The exam is closed book and closed notes.
A petrochemical plant transfers water with flowrate $Q=4 m^{3} / \mathrm{s}$ at $\mathrm{T}=20^{\circ} \mathrm{C}$ through a steel pipe section with length $\mathrm{L}=1000 \mathrm{~m}$ and diameter $d=0.5 \mathrm{~m}$. The water density and viscosity are $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{ms}$, respectively. (a) Determine the height difference between Sections 1 and 2 for a smooth pipe neglecting minor losses. (b) Determine the height difference if the pipe has an absolute roughness ε of 0.1 mm and minor losses for the sharp entrance are included ($K=0.5$).

Energy equation
$\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f}+h_{t}$
$h_{f}=\frac{V^{2}}{2 g}\left(f \frac{L}{D}+\sum K\right)$

\qquad

Student ID\# : \qquad

Solution

(a)

Calculate Velocity:

$$
\begin{equation*}
V=\frac{Q}{A}=\frac{4}{\frac{\pi}{4}(0.5)^{2}}=20.38 \mathrm{~m} / \mathrm{s} \tag{+2}
\end{equation*}
$$

Calculate Reynolds number:

$$
\begin{equation*}
R e_{d}=\frac{\rho V d}{\mu}=\frac{1000 \times 20.38 \times 0.5}{0.001}=10,190,000 \approx 1 \times 10^{7} \tag{+1}
\end{equation*}
$$

Assume smooth pipe and enter Moody diagram: $f_{\text {smooth }}=0.008$
Write energy equation between Section 1 and 2:

$$
\begin{gather*}
\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f}+h_{t} \\
\Delta z=h_{f}=\frac{V^{2}}{2 g} f \frac{L}{D}=\frac{20.38^{2} \times 0.008 \times 1000}{2 \times 9.81 \times 0.5}=338.7 \mathrm{~m} \tag{+1}
\end{gather*}
$$

(b)

Calculate ε / d :

$$
\begin{gather*}
\frac{\varepsilon}{d}=\frac{0.1 \times 10^{-3}}{0.5}=0.0002 \tag{+1}\\
R e_{d} \approx 1 \times 10^{7}
\end{gather*}
$$

Enter Moody diagram: $f \approx 0.014 \quad(+1)$
Write energy equation between Section 1 and 2:

$$
\begin{gather*}
\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{1}=\left(\frac{P}{\rho g}+\frac{V^{2}}{2 g}+z\right)_{2}+h_{f}+h_{t} \\
\Delta z=h_{f}=\frac{V^{2}}{2 g}\left(f \frac{L}{D}+K\right)=\frac{20.38^{2}}{2 \times 9.81}\left(0.014 \frac{1000}{0.5}+0.5\right)=603.3 \mathrm{~m} \tag{+1}
\end{gather*}
$$

