
1 

 

Part 3:  Momentum Integral Equation 
 

Historically similarity and other AFD methods used for idealized flows 

and momentum integral methods for practical applications, including 

pressure gradients, but failure 3D methods motivated 3D BL theory which 

quickly progressed to modern day CFD. 
 

Momentum integral equation, which is valid for both laminar and 

turbulent flow: 
 

∫ (steady flow BL equation + (𝑢 − 𝑈)continuity)
∞

𝑦=0

𝑑𝑦 

 
𝜏𝑤

𝜌𝑈2
=
1

2
𝐶𝑓 =

𝑑𝜃

𝑑𝑥
+ (2 + 𝐻)

𝜃

𝑈

𝑑𝑈

𝑑𝑥
 

 

 

 

𝜃 = ∫
𝑢

𝑈
(1 −

𝑢

𝑈
)

𝛿

0

𝑑𝑦 

 

𝛿∗ = ∫ (1 −
𝑢

𝑈
)𝑑𝑦

𝛿

0

 

 

𝐻 =
𝛿∗

𝜃
 

 

Momentum: 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
𝜕

𝜕𝑥
(
𝑝

𝜌
) +

1

𝜌

𝜕𝜏

𝜕𝑦
    where 𝜏 = µ

𝜕𝑢

𝜕𝑦
 

The pressure gradient evaluated form the outer potential flow using 

Bernoulli equation. 
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(𝑢 − 𝑈) (𝑢𝑥 + 𝑣𝑦)⏟      
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
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Thwaites Method (1949) 

Pressure gradient parameter 𝜆 =
𝜃2

𝜈

𝑑𝑈

𝑑𝑥
= (

𝜃

𝛿
)2Λ where  𝛬 =

𝛿2

𝜈

𝑑𝑈

𝑑𝑥
=

−𝑝𝑥
𝛿2

𝜇𝑈
 is the Pohlhausen parameter. 

 

Multiply momentum integral equation by 
𝑈𝜃

𝜈
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The equation is dimensionless and, LHS and H can be correlated with 𝜆 as 

shear and shape-factor correlations: 

 
𝜏𝑤𝜃

𝜇𝑈
= 𝑆(𝜆) = (𝜆 + 0.09)0.62 

𝐻 = 𝛿∗/𝜃 = 𝐻(𝜆) =∑𝑎𝑖(0.25 − 𝜆)
𝑖

5

𝑖=0

 

 

ai = (2, 4.14, -83.5, 854, -3337, 4576) 

 

Note 
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Substitute above into momentum integral equation. 

 

𝑆(𝜆) =
1

2
𝑈

𝑑

𝑑𝑥
(
𝜃2

𝜈
) + 𝜆(2 + 𝐻) 

 

𝑈
𝑑(𝜆/𝑈𝑥)

𝑑𝑥
= 2[𝑆 − 𝜆(2 + 𝐻)𝜆] = 𝐹(𝜆) 
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𝐹(𝜆) = 0.45 − 6𝜆 based on AFD and EFD 
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𝜈
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𝑑(𝑧𝑈6) = 0.45𝑈5𝑑𝑥            

 

𝑧𝑈6 = 0.45 ∫ 𝑈5𝑑𝑥
𝑥

0
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𝑥

0
 

 

𝜃0(𝑥 = 0) = 0 and U(x) known from potential flow solution. 
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Complete solution: 

𝜆 = 𝜆(𝜃) =
𝜃2

𝜈

𝑑𝑈

𝑑𝑥
 

 
𝜏𝑤𝜃

𝜇𝑈
= 𝑆(𝜆) 

 

𝛿∗ = 𝜃𝐻(𝜆) 
 

Accuracy: mild px  5% and strong adverse px (w near 0)  15% 
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Separation predicted within 4%; however, large scale separation causes 

viscous/inviscid interaction and alters imposed external U(x) and px(x) 
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Pohlhausen Velocity Profile: 

 
𝑢

𝑈
= 𝑓(𝜂) = 𝑎𝜂 + 𝑏𝜂2 + 𝑐𝜂3 + 𝑑𝜂4 with 𝜂 =

𝑦

𝛿
 

 

a, b, c, d determined from boundary conditions: 

1) 𝑦 = 0→ u = 0, 𝑢𝑦𝑦 = −
𝑈

𝜈
𝑈𝑥 

2) 𝑦 = 𝛿 →𝑢 = 𝑈, 𝑢𝑦 = 0, 𝑢𝑦𝑦 = 0 

 

→
𝑢

𝑈
= 𝐹(𝜂) + 𝛬𝐺(𝜂), −12 ≤ 𝛬 ≤ 12    𝛬 =

𝛿2

𝜈

𝑑𝑈

𝑑𝑥
= −𝑝𝑥

𝛿2

𝜇𝑈
 

 

 

 

𝐹(𝜂) = 2𝜂 − 2𝜂3 + 𝜂4 

𝐺(𝜂) =
𝜂

6
(1 − 𝜂)3 

𝜆 = 𝜆(𝛬) = (
37

315
−

𝛬

945
+

𝛬2

9072
)𝛬 

 

Profiles are realistic, except near separation.  In guessed profile methods 

u/U directly used to solve momentum integral equation numerically, but 

accuracy not as good as empirical correlation methods; therefore, use 

Thwaites method to get  etc., and then use  to get  and plot u/U. 

 

 

(experiment: separation  = -5) separation 
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Howarth linearly decelerating flow (example of exact solution of 

steady state 2D boundary layer)  

 

 
 

Howarth proposed a linearly decelerating external velocity 

distribution𝑈(𝑥) = 𝑈0 (1 −
𝑥

𝐿
) as a theoretical model for laminar 

boundary layer study.  Use Thwaites’s method to compute:  

 

a) Xsep 

b) 𝐶𝑓 (
𝑥

𝐿
= 0.1) 

 

Note Ux = -U0/L 

 

Solution 

𝜃2 =
0.45𝜈

𝑈0
6 (1 −

𝑥
𝐿)
6∫ 𝑈0

5 (1 −
𝑥

𝐿
)
5

𝑑𝑥
𝑥

0

= 0.075
𝜈𝐿

𝑈0
[(1 −

𝑥

𝐿
)
−6

− 1] 

 

can be evaluated for given L, ReL  

 

𝜆 =
𝜃2

𝜈

𝑑𝑈

𝑑𝑥
= −0.075 [(1 −

𝑥

𝐿
)
−6

− 1] 

𝜆𝑠𝑒𝑝 = −0.09 ⇒
𝑋𝑠𝑒𝑝

𝐿
= 0.123 

 

 3% higher than exact solution =0.1199 
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𝐶𝑓 (
𝑥

𝐿
= 0.1)→i.e. just before separation 

 

𝜆 = −0.0661 

𝑆(𝜆) = 0.099 =
1

2
𝐶𝑓𝑅𝑒𝜃 

𝐶𝑓 =
2(0.099)

𝑅𝑒𝜃
 

 

Compute Re in terms if ReL 
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To complete 

solution must 

specify ReL 
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3-D Integral methods 

 

Momentum integral methods perform well (i.e. compare well with 

experimental data) for a large class of both laminar and turbulent 2D 

flows. However, for 3D flows they do not, primarily due to the inability 

of correlating the crossflow velocity components. 

 

 
 

The cross flow is driven by 
z

p




, which is imposed on BL from the outer 

potential flow U(x,z). 

 

3-D boundary layer equations 

 

              𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 = 0; 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 + 𝑤𝑢𝑧 = −
𝜕

𝜕𝑥
(𝑝/𝜌) + 𝜈𝑢𝑦𝑦 −

𝜕

𝜕𝑦
(𝑢′𝑣 ′) 

𝑢𝑤𝑥 + 𝑣𝑤𝑦 + 𝑤𝑤𝑧 = −
𝜕

𝜕𝑧
(𝑝/𝜌) + 𝜈𝑤𝑦𝑦 −

𝜕

𝜕𝑦
(𝑣 ′𝑤 ′) 

    +   closure equations 
 

Differential methods have been developed for this reason as well as for 

extensions to more complex and non-thin boundary layer flows. 
 


