
Chapter 3 Solutions of the Newtonian Viscous-Flow Equations

1. Similarity solutions

- a. Stagnation point
- b. Rotating disc
- c. Wedge flows

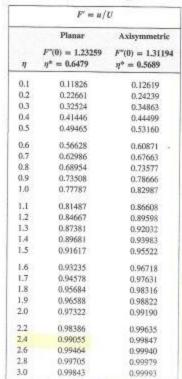
	Stagnation Point Flow
	FIGURE 3-24
	Region of nonzero vorticity ⁰ Rigid boundary Stagnation-point flow.
	Invisid Flow
	7 = Bxy 2 = Bx = 7y 0=-By=-7x B=00/L
	$p + \frac{1}{2}e(u^2 + v^2) = Constant$ $p = p_0 - \frac{2}{2}B^2(x^2 + y^2)$ $v = 0$ only at Stogration point
po=Stagnotion	
pierrue	Consider U(y)= Vo (1-8/L) pt = 200= 6
	py + e v vy = 0
	1pg = -eUUy
	Adverse = evot (1-4/L) persue quit 1
	Viscous Elas Andyen system denth Enroll
	Surve if glas region small compact radius of convertine
	$u_x + v_y = 0 \tag{1}$
	22)
	Nox+ rary = - Pyle + V (oxx + rayy) (3)
	$Y = B \times f(y)$ $u = B \times f'$ $v = -B f$ $f(0) = f'(0) = 0$ $T \neq y$ or $M = 0$ solution
	- + y us m M=0 solution

	node: rey = -21x = -Bf'
	Visite 1
	127.4(5)
	Substitution of all metros (2) of (3)
	32x 512 - 132x f f" = -Px/R + 1/3 x f" (4)
	$B^2 + f' = -P_y/\varrho - JB + 11 $ (5)
·	
	from (5) Py = - (B (B + f' + V +") = f(y) 00 pyx = 0
	12(x,2) = -6B(B/5 ts+121) + d(x)
	15/1/3/ 15/ 127 401 / 18/1
	Determine g(x) from condition that for
-	lavae 4. recover totantral flow
	ie f(0) = y, f'(0) = 1, f"(0) = f"(0) = 0
	p(x, x) = -8B(B/242+V)+g(x)
	1 (22/42)
	= 40-76Bg(X5+27)
	g(x) = po - 28B2x2 + eBV
	p(x,y) = po- = 2 e B2 f2 + eBx (1-51) - = 2 e B2 x2 (6)
	(6
	Px= 82 x Py=- 128822 4 51 + 88 4 511
	=-RB(BFF'+VF")
	Susstitution into (4)
	B2x +1,5 - B5x + 4 = B5x + NBx + 11,
	or 1/84" + 44" - 412 + 1 = 0 (7)

Al terration derivation:
0 (7)
 from (3)
Pole = - 22/2 - vrey + V (12/4 + rong)
= Bf(-8f')-VBf"
Py = - PB (PSF 5' + V 5") = f(y) 30 Pyx = 0
$P = -eB \left(V f' + B/2 f^2 \right) + CR_1(X) + C $ (4)
1(13/4)
From (2)
Nx/e = - unx - very + v (nyx+ nyy)
= -Bxf'(Bf') + Bf Bxf" + V (Bxf")
$p_{x} = eB_{x} (V + W + B + F'' - B + P')$ (5)
TX = ROX (VI
1 -1 . (11) . 0 . (12) . (1) + (1)
p = \frac{1}{2} B x 2 (Vf" + Bff" - Bf12) + Q2 (y) + C (6)
218
comparing (4) of (6) or considering 3(5) =0
 5"+ B (+5"-5'2) = constant = -BN
7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 5'(-1)-1 + 5" + 5" = 0
For large of N=BX 00 f'(00)=1 & f", f" =0
$f''' + G/v(ff'' - f''^2 + 1) = 0 \tag{3}$
hon demen Scorolne user length Scale TVIB
hondemen Stondenge using length Scale JUBS I velocy Scale JUB; reall V ms/s A B = To/L . 1/5
R= Toll. 1/c

	Albanate chivation uses to harmonice & equation:
	7 3 (02x) - x 3 (02x) = 1 04x
	72 (5 - (27 . 27)
	27 - 10x - 27 = -0-7 - (1xx + xyy)
	$\omega_{2} = -\omega_{x} - u_{y} = -D^{2}\chi = -(\chi_{xx} + \chi_{yy})$ $\tau_{x} = \chi_{y} = -\omega_{x} - \chi_{y}$ $\tau_{y} = -\chi_{x}$
	10 = - 7 x
	VY = Yxxx + Yqqq D2x=ny-10x = -10xxx + nyqq
	= -vxxx + rygy
	21 21 1-11
3	~ 3x (ny-12x) + 20 3y (ny-12x) = V (-12xxx +21242)
~	2 (21/4 - 20xx) + 20 (21/4 - 20xx) = V(-20xxx + 21/4/4)
	Stognation Flow: X = Bxf n=Bxf' 2=-Bf
	(W2 2) ((W2 2) (4 2 1) ((W 2 1) ((
	0x + (B+") - 8+ (Bx+ ") = V(Bx+")
	W 2 - 6 11 - 2 C C 1 - 2
	V8x F"+ B2x ff" - B2x f'f" = 0
	- 1213 212 212 21
	アナハナナナ ニーナノナ =0
	integrale: 2 f" + ff" - 512 = Constant
	integrale, B. t. + +2 = 2 - Constant
	f" + 8/v (ff" f2) = -8 since for large of
	Z=Bx 30 f'(00)=1
	Fundy: f"+ 1/1 (ff"-f; +1)=0 -1 5", 5" 1=0

	$\frac{2}{8}f''' + ff'' - f'^2 + 1 = 0 \tag{7}$
	Boundary Conditions:
	71(4,0)=0=) f'(0)=0
	70(x,0)=0=> f(0)=0
	2(1,0)
	10 11 121th producted from
	at for motaly with potentil from
	f'(0)=1
32	
	non demen Stonel ye vang length scale TV/VS I velous Scale TVB; resal V m2/5 B= U0 1
	0 V m2/5 B= U0 1
	I velous Scale IVIS > result
	7= y JB/1 X= XF(7) VB Y= m2
	7-91-1
10 - W.	U=BXF/ D=-F JUB
8= 5/1871	
2 = 27 24	
	(7) Seconez: F"+FF"+1-F12=0 nonlinear
= 15/237	3" vula 00E
F= B/VF	F(0) = F'(0) = 0 F'(00) = 1 Solved
	numarically
f= WBF	0
	Wate: f'= [V/8 F' [5/4 = F']
	f" = (5/v F"
	F''' = BN F'''


The following would be a typical asymptotic analysis: in $F'''+FF''+1-F'^2=0$, as η becomes large, $F\to a+\eta$ and $(1-F'^2)\to 0$. Therefore, at large η , a conservative view of this equation is:

$$\frac{F^{\prime\prime\prime}}{F^{\prime\prime}} \sim -\eta$$
 or $F^{\prime\prime} \approx e^{-\eta^2/2}$

Viscous Flow, F. White, 4th Edition

TABLE 3-4

Numerical solutions for stagnation flow

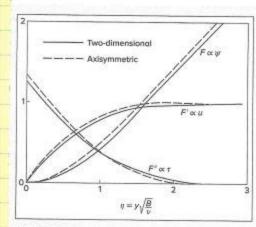
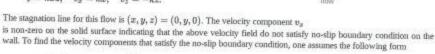


FIGURE 3-32 Numerical solutions of viscous stagnation flow for planar [Eq. (3-206)] and axisymmetric [Eq. (3-219)] conditions.


	8 = moderness Stagnation lover
	8 = omdeness Stagnation layer y = 2.4 = 8/56N = 5/56N => 5 = 2.4 ΓV/8
	≠ + (x)
PX=-6B5X	Themes he to favorable px = viscus defunda
=-200x	& The same of the
	8 Small: air approach 10 cm D cylinder
	δ Small: air approach 10 cm D cylinder at 00 = 10 m/s => 3 = 400/0 = 400 5-1 an 5 = .46 mm
	Wina Sea. 7.3 .5%0
	= 40/L
	Alon exact soution B2 equation , ic, Falker - Ston
	Alon exact soution B2 equation , ie, Falken-Stang somety solution &= B= I.

	Wite:
-	
	Terr
	px=-eB2X=-eDDX mush flow
	persone groat
	10 -1 1011
	py = - 88 (BES!+ N 4")
	= - (B (B T/R FF' + V TE/VF")
	= - (B TVB (FF1 + F") = () (TV)
	Similar as Soundary lage theory to serons 5
	py and across o
-	
	IN=M(nytox)
	IN = M (my + vx) =0
	Tw = m Bxf" = mBx \[\begin{align*} F'' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	8
	T - E" N 35
	IN = TO TARE FO" & T
	2 - T - 2 = " P = Ux
	$2x = Zw = 2F'' \qquad P_{ex} = Ox$
	1 2ev2 TRex
	d Pax Sommer Sounday
	d Van
	lamenar bounday
	Many extentions of theory layer trans
	such as & o's lique, two fluid, oxisymmetric,
	Mars Jean Mars
	circular cylinder, at unsteady flows

The flow due to the presence of a solid surface at z=0 in planar stagnation-point flow was described first by Karl Hiemenz in 1911, $^{(6)}$ whose numerical computations for the solutions were improved later by Leslie Howarth. $^{(7)}$ A familiar example where Hiemenz flow is applicable is the forward stagnation line that occurs in the flow over a circular cylinder. $^{(8)}$

The solid surface lies on the xy. According to potential flow theory, the fluid motion described in terms of the stream function ψ and the velocity components $(v_x, 0, v_z)$ are given by

$$\psi = kxz$$
, $v_z = kx$, $v_z = -kz$.

$$\psi = \sqrt{\nu k} x F(\eta), \quad \eta = \frac{z}{\sqrt{\nu/k}}$$

where ν is the Kinematic viscosity and $\sqrt{\nu/k}$ is the characteristic thickness where viscous effects are significant. The existence of constant value for the viscous effects thickness is due to the competing balance between the fluid convection that is directed towards the solid surface and viscous diffusion that is directed away from the surface. Thus the vorticity produced at the solid surface is able to diffuse only to distances of order $\sqrt{\nu/k}$; enalogous situations that resembles this behavior occurs in asymptotic suction profile and von Kármán swirling flow. The velocity components, pressure and Navier-Stokes equations then become

$$v_x = kxF'$$
, $v_z = -\sqrt{\nu k}F$, $\frac{p_\phi - p}{\rho} = \frac{1}{2}k^2x^2 + k\nu F' + \frac{1}{2}k\nu F^2$
 $F''' + FF'' - F'^2 + 1 = 0$

The requirements that $(v_x,v_z)=(0,0)$ at z=0 and that $v_x o kx$ as $z o \infty$ translate to

$$F(0) = 0$$
, $F'(0) = 0$, $F'(\infty) = 1$.

The condition for v_z as $z\to\infty$ cannot be prescribed and is obtained as a part of the solution. The problem formulated here is a special case of Falkner-Skan boundary layer. The solution can be obtained from numerical integrations and is shown in the figure. The asymptotic behaviors for large $\eta\to\infty$ are

$$F \sim \eta - 0.6479, \quad v_x \sim kx, \quad v_z \sim -k(z-\delta^*), \quad \delta^* = 0.6479\delta$$

where δ^* is the displacement thickness.

Two-dimensional stagnation point

The solution may be obtained by setting $\beta = 1$ in Eqs. (9.7). This gives

Another exact solution to the boundary-layer equations that may be obtained from the Falkner-Skan similarity solution is that corresponding to a stagnation-point flow. The values of the constants α and β that yield this solution are $\alpha = \beta = 1$. But this is equivalent to letting β be unity in the solution for the flow over a wedge. Then the angle of the wedge becomes π , which means the flow impinges on a flat surface yielding a plane stagnation point.

$$U(x) = cx (9.8a)$$

$$\xi(x) = \sqrt{\frac{v}{c}} \qquad (9.8b)$$

$$f''' + ff''' + 1 - (f')^2 = 0$$
 (9.8c)

$$f(0) = f'(0) = 0$$
 (9.8d)

$$f'(\eta) \rightarrow 1$$
 as $\eta \rightarrow \infty$ (9.8 ϵ)

$$\psi(x,y) = \sqrt{cv} x f\left(\frac{y}{\sqrt{v/c}}\right)$$
(9.8f)

It will be noticed that this is precisely the exact solution to the full Navier-Stokes equations that was obtained by Hiemenz for a stagnation point. This solution is given by Eqs. (7.7a), (7.7b), and (7.7c). Thus the exact solution to the boundary-layer equations is also an exact solution to the full Navier-Stokes equations in this instance.

Consider the complex potential

$$F(z) = \frac{a}{2}z^2 = \frac{a}{2}r^2e^{2i\theta}$$

$$\varphi = \operatorname{Re}[F(z)] = \frac{a}{2}r^2\cos 2\theta$$

$$\psi = \operatorname{Im}[F(z)] = \frac{a}{2}r^2 \sin 2\theta$$

Orthogonal rectangular hyperbolas

 ψ : asymptotes x=0, y=0

$$\underbrace{V} = \nabla \varphi = \varphi_r \hat{e}_r + \frac{1}{r} \varphi_\theta \hat{e}_\theta$$

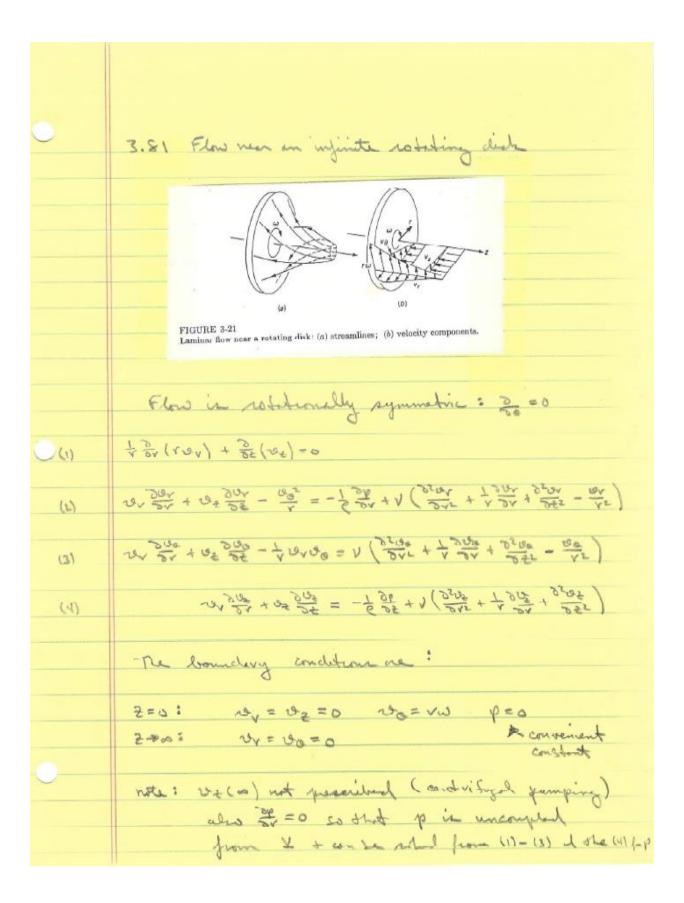
$$\begin{cases} v_r = ar \cos 2\theta \\ v_\theta = -ar \sin 2\theta \end{cases} \qquad \frac{\pi}{2} \le \theta \le 0 \text{ (flow direction as shown)}$$

$$\underline{V} = v_r \left(\cos\theta \hat{i} + \sin\theta \hat{j}\right) + v_\theta \left(-\sin\theta \hat{i} + \cos\theta \hat{j}\right) =$$

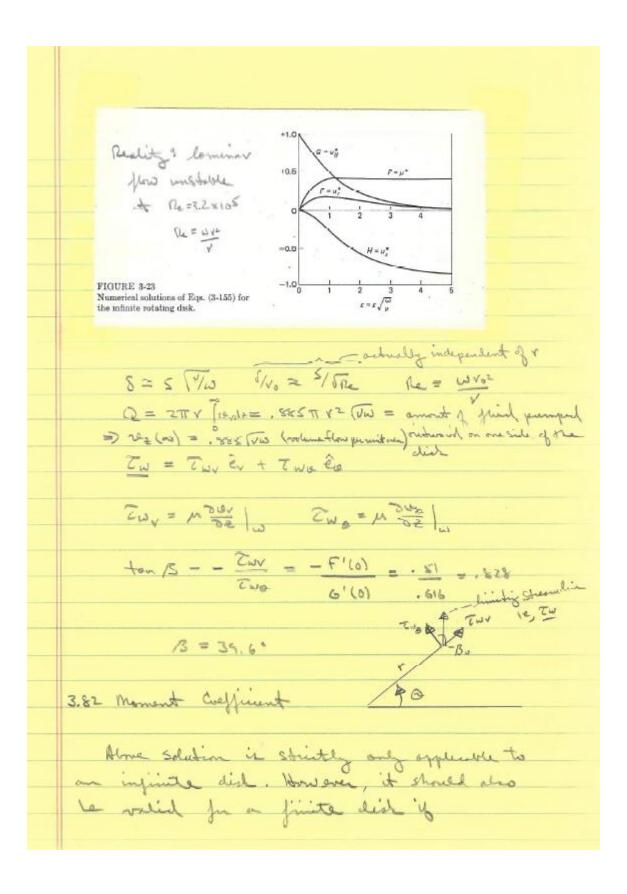
$$(v_r \cos\theta - v_\theta \sin\theta)\hat{i} + (v_r \sin\theta + v_\theta \cos\theta)\hat{j}$$

Potential flow slips along surface: (consider $\theta = 90^{\circ}$)

1) determine
$$a$$
 such that $v_r = U_0$ at $r=L$, $\theta = 90^\circ$


$$v_r = aL\cos(2\times 90) = U_0 \Rightarrow aL = -U_0, \text{ i.e. } a = -\frac{U_0}{L}$$

$$v_r = u_0 = u_0$$


2) let
$$U(x) = v_r$$
 at x=L-r:
 $\Rightarrow v_r = a(L-x)\cos(2\times 90) = U(x)$

Or:
$$U(x) = -a(L-x) = \frac{U_0}{L}(L-x) = U_0(1-\frac{x}{L})$$
 $U_X = -\frac{U_0}{L}$

Rud Filor

There we are obvious present and less the
There we no obvious velocity at length scales for this problem.
Karmon (1921): 27, 40, 200, p = f(2) only
- 4.1
=> define 2+ = 2/1/10 = similarly viville (Similar to 3/10+ + others)
(Similar to 3/14 + others)
10x = YW F(2+) 20 = YW 6(2+) 22 = [WY H(2+)
10 = 6 mx 6 (5*)
Substitution into (1) - (4) results in
H' = -2F F' = -6 + F2 + F' H 6" = 2F6 + H6"
b, = 5£#-5£1 >ume for 1,0,4
P'= 2F#-2F! She for F, G, H Then solve for p
1 Juniter 3et
F(0) = H(0) = P(0) = 0 $G(0) = 1$
F(a) = 6(a) =0
1 (4) - 3 (4) - 0
State is stated a six stated as Assistance
for System of ODE (see Leaveson in text)
In show (one (are aremoter in and)

