The exam is closed book and closed notes.

The water in an aboveground swimming pool is to be emptied by unplugging a $3-\mathrm{cm}-$ diameter horizontal pipe attached to the bottom of the pool. Assuming that point 1 at the free surface of the pool and point 2 at the exit of pipe are open to atmosphere with a vertical distance of 2 m , determine the maximum flow rate of water through the pipe.

Bernoulli's equation: $\quad \frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}$

Attendance: (2)

Solution

Assumptions 1 The orifice has a smooth entrance, and all frictional losses are negligible. 2 The flow is steady, incompressible, and irrotational with negligible frictional effects (so that the Bernoulli equation is applicable).
Analysis We take point 1 at the free surface of the pool, and point 2 at the exit of pipe. We take the reference level at the pipe exit $\left(z_{2}=0\right)$. Noting that the fluid at both points is open to the atmosphere (and thus $P_{1}=P_{2}=P_{\text {atm }}$) and that the fluid velocity at the free surface is very low ($V_{1} \cong 0$), the Bernoulli equation between these two points simplifies to

$$
\begin{equation*}
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}^{(3)} \rightarrow \quad z_{1}=\frac{V_{2}^{2}}{2 g} \quad \rightarrow \quad V_{2}=\sqrt{2 g z_{1}} \tag{1}
\end{equation*}
$$

The maximum discharge rate occurs when the water height in the pool is a maximum, which is the case at the beginning and thus $z_{1}=h$. Substituting, the maximum flow velocity and discharge rate become

$$
\begin{gather*}
V_{2, \max }=\sqrt{2 g h}=\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m})}=6.26 \mathrm{~m} / \mathrm{s} \\
Q_{\max }=A_{\mathrm{pipe}} V_{2, \max }^{(1)}=\frac{\pi D^{2}}{4} V_{2, \max }=\frac{(0.5)}{4}=\frac{\pi(0.03 \mathrm{~m})^{2}}{4}(6.26 \mathrm{~m} / \mathrm{s})=0.00443 \mathrm{~m}^{3} / \mathrm{s}=4.43 \mathrm{~L} / \mathrm{s} \tag{0.5}
\end{gather*}
$$

