Name	٠
INALLE	

Student ID# : _____

Course: ME 5160, Fall 2023

The exam is closed book and closed notes.

An ideal fluid flows between the inclined walls of a two-dimensional channel into a line sink located at the origin, as shown in the Figure below. The velocity potential for this flow field is:

 $\phi = m \ln r$

where *m* is a constant. (a) Find the expressions for radial (v_r) and tangential (v_{θ}) velocity components. (b) Determine the corresponding stream function. Note that the value of the stream function along the wall *OA* (i.e. $\theta = \frac{\pi}{3}$) is zero. (c) Find *m* if the value of stream function at point *B* located at x = 1, y = 4 is $\psi_B = -0.71$.

Equations:
$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}; v_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}; r = \sqrt{x^2 + y^2}; \theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Course: ME 5160, Fall 2023

Student ID# : _____

Solution:

KNOWN: ϕ , ψ ^{*B*}

FIND: v_r , v_{θ} , ψ , m

ASSUMPTIONS: Irrotational flow

ANALYSIS:

(a)

$$v_r = \frac{\partial \phi}{\partial r} = \frac{m}{r}$$
 (1)

$$v_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = 0$$
 (0.5)

(b)

$$v_r = \frac{m}{r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
 (1)
 $\frac{\partial \psi}{\partial \theta} = m$ (0.5)

Integrate with respect to θ :

$$\psi = m\theta + f_1(r) \quad (1)$$

On the other hand:

$$v_{ heta} = 0 = -rac{\partial \psi}{\partial r}$$
 (1)

Therefore ψ is not a function of r, so $f_1(r)$ is a constant and the equation for ψ becomes:

$$\psi = m\theta + C_1 \quad (1)$$

Also, $\psi = 0$ for $\theta = \frac{\pi}{3}$:

$$0 = m\frac{\pi}{3} + C_1$$
 (1)
 $C_1 = -m\frac{\pi}{3}$

Student ID# : _____ Course: ME 5160, Fall 2023

$$\psi = m\theta - m\frac{\pi}{3} = m\left(\theta - \frac{\pi}{3}\right) \quad (0.5)$$

(c)

At point *B*:

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + 4^2} = 4.12$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}(4) = 1.33$$
⁽¹⁾

The value of stream function at point *B*:

$$\psi_B = -0.71 = m \left(1.33 - \frac{\pi}{3} \right)$$
 (1)

Therefore:

$$m \approx -2.51$$
 (0.5)