The exam is closed book and closed notes.

A wedge splits a sheet of water, as shown in the figure. Both wedge and sheet are very long into the paper. The angle of the wedge θ is 48°. (a) What is the thickness of the water sheets at each side of the wedge? (b) What is the mass flow rate per unit depth? (c) What is the force F_{x} (per meter of depth into the paper) required to hold the wedge stationary? (d) Explain why F_{y} is equal to zero. (Use water density $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$)

Continuity equation: $-\frac{d}{d t} \int_{C V} \rho d \forall=\int_{C S} \rho \underline{V_{R}} \cdot \underline{n} d A$
Momentum equation: $\sum F=\frac{d}{d t} \int_{C V} \rho \underline{V} d \forall+\int_{C S} \rho \underline{V} \underline{V_{R}} \cdot \underline{n} d A$

Hint: 1) the force required to hold the wedge should be in the x-direction.
2) $\cos (24 \mathrm{deg})=0.9135$

Assumption: non-deforming CV, steady uniform flow with one inlet and two outlets.

Solution:

(a) Apply continuity to find thickness of exit sheets $t_{\text {exit }}$ (D is the depth into the paper)

$$
\begin{gathered}
\sum V_{\text {in }} A_{\text {in }}=\sum V_{\text {out }} A_{\text {out }} \\
V_{\text {in }} A_{\text {in }}=2 V_{\text {exit }} A_{\text {exit }} \\
V_{\text {in }}=V_{\text {exit }}=V=6 \mathrm{~m} / \mathrm{s} \\
V D t_{\text {in }}=2 V D t_{\text {exit }} \\
t_{\text {exit }}=\frac{t_{\text {in }}}{2}=\frac{(4 \mathrm{~cm})}{2}=2 \mathrm{~cm}=0.02 \mathrm{~m} \\
+2
\end{gathered}
$$

(b) The mass flow per unit depth is

$$
\frac{\dot{m}}{D}=\rho V t_{i n}=\left(998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.04 \mathrm{~m})=239.5 \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~s}} \quad+2
$$

(c) Apply x-momentum integral relation over a control volume surrounding the wedge:

$$
\sum F_{x}=-F=\sum_{\text {out }} \dot{m}_{j} u_{j}-\sum_{\text {in }} \dot{m}_{j} u_{j}=2 \frac{\dot{m}}{2} V \cos \frac{\theta}{2}-\dot{m} V=\dot{m} V\left(\cos \frac{\theta}{2}-1\right) \quad+2
$$

Substitute the values:

$$
F=-\left(239.5 \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~s}}\right)\left(6 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.9135-1)=124 \mathrm{~N} \quad+0.5
$$

(d) The flow is symmetric with respect to the x -axis since the wedge forms an isosceles triangle and the sheets have the same thickness $t_{\text {exit }}$.

