Chapter 4 Laminar Boundary Layers

(2) Boundary Layer Theory

Part 1: Integral Methods: Flat Plate; and Boundary Layer Equations Introduction:

Boundary layer flows: External flows around streamlined bodies at high Re such that viscous (no-slip and shear stress) effects confined close to the body surfaces and its wake but are nearly inviscid far from the body.

Applications of BL theory: aerodynamics (airplanes, rockets, projectiles), hydrodynamics (ships, submarines, torpedoes), transportation (automobiles, trucks, cycles), wind engineering (buildings, bridges, water towers), and ocean engineering (buoys, breakwaters, cables).

Historical perspective:

1. BL equations: 2D and axisymmetric similarity solutions
2. Momentum integral methods: success 2D and failure 3D due crossflow modeling
3. 3D BL differential codes
4. Separation: viscous/inviscid interaction and thick BL and partially parabolic equations
5. CFD: RANS, URANS, LES, Hybrid-RANS/LES, DNS
6. Multi fidelity, ML\&AI
7. Fluid-structure interaction, multi-disciplinary

Flat-Plate Momentum Integral Analysis \& Laminar approximate solution
Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat plate fixed in a uniform stream of velocity $U \hat{i}: 2 \mathrm{D}$ steady constant property flow, fixed CV, inlet $\mathrm{U}=$ constant, outlet $\mathrm{u}=\mathrm{u}(\mathrm{y})$, no slip $\mathrm{y}=0$, no shear stress along outer streamline, i.e., at $\mathrm{y}=\mathrm{H}$ at inlet and $\mathrm{y}=\delta$ at outer boundary, thickness $\mathrm{t}=0$ such that $\mathrm{p}=$ constant.

Boundary-layer thickness arbitrarily defined by y $=\delta_{99 \%}$ (where, $\delta_{99 \%}$ is the value of y at $\mathrm{u}=0.99 \mathrm{U}$). Streamlines outside $\delta_{99 \%}$ will deflect an amount δ^{*} (the displacement thickness). Thus, the streamlines move outward from $y=H$ at $x=0$ to $y=Y=\delta=H+\delta^{*}$ at $x=x_{1}$.

Conservation of mass:

$$
\int_{c s} \rho \underline{V} \cdot \underline{n} d A=\mathbf{0}=-\int_{0}^{H} \rho U b d y+\int_{0}^{H+\delta^{*}} \rho u b d y \quad \mathrm{~b}=\text { span width }
$$

Which simplifies to:

$$
U H=\int_{0}^{Y} u d y=\int_{0}^{Y}(U+u-U) d y=U Y+\int_{0}^{Y}(u-U) d y
$$

Substituting $Y=H+\delta^{*}$ results in the definition of displacement thickness:

$$
\delta^{*}=\int_{0}^{Y}\left(1-\frac{u}{U}\right) d y
$$

δ^{*} which is only a function of x being an important measure of effect of BL on external flow. To see this more clearly, consider an alternate derivation based on an equivalent discharge/flow rate argument:

$\underbrace{\int_{\delta^{*}}^{\delta} U d y}=\int_{0}^{\delta} u d y \quad$ Per unit span
Inviscid flow about δ^{*} body
Flowrate between δ^{*} and δ of inviscid flow=actual flowrate, i.e., inviscid flow rate about displacement body $=$ equivalent viscous flow rate about actual body

$$
\begin{aligned}
& \int_{0}^{\delta} U d y-\int_{0}^{\delta^{*}} U d y=\int_{0}^{\delta} u d y \Rightarrow \delta^{*}=\int_{0}^{\delta}\left(1-\frac{u}{U}\right) d y \\
& \text { w/o BL - displacement effect=actual discharge }
\end{aligned}
$$

For 3D flow, in addition it must also be explicitly required that δ^{*} is a stream surface of the inviscid flow continued from outside of the BL.

Conservation of x-momentum:

$$
\sum F_{x}=-D=\int_{C S} \rho \underline{u} \underline{V} \cdot \underline{n} d A=-\int_{0}^{H} \rho U(U b d y)+\int_{0}^{Y} \rho u(u b d y)
$$

Drag $=D=\rho U^{2} H b-\int_{0}^{Y} \rho u^{2} b d y=$ Fluid force on plate $=-$ Plate force on CV (fluid)
Using continuity: $H=\int_{0}^{Y} \frac{u}{U} d y$

$$
\begin{gathered}
D(x)=\rho b U^{2} \int_{0}^{Y} u / U d y-\int_{0}^{Y} u^{2} b d y=b \int_{0}^{x} \tau_{w} d x \\
\frac{D}{\rho b U^{2}}=\theta=\int_{0}^{Y=\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
\end{gathered}
$$

θ is the momentum thickness (function of \mathbf{x} only), an important measure of the drag.

$$
\begin{aligned}
& \frac{d D}{d x}=b \tau_{w}=\rho b U^{2} \frac{d \theta}{d x} \\
& \tau_{w}=\rho U^{2} \frac{d \theta}{d x} \\
& C_{f}=\frac{\tau_{w}}{\frac{1}{2} \rho U^{2}} \\
& \frac{C_{f}}{2}=\frac{d \theta}{d x} \\
& \text { Special case 2D } \\
& \text { momentum integral } \\
& \text { equation for } d p / d x=0 \\
& C_{D}=\frac{1}{L} \int_{0}^{L} C_{f}(x) d x=\frac{1}{L} \int_{0}^{L} 2 \frac{d \theta}{d x} d x=\frac{2}{L} \theta(L) \\
& \text { FIGURE 4-2 } \\
& \text { Momentum and displacement thicknesses. }
\end{aligned}
$$

Sumple exomple Aslution womenten untipl wetict yet plat BL with msument velen of pile

Assume preyonemice Yuepes in yo with doper elenminal number srexiden condition whide ean te siterpied

$$
\begin{aligned}
& \frac{z_{0}}{\sigma}=a_{0}+a_{1} y / \sigma+a_{2} y^{2} / s^{2} \quad u(x, 0)=0 \Rightarrow a_{0}=0 \\
& u_{e}=\left(\frac{2}{8}-\frac{2 v}{8}\right)^{v}=2 y / 5-(y / 6)^{2} \quad u(x, s)=v \Rightarrow 1=a_{0}+a_{1}+a_{2} \\
& u_{x}=(-2 / s)^{v} \quad \forall \frac{\partial y}{}(x, 5)=0 \Rightarrow 0=a_{1}+2 a_{2} \\
& a 1=2, a 2=-1 \\
& \begin{array}{l}
Z_{\omega}=e v^{2} \frac{d \theta}{d x} \\
\theta=\int_{0}^{\delta} \frac{a}{v}\left(1-\frac{x}{v}\right) d y=\int_{0}^{5}\left[\frac{2 x}{\delta}-\left(\frac{y}{5}\right)^{2}\right]\left[1-\frac{2 y}{5}+\left(\frac{y y}{5}\right)^{2}\right] d y
\end{array} \\
& 1 \quad y=8 / 5 \\
& =5 \int_{0}\left(2 y-q^{2}\right)\left(1-2 \eta+y^{2}\right) d y \quad d q=8^{-1} d y \\
& =2 / 15 \mathrm{~S} \\
& Z_{n}=\left.\mu \frac{d y}{\partial y}\right|_{\partial=0}=\mu-\frac{2}{\partial \delta}\left[\frac{2 y}{s}-(4 / v)^{2}\right]_{y=0}=\frac{\mu v}{\delta} \int^{2}\left(2-7-\gamma^{2}\right)_{7=0} \\
& =2 \mu \mathrm{~m} / \mathrm{s} \\
& =e \sigma^{2} \frac{d}{d x}\left(\frac{2}{15} \delta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 e^{2 \pi}}{15} \frac{d 5}{d x}=\frac{2 \mu \sigma}{5} \Rightarrow 5 d 5=15 \frac{\sqrt{v}}{v} d x \Rightarrow \delta=\sqrt{30} \sqrt{\frac{\sqrt{x}}{v}} \\
& \pi / x=\text { á, vौ Re. } x^{-1 / 2} \\
& Z_{w} / \frac{1}{2} e U^{2}=c_{f}=.7310_{x}^{-2 / L}=O / x \\
& R_{a x}=-5 x / v \\
& S 4 / x=1.83 R_{2}^{-1 / 2} \quad \angle_{0}=1.46 R_{2}^{-1 / 2}=2 C_{f}(L) \quad 10 \% \text { enor Blosimes } \\
& \text { ate } \propto \mathrm{Ra}_{x}^{-1 / 2}
\end{aligned}
$$

If $x / v=\frac{2 y}{5}=$ hivear of $(1) \lambda(2) \cos$ Las solth- A pootan rewelt, thener if $3^{\text {rd }}$ on hegher frymomid mare seenvite

Boundary layer approximations, equations, and comments

2D NS, $\rho=$ constant, neglect g (subscript indicates derivative)
$u_{x}+v_{y}=0$
$u_{t}+u u_{x}+v u_{y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(u_{x x}+u_{y y}\right)$
$v_{t}+u v_{x}+v v_{y}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+v\left(v_{x x}+v_{y y}\right)$
Introduce non-dimensional variables that includes scales such that all variables are of order magnitude $\mathrm{O}(1)$:
$x^{*}=x / L$
$y^{*}=\frac{y}{L} \sqrt{\operatorname{Re}}$
$t^{*}=t U / L$
$u^{*}=u / U$
$v^{*}=\frac{v}{U} \sqrt{R e}$
$p^{*}=\frac{p-p_{0}}{\rho U^{2}}$
$\operatorname{Re}=U L / v$

The NS equations become (drop *)

$$
\begin{aligned}
& u_{x}+v_{y}=0 \\
& u_{t}+u u_{x}+v u_{y}=-p_{x}+\frac{1}{\underline{R e} u_{x x}}+u_{y y} \\
& \frac{1}{R e}\left(v_{t}+u v_{x}+v v_{y}\right)=-p_{y}+\frac{1}{\underline{R e}} v_{x x}+\frac{1}{\frac{R e}{}} v_{y y}
\end{aligned}
$$

For large Re (BL assumptions) the underlined terms drop out and the BL equations are obtained.

Therefore, y-momentum equation reduces to
$p_{y}=0$
i.e., $p=p(x, t)$
External flow: unsteady Euler equation or steady Bernoulli equation
$\mathrm{p}+\frac{1}{2} \rho U^{2}=B$
$\Rightarrow p_{x}=-\rho\left(U_{t}+U U_{x}\right)$
$p_{x}=-\rho U U_{x}$

2D BL equations:

$$
\begin{aligned}
& u_{x}+v_{y}=0 \\
& u_{t}+u u_{x}+v u_{y}=\left(U_{t}+U U_{x}\right)+v u_{y y} \quad \text { Note at } \mathrm{y}=0: \frac{\partial p}{\partial x}=v u_{y y}
\end{aligned}
$$

$$
\begin{aligned}
& x^{*}=x / L \quad \frac{\partial}{\partial x}=\frac{\partial}{\partial x_{1}} \frac{\partial x_{1}}{\partial x}=L^{-1} \frac{\partial}{\partial x^{4}} \\
& y^{*}=y / L \sqrt{R e} \quad \frac{\partial}{\partial y}=\frac{\partial}{\partial y} \cdot \frac{\partial x}{\partial y}=L^{-1} \sqrt{R_{e}} \frac{\partial}{\partial y^{\prime}} \\
& z^{\circ}=z J / L \quad \frac{\partial}{\partial z}=\frac{\partial}{\partial z^{4}} \frac{\partial \% 1}{\partial z}=L^{-1} \operatorname{yy} \frac{\partial}{\partial z^{*}} \\
& u^{\prime}=u / v \quad u=x+v \\
& v+v / v \text { the } v=v+\frac{s}{12} \\
& p+=p-p_{0} / e v^{2} \quad \Delta-p=e^{-v^{2}} p{ }^{4} \\
& R_{e}=\pi L / V \\
& u x+u y=0 \quad \frac{\pi}{L} \frac{\partial u t}{\partial x^{*}}+\frac{\sqrt{k} e}{L} \frac{V}{\sqrt{r e}} \frac{\partial u v}{\partial y t}=0 \\
& v_{L-1}\left(u_{x^{*}}^{*}+v_{y+}^{*}\right)=0 \\
& u_{t}+u_{x}+u_{x} u_{y}=-p_{x} / e+\nu\left(u_{x}+u_{y} y\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{2} / L\left[\frac{\partial u^{*}}{\partial x^{*}}+u^{4} \frac{\partial u^{*}}{\partial x^{+}}+v+\frac{\partial u^{+}}{\partial y^{*}}\right]^{\Gamma^{2}}=, \quad+v\left(L^{-2} \frac{\partial^{2}\left(u^{+} v^{2}\right.}{\partial x^{2}}+L^{2} R_{k} \frac{\left.\partial^{2} \frac{\left.u^{2}+r\right)}{\partial \gamma^{2}}\right)}{}\right. \\
& \Leftrightarrow \frac{e^{-} v^{2}}{\rho^{L}} \frac{\rho^{t}}{\partial x^{4}}+V\left(\frac{v}{L^{2}} \frac{\partial^{2} u}{\partial y^{2}}+\frac{v}{L^{2}} R_{0} \frac{\partial u^{2}}{\partial y^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v_{t}+x v_{x}+v^{v} v_{y}=-p_{y} / e^{+v}\left(v_{x x}+v_{z y}\right) \frac{v}{v L}\left(\frac{\partial^{2} u^{t}}{\partial x^{4}}+\frac{v z}{\partial v^{2} u^{t}} \frac{\partial y^{2}}{\partial z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\nu\left(L-2 \frac{\partial^{2}}{\partial x} \frac{v \sigma}{\sqrt{R}}+L^{-2} \cdot \frac{\partial^{2}}{\partial y^{2}} \frac{v+\sigma}{\sqrt{2} \alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{e}^{-1}[\geqslant]=\frac{\partial p^{1}}{\partial y^{\prime}}+R_{0}^{-2} \frac{\partial v^{2}}{\partial x^{2}}+R_{e}^{-1} \frac{\partial^{2} v^{2}}{\partial \gamma^{2}} \frac{\frac{V L}{r_{e} v^{2}}\left(\frac{\nu^{2}}{L^{2} \sqrt{r_{e}}}\right.}{R_{e}^{-2}} \frac{\frac{\tau}{L^{2}} \pi_{e}}{R_{e}-1}
\end{aligned}
$$

Note:

(1) $\mathrm{U}(\mathrm{x}, \mathrm{t})$ and $\frac{\partial p(\mathrm{x}, \mathrm{t})}{\partial x}$ impressed on BL by the external flow.
(2) $\frac{\partial^{2}}{\partial x^{2}}=0$: i.e. longitudinal (stream-wise) diffusion is neglected.
(3) Due to (2), the equations are parabolic in x. Physically, this means all downstream influences are lost other than that contained in external flow. A marching solution is possible.
(4) Boundary conditions

No slip: $u(x, 0, t)=v(x, 0, t)=0$
Initial condition: $u(x, y, 0)$ known.
Inlet condition: $u\left(x_{0}, y, t\right)$ given at x_{0}
Matching with outer flow: $u(x, \infty, t)=U(x, t)$
(5) When applying the boundary layer equations, one must keep in mind the restrictions imposed on them due to the basic BL assumptions.
\rightarrow not applicable for thick BL or separated flows (although they can be used to estimate occurrence of separation).
(6) Curvilinear coordinates

Although BL equations have been written in Cartesian Coordinates, they apply to curved surfaces provided $\delta \ll \mathrm{R}$ and x , y are curvilinear coordinates measured along and normal to the surface, respectively. In such a system under the BL assumptions:

$$
p_{y}=\frac{\rho u^{2}}{R}
$$

Assume u is a linear function of $y: u=U y / \delta$

$$
\begin{aligned}
& \quad \frac{d p}{d y}=\frac{\rho U^{2} y^{2}}{R \delta^{2}} \\
& \quad p(\delta)-p(0) \propto \frac{\rho U^{2} \delta}{3 R} \\
& \text { Or } \\
& \frac{\Delta p}{\rho U^{2}} \propto \frac{\delta}{3 R} ; \text { therefore, we require } \delta \ll R .
\end{aligned}
$$

(7) Practical use of the BL theory

For a given body geometry:
(a) Inviscid theory gives $\mathrm{p}(\mathrm{x}) \rightarrow$ integration gives Lift and Drag $=0$.
(b) BL theory gives $\rightarrow \delta^{*}(x), \tau_{w}(x), \theta(x)$, etc. and predicts separation if any.
(c) If separation present then no further information \rightarrow must use inviscid models, BL equation in inverse mode, or NS equations.
(d) If separation is absent, integration of $\tau_{w}(x)$ provides frictional resistance; displacement body (including δ^{*}) inviscid theory gives new $\mathrm{p}(\mathrm{x})$; and for displacement body drag go back to (2) for more accurate BL calculation including viscous - inviscid interaction.
(8) Separation and shear stress

At the wall,
$u=v=0 \rightarrow u_{y y}=\frac{1}{\mu} p_{x} \quad 2^{\text {nd }}$ derivative u depends on p_{x} $1^{\text {st }}$ derivative u gives $\tau_{w} \rightarrow \tau_{w}=\left.\mu u_{y}\right|_{w} \quad \tau_{w}=0$ separation

Bernoulli: $p_{x}=-\rho U U_{x}$
Adverse pressure gradient $p_{x}>0$ and $U_{x}<0$:
$\mathrm{H}=$ shape parameter $=\frac{\delta^{*}}{\theta}$ depends shape velocity profile provides indicator for separation $=3.5$ laminar $=2.4$ turbulent flow

Or con expliin in temm of uy ont all BL have PI when $p_{x}>0$
$p_{x}>\left.0 \Rightarrow \frac{\partial}{\partial g}\left(\mu u_{y}\right)\right|_{y=0}>0$ ie $x_{y}>0$ \& $y=0$ as thenefre sume $z=0 \quad \tau=\mu^{x y}=0$ for $y \geq 5$ mut hrve mox mum wotion J, which baphin PI suxce $\mu x_{y}=0 \mid$ ie $\mu x y y=0$ $\tau_{\text {max }}$

Since $\bar{S}(x) \neq f(R e)$, predehteon sepention seemungy at leent for lominan fow withat anderis/unameal whention luen wरे lepeal on tee. Intesentiof even
circuler gelicen for stify bertien with thonstion from dominar s2 bomenn to tur) bit fowo (arcuen eqeata A Sptare) with lavge wahe (araones/mvich mitercatwon) x senp list very Andelue Pe

Sepeiatton typer:
(1) blufb sing ie larfe wate, which chorgen efpactue Lozo shpe dare S^{*}
(2) Aender drepie f eocol peaturtition $v(x)$ eg avrfond bE aypantas bidtue or TE sequation
that in encerpt whethen BS in lommar miturduat for smooth Suafore reper otion

Figure 20.19 Plan view of the trailing-edge stall pattern on a Clark $Y-14$ airfoil. The pattern is made visible by the oil-flow technique. Flow is from top to bottom. Photography courtesy of A. Winkelmann, Department of Aerospace Engineering, University of Maryland. Reprinted with permission.

Chaventeristice steesg lominar sepeneted flarw for large Re goeas on how wore Soure and inturetr potential flow.

Two main eoncepta:

1) Whe is a can $R e \rightarrow \infty$ has ω is cinstont: Prandte-Batshelor ansumption
2) Wohe har atg lengith $O\left(n_{a}\right)$, width $O\left(n_{e} v_{2}\right)$ smale eddies, is ernstent pramurs free sdreamhene: Kivchhorf ansumption (suear loyer seqpeater ware A (bodenter flow)

Both models ant/or comtunituon mover hare defete i do wot acomet for tirvtidence.

Most ixppalt iv two ridg pressuie dictribution on the bocly $\overline{\text { on Ance }}$ BL equatims with proper Pl con pedet sepention.

Seender Sodr sqperition eon de Fedect with BL twary, eg, sepertion bubbier vang imnerse methate, which do not use sperpl $p_{x} \sim B<$

BL equatiour beetedown at sepecton when
 while $Z_{w} \rightarrow 0$ widh $Z_{x} p \infty:$ Gollstem sungularif. Not lue BL Theog of tut spechel f_{x}.

Inarase mathar: (D) Specty $\delta^{\prime} \Rightarrow u_{e}(x)$ as p_{x} an put of srention such dt $B L$ eguatione con be artegnot ie contunuel through sppetton
(2) Spegge τ_{w} a morlaf p_{x} suah dst $\beta_{x}>0$ is x_{s} ($\beta=$ pessure gualot favometer)

Wrte: δ^{+}as E_{w} hots sall havon a priovi onoder promem in reverse glows uux assminal forwarl mavch -8 huat ure wpwial marc on on reget $u u_{x}$.

Alterviturf Boundang Laper Internoton thengy

Nemvie boelstein Sunguley via traple dec thang: lower dear shafy medre loyse by v (mvisu with ω) \Rightarrow perturtaton ue (x); p 01trand usy intuad e solution. Mat fu TE Reppintuon, Sumpe on wrel, iniviil styee suctaon, etz. Flos for whied sepenatron onf small pactur trion.

