Two walls can be represented by images of the original vortex named as \(a \) respect to \(x \) and \(y \) which introduce three more vortices named as \(b,c,d \). The velocity at point \(B \) is superposition of the velocity of all four vortices.

For each vortex:

\[
\psi = -K \ln r = -K \ln((x^2 + y^2)^{0.5}) ; \quad \theta = K \tan^{-1}(y/x)
\]

\[
v_x = \frac{\partial \psi}{\partial y} = -\frac{K y}{(x^2 + y^2)}
\]

\[
v_y = -\frac{\partial \psi}{\partial x} = \frac{K x}{(x^2 + y^2)}
\]

For vortex \(a \): Coordinates of point \(B \) respect to vortex \(a \) is \(x=a \) and \(y=-a \) and \(K>0 \)

\[
v_x = -\frac{K(-a)}{2a^2} = \frac{K}{2a} ; \quad v_y = \frac{Ka}{2a^2} = \frac{K}{2a}
\]

For vortex \(b \): Coordinates of point \(B \) respect to vortex \(b \) is \(x=3a \) and \(y=-a \) and \(K<0 \)

\[
v_x = -\frac{K(-a)}{10a^2} = -\frac{K}{10a} ; \quad v_y = \frac{-K3a}{10a^2} = \frac{-3K}{10a}
\]

For vortex \(c \): Coordinates of point \(B \) respect to vortex \(c \) is \(x=3a \) and \(y=3a \) and \(K>0 \)

\[
v_x = -\frac{K(3a)}{18a^2} = -\frac{K}{6a} ; \quad v_y = \frac{K3a}{18a^2} = \frac{K}{6a}
\]

For vortex \(d \): Coordinates of point \(B \) respect to vortex \(d \) is \(x=a \) and \(y=3a \) and \(K<0 \)

\[
v_x = -\frac{K(3a)}{10a^2} = \frac{3K}{10a} ; \quad v_y = \frac{-Ka}{10a^2} = \frac{-K}{10a}
\]
When walls are present:

\[
V_B = \sqrt{V_{xB}^2 + V_{yB}^2} = 0.59 \frac{K}{a}
\]

When no walls are present:

\[
V_B = V_a = \sqrt{v_{xa}^2 + v_{ya}^2} = \sqrt{\left(\frac{K}{2a}\right)^2 + \left(\frac{K}{2a}\right)^2} = \frac{K}{\sqrt{2a}} = 0.71 \frac{K}{a}
\]