The exam is closed book and closed notes.
The pressure rise, Δp, across a centrifugal pump in Figure can be expressed as $\Delta p=f(D, \omega, \rho, Q)$, where D is the impeller diameter, ω the angular velocity of the impeller (unit for ω is T^{-1}), ρ the fluid density, and Q the volume rate of flow through the pump. (a) By using dimensional analysis find the pi terms. (b) A model pump having a diameter of 8 in . is tested in a laboratory using water ($\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$). When operated at an angular velocity of $40 \pi \mathrm{rad} / \mathrm{s}$ the model pressure rise as a function of Q is shown in Figure. Use this curve to predict the pressure rise across a geometrically similar pump (prototype) for a prototype flowrate of $6 \mathrm{ft}^{3} / \mathrm{s}$. The prototype has a diameter of 12 in . and operates at an angular velocity of $60 \pi \mathrm{rad} / \mathrm{s}$. The prototype fluid is also water.

ME:5160

Fall 2023

Solution:

(a)

Δp	D	ω	ρ	Q
$M L^{-1} T^{-2}$	L	T^{-1}	$M L^{-3}$	$L^{3} T^{-1}$
$k-r=5-3=2$				
(+1)				

Pi terms

$$
\Pi_{1}=D^{a} \omega^{b} \rho^{c} \Delta p \doteq(L)^{a}\left(T^{-1}\right)^{b}\left(M L^{-3}\right)^{c}\left(M L^{-1} T^{-2}\right) \doteq L^{0} T^{0} M^{0}
$$

Thus, $a=-2, b=-2$, and $c=-1$.

$$
\begin{gathered}
\therefore \boldsymbol{\Pi}_{\mathbf{1}}=\frac{\boldsymbol{\Delta} \boldsymbol{p}}{\boldsymbol{\rho} \boldsymbol{\omega}^{\mathbf{2}} \boldsymbol{D}^{\mathbf{2}}} \quad \text { (+2) } \\
\Pi_{2}=D^{a} \omega^{b} \rho^{c} Q \doteq(L)^{a}\left(T^{-1}\right)^{b}\left(M L^{-3}\right)^{c}\left(L^{3} T^{-1}\right) \doteq L^{0} T^{0} M^{0}
\end{gathered}
$$

Thus, $a=-3, b=-1$, and $c=0$.

$$
\begin{equation*}
\therefore \Pi_{2}=\frac{Q}{\omega D^{3}} \tag{+2}
\end{equation*}
$$

(b) Similarity

$$
\begin{gather*}
\frac{Q}{\omega D^{3}}=\frac{Q_{m}}{\omega_{m} D_{m}^{3}} \\
Q_{m}=\left(\frac{\omega_{m}}{\omega}\right)\left(\frac{D_{m}}{D}\right)^{3} Q \\
Q_{m}=\left(\frac{40 \pi}{60 \pi}\right)\left(\frac{8}{12}\right)^{3}(6)=\mathbf{1 . 1 9} \mathbf{f t}^{3} / \mathbf{s} \tag{+1}
\end{gather*}
$$

Prediction equation

$$
\begin{gathered}
\frac{\Delta p}{\rho \omega^{2} D^{2}}=\frac{\Delta p_{m}}{\rho_{m} \omega_{m}^{2} D_{m}^{2}} \\
\Delta p=\left(\frac{\rho}{\rho_{m}}\right)\left(\frac{\omega}{\omega_{m}}\right)^{2}\left(\frac{D}{D_{m}}\right)^{2} \Delta p_{m}
\end{gathered}
$$

From Fig., $\Delta p_{m}=5.5 \mathrm{psi}$ at $Q_{m}=1.19 \mathrm{ft}^{3} / \mathrm{s}$.

$$
\begin{equation*}
\therefore \Delta p=(1)\left(\frac{60 \pi}{40 \pi}\right)^{2}\left(\frac{12}{8}\right)^{2}(5.5)=\mathbf{2 7 . 8} \mathbf{~ p s i} \tag{+1}
\end{equation*}
$$

