\qquad
Student ID\# :

The exam is closed book and closed notes.

An ideal fluid flows between the inclined walls of a two-dimensional channel into a line sink located at the origin, as shown in the Figure below. The velocity potential for this flow field is:

$$
\phi=m \ln r
$$

where m is a constant. (a) Find the expressions for radial $\left(v_{r}\right)$ and tangential $\left(v_{\theta}\right)$ velocity components. (b) Determine the corresponding stream function. Note that the value of the stream function along the wall $O A$ (i.e. $\theta=\frac{\pi}{3}$) is zero. (c) Find m if the value of stream function at point B located at $x=1, y=4$ is $\psi_{B}=-0.71$.

Equations: $v_{r}=\frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} ; v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{\partial \psi}{\partial r} ; r=\sqrt{x^{2}+y^{2}} ; \theta=\tan ^{-1}\left(\frac{y}{x}\right)$

\qquad
Student ID\# : \qquad

Solution:

KNOWN: ϕ, ψ_{B}
FIND: $v_{r}, v_{\theta}, \psi, m$
ASSUMPTIONS: Irrotational flow
ANALYSIS:
(a)

$$
\begin{align*}
& v_{r}=\frac{\partial \phi}{\partial r}=\frac{m}{r} \tag{1}\\
& v_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=0 \tag{0.5}
\end{align*}
$$

(b)

$$
\begin{gather*}
v_{r}=\frac{m}{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \tag{1}\\
\frac{\partial \psi}{\partial \theta}=m \tag{0.5}
\end{gather*}
$$

Integrate with respect to θ :

$$
\begin{equation*}
\psi=m \theta+f_{1}(r) \tag{1}
\end{equation*}
$$

On the other hand:

$$
\begin{equation*}
v_{\theta}=0=-\frac{\partial \psi}{\partial r} \tag{1}
\end{equation*}
$$

Therefore ψ is not a function of r, so $f_{1}(r)$ is a constant and the equation for ψ becomes:

$$
\begin{equation*}
\psi=m \theta+C_{1} \tag{1}
\end{equation*}
$$

Also, $\psi=0$ for $\theta=\frac{\pi}{3}$:

$$
\begin{gather*}
0=m \frac{\pi}{3}+C_{1} \tag{1}\\
C_{1}=-m \frac{\pi}{3}
\end{gather*}
$$

Student ID\# : \qquad

$$
\begin{equation*}
\psi=m \theta-m \frac{\pi}{3}=m\left(\theta-\frac{\pi}{3}\right) \tag{0.5}
\end{equation*}
$$

(c)

At point B :

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+4^{2}}=4.12 \\
\theta & =\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}(4)=1.33
\end{aligned}
$$

The value of stream function at point B :

$$
\psi_{B}=-0.71=m\left(1.33-\frac{\pi}{3}\right)^{(1)}
$$

Therefore:

$$
m \approx-2.51
$$

