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Exact Blasius profile
for all laminar Re,
(Table 7.1)

Parabolic
approximation,
Eq.(7.6)
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root profile,
Eq. (7.39)
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FIGURE 10.13  Velocity profiles across boundary layers with favorable (dp/dx < 0) and adverse (dp/dx > 0) . i
oessure gradients, as indicated above the flow. The surface shear stress and stream-wise fluid velocity near the
“riace are highest and lowest in the favorable and adverse pressure gradients, respectively, with the dp/dx = 0 case ;

- mmﬂg between these limits. e
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FIGURE 10.8  Falkner-Skan profiles of stream-wise velocity in a laminar boundary layer when the external stream
is U, = ax". The horizontal axis is the scaled surface-normal coordinate. The various curves are labeled by their
associated value of n. When n > 0, the free-stream speed increases with increasing x, and 8%u/dy* is negative
throughout the boundary layer. When n = 0 (the Blasius boundary layer), the free-stream speed is constant, and
&1/3y? = 0 at the wall and is negative throughout the boundary layer. When n < 0, the free-stream speed decreases
with increasing x, and 6%#/dy? is positive near the wall but negative higher up in the boundary layer so there is an
inflection point in the stream-wise velocity profile at a finite distance from the surface. Reprinted with the permission of
Cambridge University Press, from: G. K. Batchelor, An Introduction to Fluid Dynamics, st ed. (1967).
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FIGURE 10.14 Streamlines and

velocity profiles near a separation
point S where a streamline emerges
from the surface. The usual
boundary-layer equations are not s
valid downstream of S. The inflec-

tion point in the stream-wise
- velocity profile is indicated by I
The dashed line is the locus

of u=0.
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EXAMPLE 10.8 ;

Using a third-order two-dimensional power-series expansion near a flat-plate boundary laver «
separation point, x = x; and y = 0, determine how the stream function y(x,y) depends on dp/dx ==
Bs, the angle the separating streamline makes with the horizontal surface as shown in Figure 1077

Solution

A third-order power series expansion for y(xy) is:
Y(x,y) = ag+m¥ +ay +asx’ + 1249/3) + Ay +asx”° + agX®y + BYy? + G

where x' = x — x5, and a9 through as, A, B, and C are undetermined constants. This stream freme
tion must satisfy the no-slip boundary condition, # = v = 0 on y = 0, so dy/dy = —dy/dx = °
: on y = 0. These two conditions cause a; through ag to be zero, and if ¥ = 0 defines the plate s
s face, then the stream function reduces to Y(x,y) = Ay? + B(x — x,)y* + C3. In addition, the <.
face shear stress, 7y, is zero at the separation point, so:

du 9y .
el — = = 2 X — ) == = ],
=18, = ), AT 6, = 2020

and this leaves:
Y(x,y) = Bx —x)y* + C°.

In the vicinity of the separation point, this stream function y(x,y) must satisfy two additiors
conditions. The first comes from the limiting form of (9.1) as y — 0 (see Example 9.1), which fo- -~
-+ present coordinate system and stream function is: '

(ap/ax)yzﬂ = #(BZII/GyZ)y:O = ﬂ(63¢//6y3)y=0’
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FIGURE 10.17 Streamline pattern near the separation point (x = x,, y = 0) on a flat surface.
g e I :
- and this implies C = (1/6u)(dp/dx). The second condition is that the zero-stfeamline must leave

the surface at an angle §; with respect to the downstream direction. The zero-streamline is given
by ¥(x,y) = 0, which implies:

~ By~ 1o _ 1%\, — Bx—x _ Ly
0 = B(x xs)y2+6,u<6x)y3’ or 6ﬂ(ax>y_B(x Xs), oOr 'é;(ax =B

So, with dy/dx = tang, the final form for the stream function expansion is:

[ 2

I Y (dp

1l X, Y) = =1 — Iy — (x — x)tanf,).

| ve) = £ (B) - - wans)

Thus for boundary layer separation from a flat surface, the angle of the separating streamline may
be independent of the local pressure gradient. And, when the flow is in the positive x-direction
upstream of the separation point (i.e. ¥ > 0 for y > 0), this stream function only makes sense when
dp/dx is locally positive, an adverse pressure gradient.
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FIGURE 10.16 Separation of flow in a
divergent channel. Here, an adverse pressure
gradient has lead to boundary-layer separa-
tion just downstream of the narrowest part of

the channel. Such separated flows are unstable -~

and are exceedingly likely to be unsteady, even
if all the boundary conditions are time

independent.
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GURE 10.15 Nominal comparison of laminar and tur . :
v 21;1(131‘}7 layers with nominally equal displacement thickness. Here tl}e primary differences are the presence of
' ‘f:w.ioher speed fluid closer to the surface and greater surface shear stress in the turbulent boun
T

dary layer.




