐓𝟏 − 𝐓𝟐 ∙ 𝐧 = σ𝜅𝐧 ∙ 𝐧 = σ𝜅                                                     (9)

Tangential stress balance

Taking dot product of Eq. (8) with any unit tangential vector t yields the tangential stress balance,

𝐧 ∙ (𝐓𝟏 − 𝐓𝟐) ∙ 𝐭 = ∇σ ∙ 𝐭                                                         (10a)

The surface tension σ depends on temperature and composition of the interface, which can be 

treated as a constant. The gradient of surface tension will vanish, and the tangential stress is 

continuous across the interface.

𝐧 ∙ (𝐓𝟏 − 𝐓𝟐) ∙ 𝐭 = 0                                                            (10b)



37

Examples of Boundary conditions

Numerical approximation of the jump conditions

The viscous stress tensor 𝛕 can be written as,

 𝛕 = 𝜇 ∇𝐮 + ∇𝐮 𝑇 = 𝜇
𝛁𝑢
∇𝑣
∇𝑤

+ 𝜇
∇𝑢
∇𝑣
∇𝑤

𝑇

                                                 (11)

Using the jump notation 𝑥 = 𝑥1 − 𝑥2, and 𝐭𝐼 and 𝐭𝐼𝐼  the orthogonal unit tangential vectors, the 

stress jump conditions Eqs. (9) and (10b) can be rewritten as three separate jump conditions,

[𝑝 − 2𝜇(∇𝑢 ∙ 𝐧, ∇𝑣 ∙ 𝐧, ∇𝑤 ∙ 𝐧) ∙ 𝐧] = 𝜎𝜅                                               (12)

𝜇 ∇𝑢 ∙ 𝐧, ∇𝑣 ∙ 𝐧, ∇𝑤 ∙ 𝐧 ∙ 𝐭𝐼 + 𝜇 ∇𝑢 ∙ 𝐭𝐼 , ∇𝑣 ∙ 𝐭𝐼 , ∇𝑤 ∙ 𝐭𝐼 ∙ 𝐧 = 0                           (13)

𝜇 ∇𝑢 ∙ 𝐧, ∇𝑣 ∙ 𝐧, ∇𝑤 ∙ 𝐧 ∙ 𝐭𝐼𝐼 + 𝜇 ∇𝑢 ∙ 𝐭𝐼𝐼 , ∇𝑣 ∙ 𝐭𝐼𝐼 , ∇𝑤 ∙ 𝐭𝐼𝐼 ∙ 𝐧 = 0                        (14)

The velocity is continuous and the tangential velocity derivatives are also continuous,

[∇𝐮 ∙ 𝐭𝐼
𝑇] = 0   or     ∇𝑢 ∙ 𝐭𝐼 = ∇𝑣 ∙ 𝐭𝐼 = ∇𝑤 ∙ 𝐭𝐼 = 0                                  (15)

[∇𝐮 ∙ 𝐭𝐼𝐼
𝑇 ] = 0   or    ∇𝑢 ∙ 𝐭𝐼𝐼 = ∇𝑣 ∙ 𝐭𝐼𝐼 = ∇𝑤 ∙ 𝐭𝐼𝐼 = 0                                 (16)
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Numerical approximation of the jump conditions

The normal stress condition can be written as,

             [𝑝] − 2[𝜇](∇𝑢 ∙ 𝐧, ∇𝑣 ∙ 𝐧, ∇𝑤 ∙ 𝐧) ∙ 𝐧 = 𝜎𝜅                                         (17)

The tangential jump conditions 

 [𝜇∇𝐮] = [𝜇](∇𝐮)
𝟎
𝐭𝐼

𝐭𝐼𝐼

𝑇 𝟎
𝐭𝐼

𝐭𝐼𝐼

+ 𝜇 𝐧𝑻𝐧(∇𝐮)𝐧𝑻𝐧 − [𝜇]
𝟎
𝐭𝐼

𝐭𝐼𝐼

𝑇 𝟎
𝐭𝐼

𝐭𝐼𝐼

∇𝐮 𝑇𝐧𝑻𝐧                    (18)

Note that the right-hand side of the above equation only involves velocity derivatives that are continuous across 

the interface. If 𝜇 = 0, then ∇𝐮 = 𝟎.

If the viscosity is smoothed to be continuous across the interface, the normal jump condition

  [𝑝] = σ𝜅                                                                       (19)     

The tangential viscous stress jump condition,

∇𝐮 ∙ 𝐧𝑇 ∙ 𝐭𝐼] + [ ∇𝐮 ∙ 𝐭𝐼
𝑇 ∙ 𝐧 = 0                                           (20)

According to Eq. (18), with a constant viscosity, all the velocity derivatives will be continuous across the interface 

which implies that both jump terms on the left hand side of the above equation are zero.
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Vorticity condition across the interface

The vorticity in the normal direction is written as,

𝐧 ∙ 𝛚 = 𝐧 ∙ ∇ × 𝐮 = (𝐭𝐼 × 𝐭𝐼𝐼) ∙ ∇ × 𝐮                                  (21)

Using the identity 𝐚 × 𝐛 ∙ 𝐜 × 𝐝 = 𝐚 ∙ 𝐜 𝐛 ∙ 𝐝 − 𝐚 ∙ 𝐝 𝐛 ∙ 𝐜 , Eq. (21) can be rewritten as,

𝐧 ∙ 𝛚 = 𝐭𝐼 ∙ ∇ 𝐭𝐼𝐼 ∙ 𝐮 − 𝐭𝐼 ∙ 𝐮 𝐭𝐼𝐼 ∙ ∇                                   (22)

which is continuous across the interface since the right hand side of the above equation only 

involves tangential derivatives of the velocity.

The vorticity in the tangential directions,

𝐭𝐼 ∙ 𝛚 = 𝐭𝐼 ∙ ∇ × 𝐮 = 𝐭𝐼𝐼 × 𝐧 ∙ ∇ × 𝐮 = 𝐭𝐼𝐼 ∙ ∇ 𝐧 ∙ 𝐮 − 𝐭𝐼𝐼 ∙ 𝐮 𝐧 ∙ ∇          (23)

𝐭𝐼𝐼 ∙ 𝛚 = 𝐭𝐼𝐼 ∙ ∇ × 𝐮 = 𝐧 × 𝐭𝐼 ∙ ∇ × 𝐮 = 𝐧 ∙ ∇ 𝐭𝐼 ∙ 𝐮 − 𝐧 ∙ 𝐮 𝐭𝐼 ∙ ∇           (24)

The tangential vorticities are generally not continuous across the interface since the normal 

derivatives, 𝐭𝐼𝐼 ∙ 𝐮 𝐧 ∙ ∇  and 𝐧 ∙ ∇ 𝐭𝐼 ∙ 𝐮 , are involved in the above equations, respectively. 

However, as shown in Eq. (20), all the velocity derivatives will be continuous if the viscosity jump

𝜇 = 0, then tangential vorticities will also be continuous.
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Examples of Boundary conditions
For two immiscible fluids with different density and viscosity:

Velocity, velocity gradient, viscosity, and shear stress distribution

Velocity, Uz, viscosity, and Taw profile for a layered two fluid flow.
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Examples of Boundary conditions
Inlet/outlet/exit/outer/far-field BCs:

• Inlet: V, p, T, specified, e.g., constant values are used, 𝑉 = 𝑉𝑖𝑛, 𝑝 = 0, 𝑇 = 𝑇𝑖𝑛,0        

• Outer or far-field: V, p, T, specified  similarly as inlet

• Exit: depends on the problems, but 

▪ often use Uxx = 0 and  
𝜕𝑝

𝜕𝑛
= 0. 

▪ For external flow, zero stream wise diffusion

▪ For fully developed internal flow and wave problem, periodic BCs can be used 

▪ For unsteady internal flow, global mass conservation enforcement may be 

needed: 𝑈𝑜𝑢𝑡 = 𝑈𝑜𝑢𝑡
𝑄𝑖𝑛

𝑄𝑜𝑢𝑡
, where 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 is the total inlet and outlet and 

flux, respectively.

Periodic Periodic
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BCs in CFDShip-Iowa



45

BCs in Ansys Fluent

1 Flow Inlet and Exit Boundary Conditions

2 Using Flow Boundary Conditions

3 Pressure Inlet Boundary Conditions

4 Velocity Inlet Boundary Conditions

5 Mass Flow Inlet Boundary Conditions

6 Inlet Vent Boundary Conditions

7 Intake Fan Boundary Conditions

8 Pressure Outlet Boundary Conditions

9 Pressure Far-Field Boundary Conditions

10 Inputs at Pressure Far-Field Boundaries

11 Outflow Boundary Conditions

12 Outlet Vent Boundary Conditions

13 Exhaust Fan Boundary Conditions

14 Wall Boundary Conditions

15 Symmetry Boundary Conditions

16 Periodic Boundary Conditions

17 Axis Boundary Conditions

18 Fan Boundary Conditions

19 Radiator Boundary Conditions

20 Porous Jump Boundary Conditions

https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node236.htm
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Simulation Examples using CFDShip-Iowa

Wave breaking in bump flow simulation: 2.2 billion grid points 

Movie

Plunging wave breaking:

• Inlet:
𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑣 = 𝑤 = 0

• Exit:

𝜕𝑢

𝜕𝑛
=

𝜕𝑣

𝜕𝑛
=

𝜕𝑤

𝜕𝑛
= 0

• For pressure, 
𝜕𝑝

𝜕𝑛
= 0 for all 

the boundaries.

• Mass balance needed at 
the outlet.

https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/ETwP-yVK1_dHlpccQUyN4tkBASZjgwH42S5YDMxABm_DrA?e=hffemm
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Wedge flow simulation, 1 billion grid points

Movie

Wedge flow:

• The 𝑗𝑚𝑎𝑥 boundary is split 
into two parts: inlet and 
exit.

• Inlet:
𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑣 = 𝑤 = 0

• Exit:

𝜕𝑢

𝜕𝑛
=

𝜕𝑣

𝜕𝑛
=

𝜕𝑤

𝜕𝑛
= 0

• Slip BCs at both top and 
bottom.

• For pressure, 
𝜕𝑝

𝜕𝑛
= 0 for all 

the boundaries.

• Mass balance needed at 
the outlet.

Inlet
Exit

Symmetric

No-Slip

https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/EUGaK77CVxpDo0XSj9XU0YABGaYXIaQkjOOs6ioaqxXh6Q?e=Z1mYSb
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Simulation Examples using CFDShip-Iowa

Stokes wave breaking: 3.2-12 Billion Grid Points

Movie

Stokes wave breaking

Slip wall BCs at top and bottom

Periodic BCs at inlet, exit, and two sides.

https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/EVGbsBRgj-xFpXs41RJykIQBs2WvFpIOj-Cr2qN6qwbojw?e=BhXSTG
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Simulation Examples using CFDShip-Iowa

NSWC15E Planing Hull

Movies: bottom view            side view

• Water is moving,  ship-fixed system

• Inlet (10):
𝑢 = 𝑢𝑖𝑛𝑓𝑙𝑜𝑤, 𝑣 = 𝑤 = 0

• Exit(11): 
𝜕2𝑈

𝜕𝑛2 = 0,
𝜕𝑝

𝜕𝑛
= 0

https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/EQLRWD6WfrxFjHyNNboUfGQB2bgkb5mPSsCIkBarkd7xuA?e=USyMh4
https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/EVO-8xHH-T1MgyMMG2KCXLEB805-hZjisV0oqW3VnIfC9Q?e=df9SBE
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KCS free running

• Symmetric BC can not be used, use 
full ship

• Inlet (10): 𝑢 = 𝑣 = 𝑤 = 0, 

since the ship is moving, earth 
fixed system (inertial)

• Exit (11)

Movies: free running

https://iowa-my.sharepoint.com/:v:/g/personal/frstern_uiowa_edu/ETa_zVq_H7BFgJD4T4eix_MB1I_SgganotSDBsuZELfhMg?e=iH1npQ
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