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Chapter 4 Laminar Boundary Layers 
 

(2) Boundary Layer Theory 
 

Part 1:  Integral Methods: Flat Plate; and Boundary Layer Equations 

Introduction:   

 

       Boundary layer flows: External flows around streamlined bodies at 

high Re such that viscous (no-slip and shear stress) effects confined 

close to the body surfaces and its wake but are nearly inviscid far from 

the body. 

 

Applications of BL theory: aerodynamics (airplanes, rockets, 

projectiles), hydrodynamics (ships, submarines, torpedoes), 

transportation (automobiles, trucks, cycles), wind engineering 

(buildings, bridges, water towers), and ocean engineering (buoys, 

breakwaters, cables).  

 

Historical perspective: 

 

1. BL equations: 2D and axisymmetric similarity solutions 

 

2. Momentum integral methods: success 2D and failure 3D due 

crossflow modeling 

 

3. 3D BL differential codes 

 

4. Separation: viscous/inviscid interaction and thick BL and partially 

parabolic equations 

 

5. CFD: RANS, URANS, LES, Hybrid-RANS/LES, DNS 

 

6. Multi fidelity, ML&AI 

 

7. Fluid-structure interaction, multi-disciplinary 
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Flat-Plate Momentum Integral Analysis & Laminar approximate solution 

 

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat plate 

fixed in a uniform stream of velocity ˆUi : 2D steady constant property 

flow, fixed CV, inlet U = constant, outlet u = u(y), no slip y = 0, no shear 

stress along outer streamline, i.e., at y = H at inlet and y =   at outer 

boundary, thickness t = 0 such that p = constant. 

 

 

 

 

 

 

 

 

 

 

Boundary-layer thickness arbitrarily defined by y = %99 (where, %99 is 

the value of y at u = 0.99U). Streamlines outside %99  will deflect an 

amount
* (the displacement thickness). Thus, the streamlines move 

outward from Hy =  at 0=x  to 
* +=== HYy at 1xx = . 

 

Conservation of mass: 

CS

V ndA • =0=− ∫ 𝜌𝑈𝑏𝑑𝑦
𝐻

0
+ ∫ 𝜌𝑢𝑏𝑑𝑦

𝐻+𝛿∗

0
 

Which simplifies to: 

( ) ( )   −+=−+==
Y Y Y

dyUuUYdyUuUudyUH
0 0 0

 

Substituting 
*+= HY  results in the definition of displacement 

thickness:     

                                     𝛿∗ = ∫ (1 −
𝑢

𝑈
)

𝑌

0
𝑑𝑦 

 

b = span width 
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*  which is only a function of x being an important measure of effect of 

BL on external flow. To see this more clearly, consider an alternate 

derivation based on an equivalent discharge/flow rate argument: 

 

 =



 0*

udyUdy
 

 

 

Flowrate between * and  of inviscid flow=actual flowrate, i.e., inviscid 

flow rate about displacement body = equivalent viscous flow rate about 

actual body 

 







−==−




0

*

000

1

*

dy
U

u
udyUdyUdy

   

w/o BL - displacement effect=actual discharge 

For 3D flow, in addition it must also be explicitly required that * is a 

stream surface of the inviscid flow continued from outside of the BL. 

 

Conservation of x-momentum: 

∑ 𝐹𝑥 = −𝐷 = ∫ 𝜌𝑢𝑉 • 𝑛𝑑𝐴 =
𝐶𝑆

− ∫ 𝜌𝑈(𝑈𝑏𝑑𝑦)
𝐻

0

+ ∫ 𝜌𝑢(𝑢𝑏𝑑𝑦)
𝑌

0

 

 

𝐷𝑟𝑎𝑔 = 𝐷 = 𝜌𝑈2𝐻𝑏 − ∫ 𝜌𝑢2𝑌

0
𝑏𝑑𝑦 = Fluid force on plate = - Plate 

force on CV (fluid) 

Using continuity: =
Y

dy
U

u
H

0  

δ* Lam=/3 

δ 

δ* Turb=/8 

Inviscid flow about δ* body 

Per unit span 
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𝐷(𝑥) = 𝜌𝑏𝑈2 ∫ 𝑢/𝑈𝑑𝑦 − ∫ 𝑢2
𝑌

0

𝑌

0

𝑏𝑑𝑦 = 𝑏 ∫ 𝜏𝑤

𝑥

0

𝑑𝑥 

 

𝐷

𝜌𝑏𝑈2
= 𝜃 = ∫

𝑢

𝑈

𝑌=𝛿

0

(1 −
𝑢

𝑈
) 𝑑𝑦 

 

  is the momentum thickness (function of x only), an important 

measure of the drag.   
 

𝑑𝐷

𝑑𝑥
= 𝑏𝜏𝑤= 𝜌𝑏𝑈2 𝑑𝜃

𝑑𝑥
 

 

𝜏𝑤 = 𝜌𝑈2
𝑑𝜃

𝑑𝑥
 

 

𝐶𝑓 =
𝜏𝑤

1
2

𝜌𝑈2
 

 
𝐶𝑓

2
=

𝑑𝜃

𝑑𝑥
 

 

𝐶𝐷 =
1

𝐿
∫ 𝐶𝑓(𝑥)𝑑𝑥 =

1

𝐿
∫ 2

𝑑𝜃

𝑑𝑥
𝑑𝑥 =

2

𝐿

𝐿

0

𝐿

0

𝜃(𝐿) 

 

Special case 2D 

momentum integral 

equation for 𝑑𝑝 𝑑𝑥⁄  = 0 



5 
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Boundary layer approximations, equations, and comments 
                
 

 

 

 

 

 

 

 

2D NS, =constant, neglect g (subscript indicates derivative) 

 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈(𝑣𝑥𝑥 + 𝑣𝑦𝑦) 

 

Introduce non-dimensional variables that includes scales such that all 

variables are of order magnitude O(1): 

 







/Re

Re

/

/

Re

/

2

0*

*

*

*

*

*

UL

U

pp
p

U
v

Uuu

LtUt

L

y
y

Lxx

=

−
=

=

=

=

=

=

 

 

 

𝑢 =  𝑣 =  0 

x 

y 
U, , 

𝑣∗ =
𝜈

𝑈
√𝑅𝑒 
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The NS equations become (drop *) 

 

𝑢𝑥 + 𝑣𝑦 = 0 

 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +
1

𝑅𝑒
𝑢𝑥𝑥 + 𝑢𝑦𝑦 

 
1

𝑅𝑒
(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −𝑝𝑦 +

1

𝑅𝑒2
𝑣𝑥𝑥 +

1

𝑅𝑒
𝑣𝑦𝑦 

 

 

For large Re (BL assumptions) the underlined terms drop out and the BL 

equations are obtained.  

 

Therefore, y-momentum equation reduces to 

 

𝑝𝑦 = 0 

 

𝑖. 𝑒. , 𝑝 = 𝑝(𝑥, 𝑡) 

 
⇒ 𝑝𝑥 = −𝜌(𝑈𝑡 + 𝑈𝑈𝑥) 

 

 

2D BL equations: 

 

𝑢𝑥 + 𝑣𝑦 = 0 

 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = (𝑈𝑡 + 𝑈𝑈𝑥) + 𝜈𝑢𝑦𝑦 

 

 

External flow: 

unsteady Euler equation or 

steady Bernoulli equation 

p+
1

2
𝜌𝑈2 = 𝐵 

𝑝𝑥 =- 𝜌U𝑈𝑥 
 

Note at y=0: 
𝜕𝑝

𝜕𝑥
= 𝜈𝑢𝑦𝑦 
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Note:  

 

(1) U(x,t) and 
𝜕𝑝(x,t)

𝜕𝑥
 impressed on BL by the external flow. 

 

(2) 
𝜕2

𝜕𝑥2 = 0: i.e. longitudinal (stream-wise) diffusion is neglected. 

 

(3) Due to (2), the equations are parabolic in x. Physically, this means 

all downstream influences are lost other than that contained in 

external flow. A marching solution is possible. 

 

(4) Boundary conditions 

 

 

 

 

 

 

 

          

           

           

         No slip: 𝑢(𝑥, 0, 𝑡) = 𝑣(𝑥, 0, 𝑡) = 0 

         Initial condition:  ( )0,, yxu  known.  

         Inlet condition: ( )tyxu ,,0 given at 0x  

Matching with outer flow: ( ) ( ), , ,u x t U x t =  

 

(5) When applying the boundary layer equations, one must keep in 

mind the restrictions imposed on them due to the basic BL 

assumptions. 

 

          → not applicable for thick BL or separated flows (although  

         they can be used to estimate occurrence of separation). 

 

y 

x 

X0 

inlet 

Solution by 

marching 

matching 

No slip 

δ 
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(6) Curvilinear coordinates 

 

 
 

Although BL equations have been written in Cartesian Coordinates, they 

apply to curved surfaces provided δ << R and x, y are curvilinear 

coordinates measured along and normal to the surface, respectively. In 

such a system under the BL assumptions: 

 

               

2

y

u
p

R


=  

Assume u is a linear function of y:  u Uy =         

 

              

2 2

2

2

( ) (0)
3

dp U y

dy R

U
p p

R





 


=

− 
 

         Or 

 

         2
;

3

p

U R






  therefore, we require δ << R. 
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(7) Practical use of the BL theory 

 

         For a given body geometry: 

 

(a) Inviscid theory gives p(x) → integration gives Lift and 

Drag = 0. 

 

(b) BL theory gives → δ*(x), τw(x), θ(x), etc. and predicts 

separation if any. 

 

(c) If separation present then no further information → must 

use inviscid models, BL equation in inverse mode, or NS 

equations. 

 

(d) If separation is absent, integration of τw(x) provides 

frictional resistance; displacement body (including δ*) 

inviscid theory gives new p(x); and for displacement body 

drag go back to (2) for more accurate BL calculation 

including viscous – inviscid interaction. 
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(8) Separation and shear stress 
 

At the wall, 

 𝑢 = 𝑣 = 0 → 𝑢𝑦𝑦 =
1

𝜇
𝑝𝑥     2nd derivative u depends on 𝑝𝑥  

1st derivative u gives τw → 
wyw u =     τw = 0 separation 

 

 
  

Bernoulli: 𝑝𝑥 =- 𝜌U𝑈𝑥 
 

Adverse pressure gradient 𝑝𝑥 > 0 and 𝑈𝑥  < 0: 
 

H = shape parameter = 
𝛿∗

𝜃
 depends shape velocity profile provides 

indicator for separation = 3.5 laminar = 2.4 turbulent flow         
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