Chapter 3 Solutions of the Newtonian Viscous-Flow

 Equations
5.Unsteady flows

a. Stokes 1st problem: sudden acceleration
b. Diffusion vortex sheet
c. Decay of a Line Vortex
d. Stokes $2^{\text {nd }}$ problem: steady oscillations
e. Starting flow circular pipe
f. Oscillating pressure gradient pipe flow
g. Starting flow fixed/moving parallel walls.
a and d are unsteady flows with moving boundaries, of which there are many additional solutions.

Stohe 1 st $\quad u_{t}=v u y y$
Flet peate wall $u(y, 0)=0 \quad I<$

$$
\begin{array}{ll}
y=0 \quad & u(0, t)=t \quad \text { Imqueine siant } \\
& u(\infty, t)=0 \quad \text { stogmont }
\end{array}
$$

Diffuswon vortex sheat
Vortex sheat

$$
\left.\begin{array}{ll}
y=0 & u_{t}=\nu u_{y y} \\
& u(y, 0)=-\tau \operatorname{sgn}(y) \\
& u(0, t)=\pi \\
u(-\infty, t)=-\tau
\end{array}\right\} \text { fump condation }
$$

Decay ideot line vortex

$$
v=0
$$

$$
\begin{aligned}
& u_{0}=r \frac{1}{\partial r}\left[\frac{1}{r} \frac{0}{\partial r}\left(r u_{6}\right)\right] \\
& u_{b}(r, 0)=r / 2 \pi r \quad \text { unpuisive Ic } \\
& u_{6}(0, t)=0 \quad \text { no sery } \\
& u_{0}(00, t)=r / 2 \pi r \quad \text { outurivitantil } \\
& \text { arntex }
\end{aligned}
$$

Line runtex umpret glind at rest $\checkmark=0$

Strian 2 w

$$
x_{t}=\sqrt{x} y y
$$

$$
u(0, t)=J c \cos
$$

$$
(u(\infty, t)=0
$$

$$
\begin{aligned}
& u_{\theta_{t}}=v \frac{1}{v}\left[\frac{1}{v} \frac{3}{v}\left(v u_{0}\right)\right] \\
& u_{0}\left(v, \Delta^{*}\right)=\Delta \\
& u_{6}(v, \infty)=r / 2 \pi v \\
& u_{0}(\infty, t)=\Delta
\end{aligned}
$$

Unstang pipe ghon: $\quad e u_{t}=-\hat{p_{x}}+\mu\left(u_{v}+\frac{1}{v} u_{v}\right)$

FIGURE 7.4
(a) Definition sketch for Stokes' first problem and (b) the solution curves in terms of the similarity variable and in terms of the dimensional variables.

$$
\begin{array}{r}
\text { Content: } \begin{aligned}
& a x+v y=0 \\
& v(0)=0
\end{aligned} \Rightarrow v=0
\end{array}
$$

Momentum: $\quad e u_{t}=-p_{x}+\mu u_{y} y$ $0=-p y \Rightarrow p(x, t)$ and from
x-momentum $u(y, t)$

$$
\text { on d } p(x= \pm \infty)=p \infty, p_{x}=0
$$

$$
\left.\begin{array}{cc}
\therefore \quad u t=v u y y \\
& u(y, \Delta)=0 \\
& u(0, z)=r \\
u(\infty, t)=0
\end{array}\right\} B L
$$

Wee kneel IBUP

$$
u=f(v, y, t, v)
$$

Bimenswoul analysin: $x / \sigma=f(\eta)$

$$
\eta=\text { non dimensuil } \quad y=y / 2 \sqrt{v t}
$$

distame (2 for elgetraic convencence)
Dumenswority uluel from $2(y, t)$ to $1(\eta)$ ant sumblary solution ie pde \rightarrow ode

$$
y_{t}=\frac{2}{2 \sqrt{2}}\left(-\frac{1}{2} t^{-\frac{1}{2}}\right)
$$

$$
=\frac{-\sqrt{4}}{\sqrt{10}}\left(t^{-1 / 2} t\right)
$$

$$
=-\eta / 2 t
$$

$$
\begin{aligned}
& u_{t}=v F_{t}=U F^{\prime} \eta_{t}=-U F^{\prime} \eta / 2 t \quad F^{\prime}=F_{\eta} \\
& x_{y}=U F y=U F^{\prime} / z \sqrt{d t} \\
& x y y=\frac{\pi}{2 \sqrt{v t}} F^{\prime \prime} \eta_{y}=\frac{U}{4 v t} F^{\prime \prime} \\
& \begin{aligned}
-2 \eta f^{\prime} & =F^{\prime \prime} \\
\frac{d f^{\prime}}{f^{\prime}} & =-2 \eta d \eta
\end{aligned} \\
& \ln F^{\prime}=-y^{2}+\operatorname{anstan} t \quad e^{x+y}=e^{x} e^{y} \\
& F^{\prime}=A e^{-\eta^{2}} \\
& f(\eta)=A \int_{0}^{\eta} e^{-y^{2}} d \eta+\sqrt{5}
\end{aligned}
$$

$$
\begin{array}{rl}
F(0)=1 & =A \int_{0}^{0} e^{-\eta^{2}} d y+B \\
B & =1 \\
F(\infty) & =0=A \int_{0}^{\infty} e^{-\eta^{2} d y+1} \\
& =\frac{A \sqrt{\pi}}{2}+1 \\
A & =-2 / \sqrt{\pi} \\
F=1-\frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\eta^{2} d \eta} \\
F & e r f(\eta) \\
x / v=1-\operatorname{erf}\left(\frac{y}{2 \sqrt{v t}}\right)
\end{array}
$$

$\omega(0,0)=\infty$ delter funation vintex shect $\omega(y, 0)=0$ due to arpulse motion $\int_{0}^{\infty} \omega d y \neq f(t)$ ie no new w after $t=0$ imitial w defluser ontwavd unneasung flow width

$$
\begin{array}{r}
u / v=.05 \Rightarrow q=1.38 \\
S=2.76 \sqrt{v t}
\end{array}
$$

width of deflesion
loyer, whick uneose or \sqrt{t}

$$
\begin{aligned}
& \omega_{z}=-\frac{\partial u}{\partial y}=\frac{v}{2 \sqrt{v t}} F^{\prime}=\frac{v}{\sqrt{\pi \nu^{t}}} e^{--y^{2}} \\
& \tau_{y x}=\mu \frac{\partial u}{\partial y}=-\mu \omega_{z}
\end{aligned}
$$

$$
T_{y} \sqrt{\pi v t} / \mu v=-e^{-\eta^{2}}
$$

non diminstonl

$$
\begin{aligned}
\overline{L g}_{y}(0)=-\mu v / \sqrt{\pi v t}= & \infty \rho t=0 \\
& \alpha 1 / \sqrt{t} \neq>0
\end{aligned}
$$

Wote: evf $(\eta) \sim y^{-1} e^{-\eta^{2}} \ngtr \rightarrow \infty$
Bo influeuce plete extende to os abict ixponentull smel

$$
\eta(u / v=.01)=1.8=5 / 2 \sqrt{v t}
$$

$\delta(2 / 0=. \Delta 1)=3.6 \sqrt{v t}$ effuhion dirtonce ie effecter μ / V

$$
\text { for } t=1 \text { min air }=10.8 \mathrm{~cm}
$$ within δ at madependt U

$$
\begin{aligned}
& V_{\text {air }}=.15 \mathrm{~cm}^{2} / \mathrm{s} \\
& V_{\text {watr }}=. \Delta 1 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

$$
\omega_{0}+2=2.8 \mathrm{~cm}
$$

	Stoker (1851)
Roylegh $(1511) \quad z=x / v_{0} \quad \tau=\frac{\mu v_{0}}{\sqrt{\pi \nu}} \sqrt{\frac{v_{0}}{x}}=\frac{\mu v_{0}^{3 / 2}}{\sqrt{\pi v}} x^{-1 / 2}$	

Beasins

$$
\begin{array}{ll}
\omega=u y=\frac{v}{\sqrt{\pi / t}} e^{-y^{2}} & y=y / 2 \sqrt{v t} \\
\omega(0,0)=\frac{1}{0} e^{0}=\frac{1}{0}=\infty & \eta^{2}=\frac{y^{2}}{4 / t}
\end{array}
$$

unill win as $y=0$

$$
A=0 \quad y>0 \quad \omega(y, 0)=0 \quad y^{2}(0,0)=\frac{0}{0}=\left.\frac{2 y}{y y}\right|_{y=0}=0
$$

$\omega=$ Garssion with width mueare \sqrt{z} H mox value dencae $1 / \sqrt{z}$

Total amont untug

$$
\int_{-\infty}^{\infty} \omega d y=2 \sqrt{v t} \int_{-\infty}^{\infty} \omega d y=\frac{2 v}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^{2}} d y=2 u
$$

$$
\therefore \text { no new }
$$

antry
$\begin{array}{ccc}\cosh & =g \text { ntogh mall }\end{array}$
delta function ω
inill valy scopy dflusen
ontwort resuehy in unver flow width

$$
\begin{aligned}
& \omega(y, 0)=\frac{2}{0} e^{-\frac{y^{2}}{0}}=\frac{8}{0} \\
& =\frac{t e^{-7^{2}}(-2 y)}{\sqrt{\pi \nu}\left(\frac{1}{2} t^{-1 / 2}\right)} \\
& y=\frac{y}{0}=\infty \\
& y^{2}=\frac{y^{2}}{0}=\infty \\
& \begin{aligned}
=\frac{v e^{-\eta^{2}}(-2 y) 2 \sqrt{z}}{\sqrt{\pi v}} & =v e^{-\eta^{2}}\left(-\frac{2 y}{2 \sqrt{v t}}\right) 2 \sqrt{t} \\
& =01
\end{aligned} \\
& \Delta \Delta 1
\end{aligned}
$$

Vorticity profile (water property)

Diffusion vortex sheet

First recall potential flow solution for vortex sheet. The point vortex singularity is important in aerodynamics, since, their distributions can be used to represent airfoils and wings. To see this, consider as an example of an infinite row of vortices:
$\psi=-K \sum_{i=1}^{\infty} \ln r_{i}=-\frac{1}{2} K \ln \left[\frac{1}{2}\left(\cosh \frac{2 \pi y}{a}-\cos \frac{2 \pi x}{a}\right)\right]$
Where r_{i} is radius from origin of $\mathrm{i}^{\text {th }}$ vortex.

Superposition infinite row equally spaced vortices of equal strength

For $|y| \geq a$ the flow approaches uniform flow with
$u=\frac{\partial \psi}{\partial y}= \pm \frac{\pi K}{a}$
+: below x axis
-: above x axis
Note: this flow is just due to infinite row of vortices and there isn't any pure uniform flow

Potential Flow Vortex sheet:

From afar (i.e. $|y| \geq a$) looks like a thin sheet with velocity discontinuity.

Define $\gamma=\frac{2 \pi K}{a}=$ strength of vortex sheet
$d \Gamma=\underline{V} \cdot d \underline{s}$ (around closed contour)
$d \Gamma=u_{l} d x-u_{u} d x=\left(u_{l}-u_{u}\right) d x=\frac{2 \pi K}{a} d x$
i.e. $\gamma=\frac{d \Gamma}{d x}=$ Circulation per unit span

Note: There is no flow normal to the sheet so that vortex sheet can be used to simulate a body surface. This is the basis of airfoil theory where we let $\gamma=\gamma(x)$ to represent body geometry.

Diffusion of a voter sleet

Figure 9.11 Viscous decay of a vortex sheet. The right panel shows the nondimensional solution and the left panel indicates the vorticity distribution at two times.

$$
\begin{aligned}
& u t=v u_{y} y \\
& u(y, 0)=U \operatorname{sgn}(y) \\
& u(-\infty, t)=v \\
& u(-\infty, t)=-v
\end{aligned}
$$

Some an Stohemet
intel w defleses $\quad u / v=F(\eta) \quad \eta=y / 2 \sqrt{v t}$ away from $y=0$

$$
\omega=-\frac{\partial u}{\partial y}=-\frac{\sigma}{\sqrt{\pi \sqrt{2}}} e^{-y^{2} / 4 v t}
$$

$$
F^{\prime \prime}=-2-j F^{\prime}
$$

Gaussion with wrath
$F(\omega)=1$

$$
F(-\infty)=-1
$$

no de: $\frac{d}{d y} \operatorname{erf}(y)$ uneaten \sqrt{E}

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} \omega d y=2 \sqrt{v t} \int_{-\infty}^{\infty} \omega d y & F(\eta)=\operatorname{erf}(\eta) \\
=\frac{2 \pi}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^{2} d y} \quad u=v \operatorname{erf}(\eta) & \eta= \pm .95 v \\
=2 \tau \neq f(t) d \text { y megegintlu } \omega & \delta= \pm 5.52 \sqrt{v t}
\end{array}
$$

$$
\mu: 0.001 \mathrm{~kg} / \mathrm{m} \mathrm{~s}
$$

$$
\rho: 1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
v: 1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
$$

$$
U=1 \mathrm{~m} / \mathrm{s}
$$

$$
u=\operatorname{Uerf}\left(\frac{y}{2 \sqrt{v t}}\right)
$$

Velocity profile (water property)

Vorticity profile (water property)

Decay of an wet le arortex: Open Vortex

Figure 9.7 Rotation of a solid cylinder of radius R in an infinite body of viscous fluid. The shape of the free surface is also indicated. The flow field is viscous but irrotational.

$$
u_{\theta}=\Omega r^{2} / r=\frac{n}{2 \pi r} \quad \Gamma=2 \pi \Omega k^{2}
$$

Inctitand inter. $E_{r o}=\mu\left[r \frac{\partial}{\partial v}\left(\frac{v_{0}}{v}\right)+\frac{1}{v} \frac{\partial \mu_{v}}{\partial v}\right]$
Work done per unA huput $=\frac{-2 \mu \Omega R^{2}}{r^{2}}$

$$
=\left.2 \pi R \tau_{v_{\theta}} u_{\theta}\right|_{v=R}
$$

$$
=2 \pi R(2 \mu \Omega)(\Omega R)=4 \pi \mu R^{2} \Omega^{2}
$$

= viscous dinipution such ht there in no net fore at a point

Suppose $r \rightarrow 0$ while Ω p such tut $\Gamma=2 \pi \Omega R^{2}$ is undo donged. In de dunant we haver a potent il tie savorer with ampulay at the origin

Exercise 9.15. Consider a solid cylinder of radius a, steadily rotating at angular speed Ω in an infinite viscous fluid. The steady solution is irrotational: $u_{\theta}=\Omega a^{2} / R$. Show that the work done by the external agent in maintaining the flow (namely, the value of $2 \pi R u_{\theta} \tau_{r \theta}$ at $R=a$) equals the viscous dissipation rate of fluid kinetic energy in the flow field.

Solution 9.15. Using the given velocity field, the shear stress is:

$$
\tau_{R \varphi}=\mu R \frac{\partial}{\partial R}\left(\frac{u_{\varphi}}{R}\right)=\mu \Omega a^{2} R \frac{\partial}{\partial R}\left(\frac{1}{R^{2}}\right)=-2 \mu \Omega a^{2} \frac{1}{R^{2}} .
$$

The work done per unit height $=\left\{2 \pi a \tau_{R \varphi} u_{\varphi}\right\}_{R=a}=2 \pi a \cdot 2 \mu \Omega \cdot \Omega a=4 \pi \mu a^{2} \Omega^{2}$.
From (4.58) the viscous dissipation rate of kinetic energy per unit volume for an incompressible flow is $\rho \varepsilon=2 \mu S_{i j} S_{i j}$, where ε is the viscous dissipation of kinetic energy per unit mass. For the given flow field there is only one non-zero independent strain component:

$$
S_{R \varphi}=S_{q R}=\frac{R}{2} \frac{\partial}{\partial R}\left(\frac{u_{\varphi}}{R}\right)=\frac{\Omega a^{2}}{2} R \frac{\partial}{\partial R}\left(\frac{1}{R^{2}}\right)=-\Omega a^{2} \frac{1}{R^{2}} .
$$

Therefore:

$$
\rho \varepsilon=2 \mu S_{i j} S_{i j}=2 \mu\left(S_{R \varphi}^{2}+S_{\varphi R}^{2}\right)=4 \mu \Omega^{2} \frac{a^{4}}{R^{4}},
$$

so the kinetic energy dissipation rate per unit height is:

$$
\int_{a}^{\infty} \rho \varepsilon 2 \pi R d R=8 \pi \mu \Omega^{2} a^{4} \int_{a}^{\infty} \frac{1}{R^{3}} d R=4 \pi \mu \Omega^{2} a^{2}
$$

which equals the work done turning the cylinder.

Wext, suppoon (mpaty smale $\sqrt{ }$ o fut Ω cyhaden) suddenf stoper sofatng A t $t=0$; hereh. cealuey the velo of at $r=0$ to gewo umpelswey. Nen be fluil wordel slow lown due to visiars dfpeswon ie vincus deear of a lna artex. Encular onolog of de defprisan of a vortax sheet

$$
\begin{aligned}
& u_{o_{t}}=v \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{0}\right)\right] \\
& u_{0}(r, \theta)=\Gamma / 2 \pi r \\
& u_{0}(0, t)=0 \\
& u_{0}(\infty, t)=r / 2 \pi r
\end{aligned}
$$

Aswane $u^{\prime}=\frac{u_{0}}{\Gamma / 2 \pi r}=\underbrace{f(r, t, v)}=F(\eta) \quad y=\frac{v^{2}}{4 v t}$ munt be noxdmen soud
expent similary sunce
$r \lambda t$ hove no haturl sealn
from $B<j A$ elemmate $\Gamma / 2 \pi r$ via honchmensural Ua wota y in spure of farm und pr Strones 1 it publem. Susstide x^{\prime} uta GDE

$$
\begin{aligned}
& F^{\prime \prime}+F^{\prime}=0 \\
& F(0)=1 \\
& F(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& u_{\theta}=\frac{r}{2 \pi r} u^{\prime}=\frac{r}{2 \pi r} F(y) \quad \eta=\frac{r^{2}}{4 v t}=\frac{r^{2}}{y r} t-1 \\
& \eta_{t}=\frac{-v^{2}}{40} t^{-2} \\
& \eta v=\frac{2 v}{4 v t}=\frac{r}{2 v t} \\
& u_{\theta \neq}=\frac{r}{2 \pi r} F^{\prime}\left(\frac{-v^{2}}{\| v t^{2}}\right) \\
& =-\frac{r r}{8 \pi v t^{2}} F^{\prime} \\
& r u_{2}=\frac{\Gamma}{2 \pi} F \quad \frac{\partial}{\partial r}\left(r u_{0}\right)=\frac{r}{2 \pi} F^{\prime} \frac{r}{2 v_{t}}=\frac{\Gamma r}{4 \pi v_{z}} F^{\prime} \div r=\frac{r}{4 \pi v t} f^{\prime} \\
& \frac{\partial}{\partial r}\left[\frac{1}{v} \frac{\partial}{\partial r}\left(\left(n_{v}\right)\right]=\frac{r}{4 \pi \nu_{t}} F^{\prime \prime} \frac{r}{2 \mu t}=\frac{r r}{\frac{r \gamma^{2} t^{2}}{} F^{\prime \prime}}\right. \\
& \frac{-r_{r}}{8 \pi r t^{2}} F^{\prime}=\frac{\Gamma r}{8 \pi r t^{2}} F^{\prime \prime} \quad F^{\prime \prime}+F^{\prime}=0 \\
& \frac{f^{\prime \prime}}{f^{\prime}}=-1 \quad \frac{\frac{d}{d q}\left(F^{\prime}\right)}{F^{\prime}}=-1 \\
& \frac{d F^{\prime}}{F^{\prime}}=-d y \\
& \ln f^{\prime}=-\eta+c \\
& F(\infty)=1 \quad F^{\prime}=c e-y \\
& F(0)=0 \quad c+0=0 \quad F=c e-y+D \\
& 6=-2 \quad F=1-e-\eta \\
& x_{\theta}=\frac{\Gamma}{2 \pi r}\left[1-e^{-\frac{r^{2}}{4 v t}}\right]
\end{aligned}
$$

$$
\begin{aligned}
F & =1-e=\eta \\
u_{\theta} & =\frac{\Gamma}{2 \pi v}\left[1-e^{-r^{2} / t v t}\right] \\
\text { in this are } \eta=\frac{r}{\sqrt{v t}} & =\frac{r}{2 \pi \sqrt{v t}}\left(\frac{1}{\eta}\right)\left[1-e x p\left(-\frac{1^{2}}{4}\right)\right]
\end{aligned}
$$

One of fores A anther NA satupp
WS epartioms. Another is he Taylor vortex

$$
w_{0}=\frac{H}{8 \pi} \frac{r}{\sqrt{t^{2}}} \exp \left(-\frac{r^{2}}{y r t}\right)
$$

$H=$ amount of angular momentum in de vortex, what in wite for seen sutex

Oren

$$
v^{*} \alpha u \theta / \sqrt{t}
$$

Tiyfar

$$
v^{4} \propto u_{0} / t^{-3 / 2}
$$

$$
y=v / \sqrt{v t}
$$

Figure 11.8 Profiles for Oseen and Taylor vortices in similarity variables. For the Oseen vortex, $V^{*} \propto v_{\theta} / t^{-1 / 2}$, while for the Taylor vortex, $V^{*} \propto v_{\theta} / t^{-3 / 2}$. In each case $\eta=r / \sqrt{v t}$.

Figure 9.12 Viscous decay of a line vortex showing the tangential velocity at different times.
for $r \ll 2 \sqrt{v z}$ nyd ly notritwon
$r \gg 2 \sqrt{v z}$ unotitions Notex

Hetumatary, a correspang sobtion con te obdrad for a lue vortex sudder unpoost on a flut at ent. Impoulsoe stant of unfanty smele $r e f t r$ eflinh. In tive care

$$
u_{\theta}=\frac{\Gamma}{2 \pi r} e^{-r^{2} / 4 r t}
$$

Fr de Osean vortax

$$
\omega_{z}=\frac{1}{r} \frac{\partial}{\partial v}(r u s)=\frac{\Gamma}{4 \pi r t} \operatorname{sep}\left(-\frac{\eta^{2}}{4}\right) \quad y=\frac{r}{\sqrt{t}}
$$

ie Gaussion bell curve prople A esh instant.

Figure 11.7 Viscous decay of an ideal vortex: (a) velocity profiles and (b) vorticity profiles at corresponding times. Scales are arbitrary.

Wher $\omega_{z} \neq 0$ flow is vescons, whee an where $\omega_{z}=0$ if remane the crephel poterte flaw andex. Iteyst fle of an t^{-1} i wisth maceser by roveren efturnon $\sqrt{v t}$

$$
w_{0} d e: \int_{0}^{\infty} \omega_{z} 2 \pi r d r=T
$$

Soluturn usefal eatumete decag 7
whing/poppelen tup voticen, expecedy if V_{t} mal

Squire (1965)
$v_{t}=f\left(R_{\text {artex }}=r / v=\frac{2 \pi r v_{0}}{v}\right)$
decog trane $t=\frac{z-z_{0}}{U} \quad \Delta z=z-z_{0}$ distance

$$
U=\text { alvaft tehl wing }
$$

$u_{\theta_{\text {max derng }}} \propto z^{-1 / 2}$ spead
core groon $\alpha z^{1 / 2} \quad z_{0}=$ effethe origins

Alternatire devivation vurcous dery line avotex Similary srlutione:

$$
y=H t^{-n} F(\xi / S(t))=H t^{-n} F(\eta)
$$

a

$$
\gamma=A \zeta^{-n} F(\zeta / \delta(t))=A \zeta^{-n} F(y)
$$

$\psi=$ Lependent fies ararlube, eg, velo ey componat $A=$ constat $\delta x t^{n} n \not \approx \times \xi^{n}$
$\zeta=$ indepenet spatial vaviable
$z \equiv \operatorname{tin}$ e
$y=5 / \delta=$ Sumilaig vavcoble
$S(t)=$ thine dupendit length scole
$A t^{-n}$ or $A \xi^{-n} \times F$ neodel when solutum
re anputi or jew $+t r s=0$

Thin spualy spening oylimeler $u_{\theta}=\Gamma / 2 \pi r$ ie whal arotex strangth Γ lecatal $r=0$. It $t=0$ cylmer stope spunig.

$$
\begin{aligned}
& u_{\theta}(r, t)=A r^{-n} f(r / \delta(t))=A r^{-n} F(\eta) \\
& u_{\theta}(r, 0)=\Gamma / 2 \pi r=u_{\theta}(r \rightarrow \infty, t) \\
& u_{\theta}(0, t)=0 \quad t>0
\end{aligned}
$$

i. $F(\eta-\infty)=1 \quad A \quad F(0)=0 \quad A r^{-n}=\Gamma / 2 \pi V$

$$
\begin{aligned}
& \frac{\partial u_{0}}{\partial t}=v \frac{\partial}{\partial r}\left(\frac{1}{v} \frac{\partial}{\partial v}\left(r u_{\theta}\right)\right) \quad u_{\theta}=\left(\frac{n}{2 \pi r}\right) F(\eta) \quad y=r / \delta(t) \\
& \eta_{t}=-r / s^{2} \delta_{t} \\
& \frac{\partial u_{0}}{\partial t}=\frac{r}{2 \pi r} F^{\prime}\left(-\frac{r}{\delta^{2}}\right) \quad \delta_{t}=-\frac{r}{2 \pi r}\left(\delta^{-1} \delta_{z}\right) \eta F^{\prime} \quad \frac{\partial u_{\theta}}{\partial v}=-\frac{r}{2 \pi r^{2}} F \\
& r u_{\theta}=\frac{\Gamma}{2 \pi} F \quad \frac{\partial}{\partial r}\left(r u_{\theta}\right)=u_{0}+\frac{r}{2 \pi}\left(F^{\prime} / \sigma-F / v\right)+\frac{r}{2 \pi r} F^{\prime} \delta^{-1} \\
& \frac{\partial}{\partial r}\left(u_{u} / r+\frac{r}{2 \pi r}\left(F^{\prime} / \delta-F / r\right)\right) \quad=\frac{r}{2 \pi r}(F / / s-F / v) \\
& \frac{\partial}{\partial r}\left(\frac{r}{2 \pi r 2} f+\frac{r}{2 \pi r}\left(F^{\prime} \sigma^{-1}-5(1)\right)\right. \\
& \frac{C}{2 \pi} \frac{0}{3 i}\left(F^{\prime} / 65\right)=\frac{r}{2 k}\left[\frac{1}{\sqrt{5^{2}}} F^{\prime \prime}-F^{\prime} / \sqrt{2 g}\right] \\
& -\frac{\Sigma}{2 \pi r}\left(\frac{1}{\delta} \delta_{t}\right) \eta F^{\prime}=\frac{\nu \Sigma}{2 \pi}\left[\frac{1}{1 \delta^{2}} F^{\prime \prime}-F^{\prime} / s^{25}\right] \\
& -\left[\frac{r^{2}}{r^{5}} \frac{d y}{d t}\right] \eta f^{\prime}=\frac{r^{2}}{\delta^{2}} F^{\prime \prime}-\frac{r}{s} F^{\prime} \quad \text { For similen } \quad[7=f(\eta) \\
& -\frac{73}{2} f^{\prime}=7^{2} f^{\prime \prime}-7 f^{\prime} \\
& \neq f(r, t) \\
& -\frac{\pi}{2} f^{\prime}+\frac{1}{7} F^{\prime}=F^{\prime \prime} \\
& \delta=\sqrt{\nu t} \\
& \left(\frac{1}{7}-\frac{1}{2}\right) F^{\prime}=\frac{d}{d \eta} F^{\prime} \\
& \delta_{t}=\frac{v^{1 / 2}}{2} t^{-1 / 2} \\
& \left(\frac{1}{\eta}-\frac{\eta}{2}\right) d \eta=\frac{d F^{\prime}}{F^{\prime}} \\
& \frac{r^{2}}{\sqrt{v^{*}} t^{1 / 2} \frac{v^{\prime \prime}}{2}} t^{-1 / 2}=\frac{v^{2}}{2 v t}=\frac{7^{2}}{2} \\
& \ln \eta-\frac{\eta^{2}}{\psi}+c=\ln F^{\prime} \\
& \exp \left(\ln y^{\psi}-\frac{\eta^{2}}{T}+c\right)=F^{\prime}=\eta e^{-\frac{\eta^{2}}{4}} c \\
& \text { c } \int \eta \exp \left(-\frac{12}{4}\right) d y+D=F(\eta) \\
& x^{2}=\frac{72}{4} \\
& F(\infty)=1 \quad-2 c e^{-y^{2} / 4}+D=F(\eta) \\
& 2 x d x=\frac{y}{2} d y \\
& F(0)=0 \quad-2 c+\Delta=0 \quad e=0 / 2 \\
& 4 x d x=y d y \\
& D=1 \\
& \int \eta \exp \left(-\frac{z^{2}}{y}\right) d \eta \\
& F=1-e^{-12 / 4} \\
& \begin{array}{l}
u_{\theta}=\left(\frac{\pi}{2 \pi / r}\right)\left(1-e^{-\pi^{2} / 4}\right)=\text { Gaussion virith } 4 \int x \operatorname{spp}\left(-x^{2}\right) d x \\
r \ll \delta \text { ugul bry rotation } \sigma^{2}=4 v_{t} \quad 4\left(-\frac{1}{2} e-x^{2}\right)
\end{array} \\
& r \gg \delta \text { whel vortex } \\
& -2 e^{-72 / 4}
\end{aligned}
$$

Dengy line vantax

Exercise 3.28. Starting from (3.29), show that the maximum u_{θ} in a Gaussian vortex occurs when $1+2\left(r^{2} / \sigma^{2}\right)=\exp \left(r^{2} / \sigma^{2}\right)$. Verify that this implies $r \approx 1.12091 \sigma$.

Solution 3.28. Differentiate the u_{θ} equation from (3.29) with respect to r and set this derivative equal to zero.

$$
\frac{d}{d r}\left(u_{\theta}(r)\right)=\frac{\Gamma}{2 \pi} \frac{d}{d r}\left(\frac{1-\exp \left(-r^{2} / \sigma^{2}\right)}{r}\right)=\frac{\Gamma}{2 \pi}\left(-\frac{1-\exp \left(-r^{2} / \sigma^{2}\right)}{r^{2}}-\frac{\exp \left(-r^{2} / \sigma^{2}\right)}{r}\left(-\frac{2 r}{\sigma^{2}}\right)\right)=0 .
$$

Eliminate common factors assuming $r \neq 0$.

$$
0=-1+\exp \left(-r^{2} / \sigma^{2}\right)+\left(2 r^{2} / \sigma^{2}\right) \exp \left(-r^{2} / \sigma^{2}\right)=-1+\left(1+2 r^{2} / \sigma^{2}\right) \exp \left(-r^{2} / \sigma^{2}\right)
$$

This can be rearranged to:

$$
\exp \left(r^{2} / \sigma^{2}\right)=1+2 r^{2} / \sigma^{2},
$$

which is the desired result. When $r / \sigma \approx 1.12091$, then

$$
\exp \left(r^{2} / \sigma^{2}\right)=3.51289 \text { and } 1+2 r^{2} / \sigma^{2}=3.51288
$$

which is suitable numerical agreement.

FIGURE 3.17 Irrotational vortex. The streamlines are circular, as for solid body rotation, but the fluid velocity varies with distance from the origin so that fluid elements only deform; they do not spin. The vorticity of fluid elements is zero everywhere, except at the origin where it is infinite.

Instead, real vortices combine elements of the ideal vortex flows described by (3.22) and (3.25). Near the center of rotation, a real vortex's core flow is nearly solid-body rotation, but far from this core, real-vortex-induced flow is nearly irrotational. Two common idealizations of the this behavior are the Rankine vortex defined by:

$$
\omega_{z}(r)=\left\{\begin{array}{cc}
\Gamma / \pi \sigma^{2}=\text { const. } & \text { for } r \leq \sigma \tag{3.28}\\
0 & \text { for } r>\sigma
\end{array}\right\} \quad \text { and } \quad u_{\theta}(r)=\left\{\begin{array}{ccc}
\left(\Gamma / 2 \pi \sigma^{2}\right) r & \text { for } & r \leq \sigma \\
\Gamma / 2 \pi r & \text { for } & r>\sigma
\end{array}\right\},
$$

and the Gaussian vortex defined by:

$$
\begin{equation*}
\omega_{z}(r)=\frac{\Gamma}{\pi \sigma^{2}} \exp \left(-r^{2} / \sigma^{2}\right), \quad \text { and } \quad u_{\theta}(r)=\frac{\Gamma}{2 \pi r}\left(1-\exp \left(-r^{2} / \sigma^{2}\right)\right) \tag{3.29}
\end{equation*}
$$

In both cases, σ is a core-size parameter that determines the radial distance where real vortex behavior transitions from solid-body rotation to irrotational-vortex flow. For the Rankine vortex, this transition is abrupt and occurs at $r=\sigma$ where u_{θ} reaches its maximum. For the Gaussian vortex, this transition is gradual and the maximum value of u_{θ} is reached at $r / \sigma \approx 1.12091$ (see Exercise 3.28).

Fluid Mechanics, $6^{\text {th }} \mathrm{Ed}=$ un proline no datwond S dud t Kundu, Cohen, and Dowling orfunty thin of fads not re dyhnade et $v=0$
Exercise 9.34. Suppose a line vortex of circulation Γ is suddenly introduced into a fluid at rest at $t=0$. Show that the solution is $u_{\theta}(r, t)=(\Gamma / 2 \pi r) \exp \left\{-r^{2} / 4 v t\right\}$. Sketch the velocity distribution at different times. Calculate and plot the vorticity, and observe how it diffuses outward.

Solution 9.34. The solution to this problem is very similar to the decay of a line vortex (see Example 9.8). In two-dimensional (r, θ)-polar coordinates, the governing equation is:

$$
\frac{\partial u_{\theta}}{\partial t}=v\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\theta}\right)\right)\right] .
$$

The boundary conditions on the velocity $u_{o}(r, t)$ are

$$
u_{0}\left(r, 0^{+}\right)=0, u_{0}(r, \infty)=\Gamma / 2 \pi r, \text { and } u_{0}(\infty, t)=0 .
$$

In this case the second boundary condition suggests a similarity solution of the form:

$$
u_{\theta}=\frac{\Gamma}{2 \pi r} f(\eta)=\frac{\Gamma}{2 \pi r} f\left(\frac{r}{\sqrt{v t}}\right)
$$

For this solution form the time and radial derivatives are:

$$
\begin{gathered}
\frac{\partial u_{\theta}}{\partial t}=\frac{\Gamma}{2 \pi r} \frac{d f}{d \eta} \frac{\partial \eta}{\partial t}=\frac{\Gamma}{2 \pi r} \frac{d f}{d \eta}\left(-\frac{\eta}{2 t}\right)=-\frac{\Gamma}{2 \pi r}\left(\frac{\eta}{2 t}\right) \frac{d f}{d \eta}, \frac{\partial\left(r u_{\theta}\right)}{\partial r}=\frac{\Gamma}{2 \pi} \frac{d f}{d \eta} \frac{\partial \eta}{\partial r}=\frac{\Gamma}{2 \pi} \frac{d f}{d \eta}\left(\frac{1}{\sqrt{v t}}\right), \text { and } \\
\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\theta}\right)\right)=\frac{\partial}{\partial r}\left(\frac{\Gamma}{2 \pi r} \frac{1}{\sqrt{v t}} \frac{d f}{d \eta}\right)=-\frac{\Gamma}{2 \pi r^{2}} \frac{1}{\sqrt{v t}} \frac{d f}{d \eta}+\frac{\Gamma}{2 \pi r} \frac{1}{v t} \frac{d^{2} f}{d \eta^{2}} .
\end{gathered}
$$

Reassemble the governing equation and divide out the common factor of $\Gamma / 2 \pi r$:

$$
-\left(\frac{\eta}{2 t}\right) \frac{d f}{d \eta}=-\frac{v}{r \sqrt{v t}} \frac{d f}{d \eta}+\frac{v}{v t} \frac{d^{2} f}{d \eta^{2}}=-\frac{1}{t}\left(\frac{1}{\eta} \frac{d f}{d \eta}-\frac{d^{2} f}{d \eta^{2}}\right)
$$

Multiply by t and put the second derivative on the left: $\frac{d^{2} f}{d \eta^{2}}=\left(-\frac{\eta}{2}+\frac{1}{\eta}\right) \frac{d f}{d \eta}$.
Integrate to find: $\ln \frac{d f}{d \eta}=-\frac{\eta^{2}}{4}+\ln \eta+$ const. Exponentiate $\frac{d f}{d \eta}=e^{\text {constr. }} \eta \exp \left\{-\eta^{2} / 4\right\}$ and integrate again:

$$
f=A+B \exp \left\{-\eta^{2} / 4\right\} .
$$

The constants A and B can be determined from the boundary conditions: $f(0)=1$, and $f(\infty)=1$; $A=0$, and $B=1$. Thus, the velocity field is:

$$
u_{\theta}(r, t)=\frac{\Gamma}{2 \pi r} \exp \left\{-\frac{r^{2}}{4 v t}\right\}
$$

In this flow the z component of the vorticity is the only non-zero component.

$$
-\omega_{z}(r, t)=\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}=\frac{\Gamma}{4 \pi v t} \exp \left\{-\frac{r^{2}}{4 v t}\right\}=\frac{\Gamma}{4 \pi v t} \exp \left\{-\frac{\eta^{2}}{4}\right\} .
$$

The plot above shows ω_{z} (vertical axis) vs. r (horizontal axis) at four different times. With increasing time, the vorticity ar $r=0$ decreases but it spreads outward in the radial direction.

Stohe 1st: mpulere plete mosion

$$
\begin{gathered}
u=\sigma(1-c v f(\eta)) \quad \eta=y / 2 \sqrt{v t} \quad \eta \gamma=\frac{7}{2 \sqrt{v t}} \\
\omega_{z}=-u_{y}=\frac{\tau}{\sqrt{\pi \cdot v}} e-y^{2}=\omega_{z}(y, t) \quad \frac{d}{d y}(e v f y)=\frac{2}{\sqrt{\pi}} e^{-y^{2}} \\
\omega_{z}=f(y, t): \quad \omega_{z}(0,0)=\infty \quad \omega_{t}(y, 0)=0 \\
u / v=.05 \Rightarrow \eta=1.38 \quad \omega_{z}(0, t>0)=v / \sqrt{\pi v t} \\
\delta=2.76 \sqrt{v t} \quad \omega_{z}(q>0, z>0)=\frac{\sigma}{\sqrt{\pi / t}} e^{-y^{2}}
\end{gathered}
$$

D.fpeston Vouter sheast

Sininar Storer 1 st

$$
u=\pi \operatorname{erf}(\eta) \quad y=y / 2 \sqrt{v t}
$$ an lemumar BL.

Some Condufine $\omega=-x_{y}=-\frac{\pi}{\sqrt{\pi / t}} e^{-\eta^{2}}$
(1) $u_{s}=v-v v^{2}$ w or Stratiot
(2) $y>0=$ temprowly

$$
\begin{aligned}
& \tau_{w}=\left.\mu u_{\gamma}\right|_{\gamma=0}=\frac{\mu v}{\sqrt{\pi J_{t}}} \\
& c_{t}=\frac{\tau_{w}}{\frac{1}{2} e v^{2}}=\frac{2}{\sqrt{\pi}} \sqrt{\frac{J}{v^{2} t}}
\end{aligned}
$$ deveng BL with irrstulul unuprom streom fav from wel

$U E=x$ in syxtielf davelorg $B L$
Such the $\sqrt{\frac{v}{v^{2}-1}}=\left(\frac{v}{\sigma_{x}}\right)^{1 / 2}=\operatorname{la}_{x}^{-1 / 2}$

$$
u= \pm .95 v \quad 7= \pm 1.36 \quad S=5.52 \sqrt{\nu t}
$$

$$
\begin{aligned}
c_{t}=\frac{\tau_{w}}{\frac{1}{2} e v^{2}} & =\frac{2}{\sqrt{\pi}} \sqrt{\frac{v}{v^{2} t}} \quad t=\frac{x}{v} \\
& =\frac{2}{\sqrt{\pi}} R_{x}-1 / 2 \\
& =1.13 \operatorname{Rex}^{-1 / 2}
\end{aligned}
$$

Blafurs: $c_{f}=.664 \mathrm{Rex}_{\mathrm{x}}^{-1 / 2}$

Decery ides line verter: Oseen vortex

$$
\begin{aligned}
& \omega_{z}=f(r, t) \\
& \omega_{z}(0,0)=\frac{1}{0}=\infty \\
& \omega_{z}(r, 0)=0 \quad \omega_{z}(0, z>0)=\frac{r}{4 \pi v t}
\end{aligned}
$$

Some behavior Stoter itt

$$
\text { rapt } \alpha t-1
$$

$$
\sim 2 \neq-1 / 2
$$

Impalses line rontx

$$
u_{0}=\frac{n}{2 \pi v} e^{-\frac{v^{2}}{4 w}}
$$

$$
\omega_{t}=-\frac{\Gamma}{4 \pi \sqrt{4}} e^{-\eta 2 / 4} \text { Some cornchusins dect }
$$ in wpulsie an storsel wh lfieism anter sheet

$$
\begin{aligned}
& u_{0}=\frac{\Gamma}{2 \pi v}\left[1-e^{-\frac{v_{2}}{\alpha j t}}\right]=\frac{\Gamma}{2 \pi \sqrt{v t}}\left(\frac{1}{7}\right)\left[1-e^{-\frac{\gamma^{2}}{4}}\right] \\
& \eta=r / \sqrt{v t} \quad 7 r=1 / \sqrt{v} t \\
& \omega_{z}=\frac{1}{4} B r\left(r u_{e}\right) \quad r u_{e}=\frac{r}{2 \pi}\left(1-e^{-\eta^{2} / 4}\right) \\
& =\frac{\Gamma}{4 \pi v t} e^{-7^{2} / 4} \quad \frac{3}{3 v}\left(v u_{0}\right)=-\frac{r}{2 \pi}\left(e^{-42 / 4}\right)\left(-\frac{2 \pi}{4} \times \frac{1}{\sqrt{v k}}\right) \\
& =\frac{r}{2 \pi} \frac{\pi}{2 \sqrt{v}}<-T^{2} / 4
\end{aligned}
$$

$$
\begin{gathered}
u_{\theta}(0,0)=\infty \\
u_{\theta}(0, t)=0 \\
u_{\theta}(\infty, t)=\frac{\Gamma}{2 \pi r} \rightarrow 0
\end{gathered}
$$

$$
\begin{gathered}
\omega_{z}(0,0)=\infty \\
\omega_{z}(0, t)=\frac{\Gamma}{4 \pi v t} \\
\omega_{z}(\infty, t)=0
\end{gathered}
$$

$$
\begin{aligned}
& u_{\theta}(0,0)=\infty \\
& u_{\theta}(0, t)=\infty \\
& u_{\theta}(\infty, t)=0
\end{aligned}
$$

Width of diffusion layer as a function of time: viscous decay of an ideal vortex

$$
\begin{gathered}
u_{\theta}=\frac{\Gamma}{2 \pi r}\left(1-e^{-\frac{r^{2}}{4 v t}}\right) \\
\frac{u_{\theta}}{\frac{\Gamma}{2 \pi r}}=0.95=1-e^{-\frac{r^{2}}{4 v t}} \\
0.05=e^{-\frac{r^{2}}{4 v t}} \\
\log (0.05) \sim-3.0=-\frac{r^{2}}{4 v t} \\
r \sim \sqrt{12 v t}=3.46 \sqrt{v t}
\end{gathered}
$$

Width of diffusion layer as a function of time: Line vortex suddenly introduced into fluid at rest

$$
\begin{gathered}
u_{\theta}=\frac{\Gamma}{2 \pi r} e^{-\frac{r^{2}}{4 v t}} \\
\frac{u_{\theta}}{\frac{\Gamma}{2 \pi r}}=0.95=e^{-\frac{r^{2}}{4 v t}} \\
0.95=e^{-\frac{r^{2}}{4 v t}} \\
\log (0.95) \sim-0.05=-\frac{r^{2}}{4 v t} \\
r \sim \sqrt{0.2 v t}=0.45 \sqrt{v t}
\end{gathered}
$$

$\dot{\delta} \rightarrow 0$ as $t \rightarrow \infty$, i.e., rate of diffusion decreases over time

Barges Vatex

The line aratex whures speoty con de concelet I supaposy a sodech nflow tinoarde te are as a steod flow odtimel

Cusale a $u_{0}(r)$ wihe x ir along z axin a to din flow a symmetric moblel unflow is osdel

$$
u_{v}=-a r \quad a=\text { strength }
$$

o Audul flow
Ar ir undoundel at oo johur, envrent stutan in loce flow har swele v

Figure 11.11 Burgers vortex.
cintunty $\frac{\partial u_{t}}{\partial z}=-\frac{1}{v} \frac{\partial}{\partial v}($ rur $)=2 a$

$$
u_{z}=2 a z
$$

(ur, uz) $=$ exisymmetric muisal flow toward stagnation pat A origin

Strain ater $\Sigma_{u r}=\Sigma_{\theta \theta}=-a$ a $\varepsilon_{z z}=z_{a}$ vortex in stretchel clong ith uxis ot rote a

Hrume $u_{\theta}=u_{0}(v)$ orf

$$
\begin{align*}
& v \frac{d}{d v}\left[\frac{1}{r} \frac{d}{d v}\left(r u_{0}\right)\right]=-a v \frac{d u_{c}}{d r} \tag{1}\\
& u_{\theta}(0)=0 \quad u_{\theta}(\infty)=\frac{r}{2 \pi r}
\end{align*}
$$

change varubber using reduch cusoleturn

$$
y=f=\frac{2 \pi r u s}{\Gamma}
$$

(1) becomen $-a \frac{d f}{d v}=v \frac{d}{d v}\left(\frac{1}{v} \frac{d f}{d v}\right)$
next, tronsform using similang warnble

$$
y=\frac{r}{\sqrt{v / 2 a}}
$$

$$
\begin{aligned}
& f^{\prime \prime}+\left(\frac{1}{2} \eta-\frac{1}{\eta}\right) f^{\prime}=0 \\
& f=1-\exp \left(-\frac{\eta^{2}}{t}\right) \\
& u_{v}=\frac{r}{2 \pi r}\left[1-\exp \left(-\frac{v^{2}}{2 v / a}\right)\right]
\end{aligned}
$$

votes are efptum in concellel alel wylow such tht flow in ster stote

Stoker $2^{\text {ul }}$ Problem: Oscablaty Pete

Figure 9.13 Velocity distribution in laminar flow near an oscillating plate. The distributions at $\omega t=$ $\pi / 2, \pi$, and $3 \pi / 2$ are shown. The diffusive distance is of order $\delta=4 \sqrt{\nu / \omega}$.

$$
\begin{aligned}
& x_{t}=v_{y} x_{y} \\
& u(0, t)=\frac{v}{v} \cos \omega t \\
& x(\infty, t)=0
\end{aligned}
$$

stealing state periobli solution

$$
u=e^{i \omega t} f(y) \quad f(y) \text { complex }
$$ $u=$ real RHS

equation with which has there constant Eefficentra efferemer $u(0, t)$
has exponential solution $f=e^{k-y} \quad s=\sqrt{i \omega / \nu}= \pm(i+1) \sqrt{\omega / 2 \nu} \quad i=\sqrt{-1}$ of jam

$$
\begin{aligned}
& \therefore \quad f=A e^{-(1+i) y \sqrt{\omega / 2 v}}+B e^{(1+i) y \sqrt{\omega / 2 v}} \\
& u=A e^{i \omega t} e^{-(1+i) y \sqrt{\omega} / 2 v} \quad u(\infty, t)=0 \\
& \Rightarrow B=0
\end{aligned}
$$

$$
\begin{gathered}
u(0, t)=v \cos \omega t \\
\Rightarrow A=v
\end{gathered}
$$

seal part: $u=v e^{-y \sqrt{\omega / 2 v}} \operatorname{Cn}\left(\omega t-y \sqrt{\frac{\omega}{2 v}}\right)$
Dompal osullaty motion y divection are peta
at $y=4 \sqrt{\nu / \omega} \quad u=v \exp (-4 / \sqrt{2})=.06 v$ orplitued
ie wree wnfluence confacl $\delta=4 \sqrt{\nu / \omega} \neq f(t)$ whic beceenen with ω defksion distouce Wote: $u / v=f(y, t, w, v)$

Dimonsume onalysir $u / v=F(\omega t, y \sqrt{\omega / v})$
Privies $\quad 3 \pi^{\prime} s$ a simileyf nat fossivee ic cen not le sombion y sepentelt, wheren smery yoltmest sepreental
 posewere umposel/speall ve Strine ist 5 unceuen \sqrt{t} dengenn time sexen. Stan
z^{4} al mistay stater lite $x y y>0$ ary $\Rightarrow x_{t}>0$ jaedeherpipe as mosmentum eanstenty deffuid outwnild fornt have inpul A 5 maven \sqrt{t} tinescaley. Stother $2^{4} u_{y} y$ i u_{t} orelely imp A momenten conpl enstats δ

4phare log velatre $y=0$
$\cos \left(\omega t-\sqrt{\frac{\omega}{2 j}} y\right)$ wre

$$
\begin{aligned}
& \sqrt{\frac{\omega}{2 \nu}}(\sqrt{2 v \omega} t-y)=\Lambda(2 t-y) \\
& r=\frac{2 \pi}{\lambda}=\omega \text { we mumber } \quad \lambda=\frac{2 \pi}{k}=\text { wrve levgth } \\
& \nu=m^{2} / \mathrm{s} \quad \partial / \omega=m^{2} \quad \lambda=2 \pi \sqrt{\frac{2 v}{\omega}}
\end{aligned}
$$

$$
\omega=1 / s
$$

Dampl inseans wine travely a.oor from the wrele. Estuct weer madion
$C=\sqrt{2 / \omega}=$ wore spuct delayelar esfore two $u_{m x}$ $\exp \left(-\sqrt{\frac{\omega}{2}} y\right)$ exponanting dampel

FIGURE 3-19
Stokes' secand problem: (a) flow above an oscillating infinive plate, Eq, (3-111); (b) an oscillating stream above a fixed plate, Eq. (3-112). Velocity profles shows for 30° incretsents over a half period.

Stoter 2 It provem can alfumatry be tronformel us flow aren fixel wrel due to usullet outh flons comel by constant pessure gesidient

$$
\begin{gathered}
p_{x}=e_{0} \omega \operatorname{smn} \omega t \\
e u_{t}=-p_{x} \quad \text { Ewlun egntion } \\
u_{t}=-p_{x} / e=-v_{0} \omega \sin \omega t \\
u=v_{0} \operatorname{con} \omega t \\
u=-v_{0} \sin (\omega t+\pi / 2) \text { leals } p_{x} y 90^{\circ} \\
e u_{t}=-p_{x}+\mu u_{y} \gamma \\
u(0, t)=0 \\
u(\infty, t)=v_{\text {scur }} \omega t
\end{gathered}
$$

Silution some an negatie preanes slution plus outer glow
$c=\tan -1 \mathrm{~g} / \mathrm{p}$ con de written an sungle wrre with defft anplithe o phaee Soution sthws hare le at $0, \pi$ [low monentum flut neas wall responots Ist to p_{x}

Stern F., Huang W. S., Jaw S. Y., "Effects of Waves on the Boundary Layer of a Surface-Piercing Flat Plate: Experiment and Theory", Journal of Ship Research, Vol. 33, No. 1, March 1989, pp. 63-80.

Chi, J.-E., Sreedhar, M., and Stern, F., "Stokes Layers in Horizontal-Wave Outer Flows," ASME J. Fluids Eng., Vol. 118, September 1996, pp. 537 - 545.

Paterson, E.G. and Stern, F., "Computation of Unsteady Viscous Marine-Propulsor Blade Flows - Part 1: Validation and Analysis," ASME J. Fluids Eng., Vol. 119, March 1997, pp. 145-154.

Paterson, E.G. and Stern, F., "Computation of Unsteady Viscous Marine-Propulsor Blade Flows - Part 2: Parametric Study," ASME J. Fluids Eng, Vol. 121, March 1999, pp. 139-147.

Adlitwiel deensswon Stoter 2 -1 kothem
(1)

$$
u=v e^{-y \sqrt{\omega / 2 \nu}} \underbrace{\cos (c t-y)]}_{\cos \left[\omega t-y \sqrt{\frac{\omega}{2 v}}\right)}
$$

vs. Strier
where viscores detheswn peretotor inte f(0) $\delta=2.26 \sqrt{v t}$
ie chompal viscous wore trove away from de wale. Wote hns effent of wele modon is delayed. When wrel motion chonges siqu (Zw chongensign) net arelution in flos stich in opposte direstion at ont aftu dive delar flos is be dent a revenser divertion
oscelaly onter glos

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=-\omega v_{0} \sin \omega t+\omega v_{0} e^{-y \sqrt{\omega / v}} \sin \left(\omega t-y \sqrt{\frac{\omega}{2 j}}\right) \\
& =-P_{x / e}+V u y y \\
& -p_{x} / e=-V_{0 \omega} \sin \omega t \\
& u_{y}=-v(-\sqrt{\omega / 2 \nu}) e^{-y \sqrt{\omega / 2 v}} \text { an }(\omega t-y \sqrt{\omega / 2 v}) \\
& +T e^{-y \sqrt{\omega / 2 v}}(-\sqrt{\omega / 2 v}) \sin (\omega t-y \sqrt{\omega / 2 v}) \\
& u_{y y}=-v\left(\frac{\omega}{2 \nu}\right) e^{-y \sqrt{\omega \nu}} \text { ar }(\omega t-y \sqrt{\omega / 2 \nu})+t e^{-y \sqrt{\omega}} \frac{\omega}{2 \nu}(\omega / 2 \nu) \sin (\omega t-y \sqrt{\omega / 2 \nu}) \\
& +\bar{v}\left(\frac{\omega}{\omega \nu}\right) e^{-y \sqrt{\omega \nu}} \sin (\omega t-y \sqrt{\omega} / \nu)+v e^{-y \sqrt{\nu}} \frac{\omega}{2 v}\left(\frac{\omega}{2 \nu}\right) \text { ar }(\omega t-y \sqrt{\omega / 2 \nu})
\end{aligned}
$$

 vesems dypusion ie have defperet trame scien. Visnows fowen ene not aborige dompt of ot :
4) μ leak to unstoly flet pete BL
(6) Moy 30 serweal BL have U Max withim BL.

Stokes' second problem: analysis of the extrema of the velocity field

Velocity field:

$$
U=U_{0} \cos (\omega t)-U_{0} e^{-\sqrt{\frac{\omega}{2 v}} y} \cos \left(\omega t-\sqrt{\frac{\omega}{2 v}} y\right)
$$

Assume $-\sqrt{\frac{\omega}{2 v}} y=x$

$$
\begin{gathered}
U=U_{0} \cos (\omega t)-U_{0} e^{x} \cos (\omega t+x) \\
\frac{d U}{d x}=-U_{0} e^{x} \cos (\omega t+x)+U_{0} e^{x} \sin (\omega t+x)=0
\end{gathered}
$$

Divide by $U_{0} e^{x}$:

$$
\begin{gathered}
-\cos (\omega t+x)+\sin (\omega t+x)=0 \\
\tan (\omega t+x)=1 \\
\omega t+x=\frac{\pi}{4}+k \pi \rightarrow x=\frac{\pi}{4}+k \pi-\omega t
\end{gathered}
$$

Where $k=0, \pm 1, \pm 2 \ldots \pm \infty$. Substitute back for $\sqrt{\frac{\omega}{2 v}} y$:

$$
-\sqrt{\frac{\omega}{2 v}} y=\frac{\pi}{4}+k \pi-\omega t
$$

The condition for the location of the extrema is:

$$
\sqrt{\frac{\omega}{2 v}} y=\omega t-\frac{\pi}{4}-k \pi
$$

Therefore, the velocity field has multiple local maxima/minima. For example, when $\omega t=$ 0 , the locations of the local extrema are:

$$
\sqrt{\frac{\omega}{2 v}} y=-\frac{\pi}{4}-k \pi
$$

i.e.,

$$
\sqrt{\frac{\omega}{2 v}} y=+\infty, \ldots, \frac{7}{4} \pi, \frac{3}{4} \pi,-\frac{\pi}{4},-\frac{5}{4} \pi,-\frac{9}{4} \pi, \ldots,-\infty
$$

For $k=-\infty, \ldots,-2,-1,0,1,2, \ldots,+\infty$.
The extrema for $\sqrt{\frac{\omega}{2 v}} y>2 \pi$ are difficult to see due to the damping effect of the exponential function.

If we only consider $0<\sqrt{\frac{\omega}{2 v}} y<6$, the local extrema are shown in the figure below.

For $-\frac{4}{6} \pi<\omega t<0$, the velocity field shows a local maximum, which moves towards smaller y when ωt increases its absolute value. For $-\pi<\omega t<\frac{4}{6} \pi$, the local maximum moves to negative values of y, i.e., a region which is not physically interesting. Therefore, the next extremum is a minimum, as shown in the figure.

1) The overshoot is located where the pressure gradient and viscous term have the same sign.
2) The y-location and amount of the overshoot depends on the value of ωt.
3) The y-location should depend on the travelling wave concept.
4) Explain the physics of the y-location and the amount of the maximum.
5) All of the above need to be compared with Panton's discussion.

Experction Ralardsome annystar efft, ie, velong wershoot

At $y=0, u_{t}=0 \quad \mathcal{- p _ { x }}$ bellonx $\nu x_{y} y$
Anarg from wrel virletz Juyy decay $e^{-y \sqrt{w / 2 v}}$
Intumelte region complex, sime V_{x} ustontonens A loggy has phase 2 ang $-y \sqrt{w / 2}$) lat wall phe loz $=0$ a temar concel). At smale y a later t vuyg perter as mimeratio inlues serelutuon u_{t}. At some clentance, de loy lavge emmyh nA $-p_{x} / e$ ar $v_{n y y}$ add smeh ont comain effat courer $u_{t}>-\varphi x / e$ alone. Alont hree cyole afte vayy ganaeth, wireores dfreswon caveval aw or or hen deenyent bit sidel stronge exough to ail yersue whe hor chougl dwection! comsintion ceuner rvershast!
wot relatar amindev.
Aroustix air wren naer wrele uncompensable with Stothen layen: $200 \mathrm{~Hz}, V=.15 \mathrm{~cm}^{2} / \mathrm{s}, S=$ $4.5(2 \mathrm{~J} / \omega)^{1 / 2}=1.5 \mathrm{~mm}$.

EXAMPLE 9.10

Show that $\dot{w}=$ the rate of work (per unit area) done on the fluid by the oscillating plate as balanced by $\dot{d}=$ the viscous dissipation of energy (per unit area) in the fluid above the plate

Solution

The rate of work (per unit area) done on the fluid by the moving plate is the product of the sherr stress on the fluid, τ_{av} and the plate velocity, $U \cos (\omega t)$:

$$
\dot{w}=\tau_{x} U \cos (\omega t)=-\mu(\partial u / \partial y)_{y-0}-U \cos (\omega t)
$$

The negative sign appears because the outward normal from the fluid points downward on $t=r$ surface of the plate. Differentiating (9.38) with respect to y, leads to:

$$
\frac{\partial u}{\partial y}=U \sqrt{\frac{\omega}{2 v}} \exp \left\{-y \sqrt{\frac{\omega}{2 v}}\right\}\left[-\cos \left(\omega t-y \sqrt{\frac{\omega}{2 v}}\right)+\sin \left(\omega t-y \sqrt{\frac{\omega}{2 v}}\right)\right]
$$

and evaluating the result at $y=0$ produces:

$$
\left(\frac{\partial u}{\partial y}\right)_{y=0}=U \sqrt{\frac{\omega}{2 v}}[-\cos (\omega t)+\sin (\omega t)] .
$$

Thus, the time-average rate of work (per unit area) done by the plate on the fluid is:

$$
\left.\bar{w}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \tau_{i v} U \cos (\omega t) d t=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega}-\mu U \sqrt{\frac{\omega}{2 v}}[-\cos (\omega t)+\sin (\omega t)] U \cos (\omega t) d t=\mu \frac{U^{2}}{2}\right\rangle \frac{\bar{u}}{\vdots}
$$

where $2 \pi / \omega$ is the period of the plate's oscillations.
From (4.58), the rate of dissipation of fluid kinetic energy per unit volume is $\tau_{i j} S_{j,}$, which reduces to $2 \mu S_{i j} S_{j j}$ for an incompressible viscous fluid. Thus, the time-average energy dissipation $=$ (per unit area) above the plate will be:

$$
\hat{\varepsilon}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \int_{0} 2 \mu S_{y} S_{i j} d y d t=\frac{\omega}{\pi} \mu \int_{0}^{2 \pi / \omega} \int_{0}^{\infty}\left(S_{\pi y}^{2}+S_{y \alpha}^{2}\right) d y d t=\frac{\omega}{2 \pi} \mu \int_{0}^{2 \pi / \omega} \int_{0}^{\infty}\left(\frac{\partial u}{\partial y}\right)^{2} d y d t .
$$

sance the only strain-rate component in this flow is $S_{x y}=S_{x y}=(1 / 2)(\partial u / \partial y)$. The final result is easiest to obtain by performing the time average first:

$$
\frac{\omega}{2 \pi} \mu^{2} \int_{0}^{2 \pi i \omega}\left(\frac{\partial u}{\partial y}\right)^{2} d t=\mu U^{2} \frac{\omega}{2 v} \exp \left\{-2 y \sqrt{\frac{\omega}{2 v}}\right\}
$$

This leaves the vertical integral:

$$
\bar{e}=\int_{0}^{\infty} \mu U^{2} \frac{\omega}{2 v} \exp \left\{-y \sqrt{\frac{2 \omega}{v}}\right\} d y=\mu U^{2} \frac{\omega}{2 v} \sqrt{\frac{\nu}{2 \omega}}=\mu \frac{L^{2}}{2} \sqrt{\frac{\omega}{2 v}}
$$

and this matches the time-averaged result for w. Thus, the average rates of work input and energy dissipation are equal. They are not instantaneously equal, so the fluid's kinetic energy per unit area) fluctuates, but it does not grow without bound.

Unsteady Fully Developed Pipe Flow

$$
\begin{aligned}
& u=u(v, t) \quad v=w=0 \\
& e u_{t}=-\hat{p}_{x}+\mu\left(u_{v v}+\frac{1}{v} u_{v}\right) \\
& f(t) \text { only }
\end{aligned}
$$

1. start flow (flied accelerates from rest under action of constant \hat{p}_{x})
no sem instil Lond. $u(r, 0)=0$
$\longrightarrow u(r, \infty)=u_{\max }\left(1-r^{2}\right)$ ie pavabricingipu no -sly and. $u\left(v_{0}, z\right)=0$

Solution fo $u=u-u(v, \infty)$ con le optainal by separation of variables.

$$
\begin{aligned}
& \frac{u}{u_{m+x}}=\left(1-r^{2}\right)-\sum_{n=1}^{\infty} \frac{8 J_{0}\left(\lambda_{n} r\right)}{\lambda_{n}^{3} J_{1}\left(\lambda_{n}\right)} \exp \left(-\lambda_{n}^{2} \frac{v_{t}}{v_{0}^{2}}\right) \\
& \hat{e}=\frac{r_{0}^{2}}{4 \mu}\left(-\hat{p}_{x}\right)
\end{aligned}
$$

FIGURE 3-14
Instantaneous velocity profiles for starting flow in a pipe, Eq. (3-102). [After Szymanski (1989).]

reav wroe on
(1) intief BL epfet oruvs a entval are voeclenter uni pormy
(2) $\underbrace{\text { In } t^{*}=.75}$ fans is essentull pervation $\left(t^{*}=\frac{v_{t}}{v_{0}^{2}}\right)$
con de wel to ectumate time for fros to semponel to sudden change an $f\left(\nu, r_{0}^{2}\right)$
smale r o lave
\checkmark develop
inpider
\therefore for lomimar sumee ro pipe flow with $\hat{p}_{x}=f(t)$ may we guaristerg ansumption.

$$
\begin{aligned}
& D=\operatorname{lem} \\
& V=1.5 E-5 \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& \text { air } \\
& t^{*}=.75 \\
& t=1.25 \mathrm{~s} \\
& m=34 \mathrm{mil} \\
& t=.06 \mathrm{~s}
\end{aligned}
$$

2. Usculltoy pipe flow

$$
-\frac{1}{e} \hat{\varphi} x=k e^{i \omega t} \quad e^{i \Delta t}=\ln \omega t+i \sin \omega t \quad i=\sqrt{-1}
$$

rooslip an stery asaletion cancletwon, ie, negect tronsuct/strnot up

$$
\begin{aligned}
& \frac{\sqrt{2}}{\pi z} \cos \left(z-\frac{\pi}{7}\right) \quad z \gg 1 \\
& v^{\prime}=r / s_{0} \underbrace{\omega^{\prime}=\frac{\omega v_{0}^{2}}{v}} u^{\prime}=u / u_{\max } \quad u_{\text {max }}=\frac{k v_{0}^{2}}{4 v} \& u \\
& \omega^{\prime}>\text { woro } \text { Rek }=\text { prometin Re } s t \tan \text { Poiseuille } \\
& \text { tronsituon turbulance }=\text { meocure vesicons flow } \hat{p}_{x}=-\rho k \\
& \text { effects in oculety foow } \\
& \text { reetal } \lambda_{s}=\frac{1}{2} \sqrt{\omega} \text { staren } \\
& \text { wing } J_{0}(z) \text { exponturme: } \alpha=\sqrt{\omega^{\prime}} \text { Womersey } \# \\
& \omega^{\prime} \ll 1 \quad u\left(\prime^{\prime}, t\right) / u_{\text {max }}=\left(1-v^{\prime 2}\right) a_{n} \omega t+\frac{\omega^{t}}{16}\left(v^{\prime 4}+4 v^{\prime 2}-5\right) \sin \omega t+O\left(\omega^{\prime 2}\right) \\
& \omega^{\prime} \gg 1 \\
& =\frac{4}{\omega^{\prime}}\left[\sin \omega t-\frac{e^{-B}}{\sqrt{r^{\prime}}} \sin (\omega t-B)\right]+O\left(\omega^{/ 2}\right) \\
& B=\left(1-v^{\prime}\right) \sqrt{\omega^{\prime} / 2}
\end{aligned}
$$

$\omega^{\prime} \ll 1$ sink $\hat{p}_{x} \propto \operatorname{con}_{\omega} t, \quad u \infty$ quasi station is Poisenge flow $1^{\text {st }}$ in phove slowr $2^{m} \operatorname{Lem}$ जary \hat{p}_{x}
eag whit saluen $\&$ velow : $1+y+4 y^{2}<-5$
$\omega \gg 1 \quad \omega_{1} \log \hat{p_{x}} \underset{z}{\pi / 2}$ \& $u_{ \pm}<u_{\max }$
Weat Aquave $\overline{2 r^{2}} / k^{2} /\left(2 \omega^{2}\right)=1-\frac{2}{\sqrt{r^{\prime}}} e^{-\beta}+\frac{e^{-28}}{\omega^{\prime}}$ $\omega^{\prime} \gg 1$ Hegution aveyce woule core cyle
Diverzhat oreuks when

$$
\cos B+\sin B=e^{-n}
$$

ie $B=2,2841$

$$
r^{\prime}=1-3,23021 / \sqrt{1}
$$

Speed mushout natio:

$$
\begin{aligned}
& \overline{u^{2}} /\left(y u^{2} \text { nige }^{2} \mid \omega^{2}\right)=\frac{\bar{u}^{2}}{k^{2} /\left(2 \omega^{2}\right)}=\underset{\text { The near-wall velocity overshoot }}{\text { FIGURE 3-15 }} \\
& 1.1+3685+\frac{.248820}{\sqrt{20}}+1 \\
& \text { (Richardson's annular effect) due to } \\
& \text { oscillating pressure gradient. } \\
& 0\left(w^{\prime}-1\right)
\end{aligned}
$$

treuthoot rehuces slughty an w' maeores form 100 to 2000
 $\omega^{\prime} u\left(v^{\prime}, t\right) / u \operatorname{mox} x$ aguation

The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number characterising the behavior of particles suspended in a fluid flow. The Stokes number is defined as the ratio of the characteristic time of a particle (or droplet) to a characteristic time of the flow or of an obstacle, or

$$
\text { Stk }=\frac{t_{0} u_{0}}{l_{0}}
$$

where t_{0} is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), u_{0} is the fluid velocity of the flow well away from the obstacle, and l_{0} is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness). ${ }^{[1]}$ A particle with a low Stokes number follows fluid streamlines (perfect advection), while a particle with a large Stokes number is dominated by its inertia and continues along its initial trajectory.

In the case of Stokes flow, which is when the particle (or droplet) Reynolds number is less than unity, the particle drag coefficient is inversely proportional to the Reynolds number itself. In that case, the characteristic time of the particle can be written as

$$
t_{0}=\frac{\rho_{p} d_{p}^{2}}{18 \mu_{g}}
$$

where ρ_{p} is the particle density, d_{p} is the particle diameter and μ_{g} is the fluid dynamic viscosity,[2]

Illustration of the effect of varying the Stokes number. Orange and green trajectones are for small and large Stokes numbers, tespectively. Orange curve is trajectory of particle with Stokes number less than one that follows the streamlines (blue), while green curve is for a Stokes number greater than one, and so the particle does not follow the streamlines. That particle collides with one of the obstacies (brown circles) at point shown in yellow.

In experimental fluid dynamics, the Stokes number is a measure of flow tracer fidelity in particle image velocimetry (PIV) experiments where very small particles are entrained in turbulent flows and optically observed to determine the speed and direction of fluid movement (also known as the velocity field of the fluid). For acceptable tracing accuracy, the particle response time should be faster than the smallest time scale of the flow. Smaller Stokes numbers represent better tracing accuracy; for Stk $\gg 1$, particles will detach from a flow especially where the flow decelerates abruptly. For $S t k \ll 1$, particles follow fluid streamlines closely. If Stk <0.1, tracing accuracy etrors are below 1%.[3]

The Womersley number (α or Wo) is a dimensionless number in biofluid mechanics and biofluid dynamics. It is a dimensionless expression of the pulsatile flow frequency in relation to viscous effects. It is named after John R. Womersley (1907-1958) for his work with blood flow in arteries. ${ }^{[1]}$ The Womersley number is important in keeping dynamic similarity when scaling an experiment. An example of this is scaling up the vascular system for experimental study. The Womersley number is also important in determining the thickness of the boundary layer to see if entrance effects can be ignored.

The square root of this number is also referred to as Stokes number, $S t k=\sqrt{\mathrm{Wo}}$, due to the pioneering work done by Sir George Stokes on the Stokes second problem.

Pyp flon with oscelly perrume grailet

$$
u_{t}=-\frac{p_{t}}{e}+\frac{v}{r} \frac{d}{d v}\left(r \frac{\partial u}{\partial r}\right) \quad \leadsto\left(0,0, u_{z}(v, t)\right)
$$

$P_{z}=R_{e}\left[(\Delta P / L) e^{i \omega t}\right] \quad \Delta p=$ presure fercurition amplith between
Assume $u(r, t)=\operatorname{Re}\left[f(v) e^{i \omega t}\right]$ pure eength L ench
$f^{\prime \prime}+v^{-1} f^{\prime}-i \frac{\omega}{v} f=\frac{\Delta p}{\mu L} \quad v^{\text {th }}$ valer Burcel equation

$$
f(r)=A J_{0}\left(i^{3 / 2} r^{\prime}\right)+B Y_{0}\left(i^{3 / 2} r^{\prime}\right)+i \frac{\Delta P}{\omega e} \quad r^{\prime}=r / \sqrt{v / \omega}
$$

on undar Bence functurnsiof complex argument with r secel iy deffersion dertence $\sqrt{V / w} * \notin B$ constante. Since $f(0)$ finte $B=0 \quad\left(Y_{0}(0) \rightarrow \infty\right)$.

$$
\begin{aligned}
& a=\begin{array}{l}
\text { vodius } \\
\text { vire }
\end{array} f(r=a)=0=A J_{0}\left(\frac{i^{3 / 2 a}}{\sqrt{J / \omega}}\right)+i \frac{\Delta \rho}{\omega e l} \\
& a^{\prime}=a / \sqrt{\nu / \omega} \quad A=-\frac{i \Delta p}{\omega<2} / J_{0}\left(\frac{i 3 / 2 a}{\sqrt{n / \omega}}\right) \\
& u=R_{e}\left[i \frac{\Delta p}{\omega e L}\left[1-I_{0}\left(i^{3 / 2} v^{\prime}\right) / J_{0}\left(i^{3 / 2} \alpha^{\prime}\right)\right] e^{i \omega c}\right]
\end{aligned}
$$

Special techropeer Bersel fund vom compex plone.

$$
\begin{aligned}
\omega \rightarrow 0 \quad u(r) & =\frac{r^{2}-u^{2}}{4 \mu} \frac{\lambda_{p}}{\lambda z} \text { steoy Poiserille Flow } \\
\omega \rightarrow \infty \quad & =\text { profile samilar Stoher } 2^{4} \text { purbem }
\end{aligned}
$$

Exercise 9.32. a) When z is complex, the small-argument expansion of the zeroth-order Bessel function $J_{o}(z)=1-\frac{1}{4} z^{2}+\ldots$ remains valid. Use this to show that (9.43) reduces to (9.6) as $\omega \rightarrow 0$ when $d p / d z=\Delta p / L$. The next term in the series is $\frac{1}{6 t} z^{4}$. At what value of $a / \sqrt{v / \omega}$ is the magnitude of this term equal to 5% of the second term.
b) When z is complex, the large-argument expansion of the zeroth-order Bessel function $J_{o}(z) \approx(2 / \pi z)^{1 / 2} \cos \left[z-\frac{1}{4} \pi\right]$ remains valid for $|\arg (z)|<\pi$. Use this to show that (9.43) reduces to the velocity profile of a viscous boundary layer on a plane wall beneath an oscillating flow as $\omega \rightarrow \infty$:

$$
u_{z}(y, t)=-\frac{\Delta p}{\rho \omega L}\left[\sin (\omega t)-\exp \left\{-y \sqrt{\frac{\omega}{2 v}}\right\} \sin \left(\omega t-y \sqrt{\frac{\omega}{2 v}}\right)\right]
$$

where y is the distance from the tube wall, $R=a-y, y \ll a$, and $d p / d z=\Delta p / L$.
Solution 9.32 a) Start from (9.43):

$$
u_{i}(R, t)=\operatorname{Re}\left\{i \frac{\Delta p}{\omega \rho L}\left[1-J_{o}\left(\frac{i^{3 / 2} R}{\sqrt{v / \omega}}\right) / J_{o}\left(\frac{i^{3 / 2} a}{\sqrt{v / \omega}}\right)\right] e^{i \omega}\right\} \text {, and }
$$

use the small argument form of J_{o} for the limit $\omega \rightarrow 0$:

$$
\lim _{n \rightarrow 1 \rightarrow 1} u_{i}(R, t)=\lim _{\omega \rightarrow 1)} \operatorname{Re}\left\{i \frac{\Delta p}{\omega \rho L}\left[1-\frac{1-\frac{1}{4}\left(\frac{i^{3 / 2} R}{\sqrt{v / \omega})^{2}}+\ldots\right]}{1-\frac{1}{4}\left(\frac{i^{1 / 2} a}{\sqrt{v / \omega}}\right)^{2}+\ldots}\right] e^{\text {bo }}\right\}=\lim _{\omega \rightarrow 0} \operatorname{Re}\left\{i \frac{\Delta p}{\omega \rho L}\left[1-\frac{1+\frac{i \omega R^{2}}{4 v}+\ldots}{1+\frac{i \omega a^{2}}{4 v}+\ldots}\right] e^{\omega v}\right\} .
$$

Continue simplifying:

$$
\begin{aligned}
\lim _{\omega \rightarrow 0} u_{z}(R, t) & =\lim _{\omega \rightarrow 0} \operatorname{Re}\left\{i \frac{\Delta p}{\omega \rho L}\left[1-\left(1+\frac{i \omega R^{2}}{4 v}-\frac{i \omega a^{2}}{4 v}+\ldots\right)\right] e^{j o s}\right\} \\
& =\operatorname{limRe}_{\omega \times 1}\left\{i \frac{\Delta p}{\omega \rho L}\left[-\frac{i \omega R^{2}}{4 v}+\frac{i \omega a^{2}}{4 v}\right] e^{\omega \omega}\right\} \\
& =\operatorname{Re}\left\{\frac{\Delta p}{\rho L}\left[+\frac{R^{2}}{4 v}-\frac{a^{2}}{4 v}\right]\right\}=\frac{1}{4 \mu}\left(-\frac{\Delta p}{L}\right)\left(a^{2}-R^{2}\right)
\end{aligned}
$$

and this is the same as (9.6) when the pressure gradient is $\Delta p / L$.
To determine when $\frac{1}{64} z^{4}$ is 5% of $\frac{1}{4} z^{2}$, set $(0.05) \frac{1}{4} z^{2}=\frac{1}{64} z^{4}$ and determine z. The solution is $|z|=a / \sqrt{v / \omega}=\sqrt{0.05(64) / 4}=0.894$.
b) Here, $z=\frac{i^{3 / 2} R}{\sqrt{v / \omega}}=\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}$,so

$$
\begin{aligned}
\cos \left(z-\frac{\pi}{4}\right) & =\frac{1}{2}\left[\exp \left\{i\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}-i \frac{\pi}{4}\right\}+\exp \left\{-i\left(-\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}+i \frac{\pi}{4}\right\}\right] \\
& =\frac{1}{2}\left[\exp \left\{\left(-\frac{i}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}-i \frac{\pi}{4}\right\}+\exp \left\{\left(\frac{i}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}+i \frac{\pi}{4}\right\}\right]
\end{aligned}
$$

When $\omega \rightarrow \infty$, the first term becomes exponentially small, so

$$
\cos \left(z-\frac{\pi}{4}\right)=\frac{1}{2} \exp \left\{\left(\frac{i}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \frac{R}{\sqrt{v / \omega}}+i \frac{\pi}{4}\right\} \text { as } \omega \rightarrow \infty .
$$

Now use $R=a-y$ in the above expression and collect like factors:

$$
\cos \left(z-\frac{\pi}{4}\right) \cong \frac{1}{2} \exp \left\{i\left(\frac{a-y}{\sqrt{2 v / \omega}}+\frac{\pi}{4}\right)+\frac{a-y}{\sqrt{2 v / \omega}}\right\} \text { as } \omega \rightarrow \infty .
$$

or:

$$
\cos \left(z-\frac{\pi}{4}\right) \cong \frac{e^{i \pi / 4}}{2} \exp \left(\frac{a(1+i)}{\sqrt{2 v / \omega}}\right) \exp \left(\frac{-(1+i)}{\sqrt{2 v / \omega}} y\right) \text { as } \omega \rightarrow \infty .
$$

So, in this limit:

$$
\begin{aligned}
\frac{J_{0}\left(\frac{i^{3 / 2} R}{\sqrt{v / \omega}}\right)}{J_{0}\left(\frac{i^{3 / 2} a}{\sqrt{v / \omega}}\right)} & =\frac{\sqrt{\frac{2}{\pi} \frac{\sqrt{v / \omega}}{i^{3 / 2}(a-y)}} \frac{e^{i \pi / 4}}{2} \exp \left(\frac{a(1+i)}{\sqrt{2 v / \omega}) \exp \left(\frac{-(1+i)}{\sqrt{2 v / \omega}} y\right)}\right.}{\sqrt{\frac{2}{\pi}} \frac{\sqrt{v / \omega}}{i^{i / 2} a} \frac{e^{i \pi / 4}}{2} \exp \left(\frac{a(1+i)}{\sqrt{2 v / \omega}}\right)} \\
& =\sqrt{\frac{a}{a-y}} \exp \left(\frac{-(1+i)}{\sqrt{2 v / \omega}} y\right) \\
& \approx \exp \left(\frac{-(1+i)}{\sqrt{2 v / \omega}} y\right)
\end{aligned}
$$

where the final approximate equality holds when $y \ll a$. Now substitute this approximate ratio of Besscl functions into (9.43) to find:

$$
u_{z}(y, t)=\operatorname{Re}\left\{\frac{i \Delta p}{\omega \rho L}\left[1-\exp \left(\frac{-(1+i) y}{\sqrt{2 v / \omega}}\right)\right] e^{i \omega x}\right\}=\operatorname{Re}\left\{\frac{i \Delta p}{\omega \rho L}\left[e^{\text {ievt }}-\exp \left(\frac{-y}{\sqrt{2 v / \omega}}\right) \exp \left(i \omega t-\frac{i y}{\sqrt{2 v / \omega}}\right)\right]\right\}
$$

Take the real part to reach:

$$
u_{z}(y, t)=-\frac{\Delta p}{\omega \rho L}\left[\sin (\omega t)-\exp \left(\frac{-y}{\sqrt{2 v / \omega}}\right) \sin \left(\omega t-\frac{y}{\sqrt{2 v / \omega}}\right)\right],
$$

and this is the desired result.

Its a finil example we conciule developy Coneter flow: 3. Unstead flas betwam thas imfi-ints plorme

$$
\begin{aligned}
& x(0, z)=v \quad \text { sudden anclection } \\
& x(x, z)=0
\end{aligned}
$$

$$
\Rightarrow \text { finl sination } u(y, \infty) \rightarrow v_{0}(1-y / h) \text { ie hirear }
$$

Conathe flow

Solutian can be obtainal ming a Farvien series techmigue

$$
\begin{aligned}
u / v_{0} & =(1-y / h)-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp \left(-n^{2} \pi^{2} t^{+}\right) \\
z^{*} & =v t / h^{2} \quad
\end{aligned} \underbrace{}_{i=\frac{s i n}{} \frac{n \pi y}{h}}
$$

FIGURE 3-17
The development of plane Cmette flow due to a suddenly accelerated lower wall, Fr 〈 3 -120).

