The purpose of this document is to summarize and demonstrate V&V procedures to be used in CFDLab reports.

Nomenclature:

S_{g1}: solution from fine grid

S_{g2}: solution from medium grid

S_{g3}: solution from coarse grid

R_g: grid convergence ratio

r_g: grid refinement ratio

P_g: order of accuracy for grid

P_{gen}: theoretical order of accuracy, 2 for 2nd order and 1 for 1st order schemes

P: ratio of accuracy of grid and theoretical accuracy

δ_{REg1}^*: grid error from Richardson Extrapolation based on fine mesh solution

U_g: grid uncertainty based on FS method
Formulae:

\[\varepsilon_{g21} = S_{g2} - S_{g1} \]

\[\varepsilon_{g32} = S_{g3} - S_{g2} \]

\[R_g = \frac{\varepsilon_{g21}}{\varepsilon_{g32}} \]

If monotonically converged \((0 < R_g < 1)\), then:

\[P_g = \frac{\ln\left(\frac{\varepsilon_{g32}}{\varepsilon_{g21}} \right)}{\ln(r_g^*)} \]

\[P = \frac{P_g}{P_{gest}} \]

\[\delta^*_{REg1} = \frac{\varepsilon_{g21}}{(r_g^P - 1)} \]

\[U_g = \begin{cases}
(2.45 - 0.85P)|\delta^*_{REg1}| & \text{if } 0 < P \leq 1 \\
(16.4P - 14.8)|\delta^*_{REg1}| & \text{if } P > 1
\end{cases} \]
Following examples demonstrate grid studies for friction factor of laminar pipe flows.

Example:

\[r_g = \sqrt{2} \]

\[\varepsilon_{g21} = S_{g2} - S_{g1} = -0.0027916 \]

\[\varepsilon_{g32} = S_{g3} - S_{g2} = -0.0157815 \]

\[\ln\left(\frac{\varepsilon_{g32}}{\varepsilon_{g21}}\right) \]

\[P_g = \frac{\varepsilon_{g21}}{\ln(r_g)} = 2.49907 \]

\[P = \frac{P_g}{2} = \frac{2.49907}{2} = 1.249535 \]

\[\delta^{*}_{Reg1} = \frac{\varepsilon_{g21}}{(r_g \frac{P_g}{2} - 1)} = -0.0006 \]

\[P > 1 \]

\[U_g = (16.4P - 14.8) * |\delta^{*}_{Reg1}| = 0.003415424 \]