ME:5160

Fall 2022

The exam is closed book and closed notes.

The thrust *F* of a propeller is generally thought to be a function of its diameter *D* and angular velocity Ω , the forward speed *V*, and the density ρ and viscosity μ of the fluid. Find suitable dimensionless groups for this problem and write the functional relationship between them.

Hint: Use ρ , *V*, *D* as repeated variables.

Quantity	Symbol	Dimensions	
		MLTO	FLT [®]
Length	L	L	L
Area	Α	L^2 L^3	L^2 L^3
Volume	V	L^3	L^3
Velocity	V	LT^{-1}	LT^{-1}
Acceleration	dV/dt	LT^{-2}	LT^{-2}
Speed of sound	a	LT^{-1}	LT^{-1}
Volume flow	Q	$L^{3}T^{-1}$	$L^{3}T^{-1}$
Mass flow	m	MT^{-1}	FTL^{-1}
Pressure, stress	p, σ, τ	$ML^{-1}T^{-2}$	FL^{-2}
Strain rate	ė	T^{-1}	T^{-1}
Angle	θ	None	None
Angular velocity	ω, Ω	T^{-1}	T^{-1}
Viscosity	μ	$ML^{-1}T^{-1}$	FTL^{-2}
Kinematic viscosity	ν	$L^{2}T^{-1}$	$L^2 T^{-1}$
Surface tension	Y	MT^{-2}	FL^{-1}
Force	F	MLT^{-2}	F
Moment, torque	M	$ML^{2}T^{-2}$	FL
Power	Р	$ML^{2}T^{-3}$	FLT^{-1}
Work, energy	W, E	ML^2T^{-2}	FL
Density	ho	ML^{-3}	FT^2L^{-4}
Temperature	Т	Θ	Θ
Specific heat	C_p, C_v	$L^2T^{-2}\Theta^{-1}$	$L^2T^{-2}\Theta^{-1}$
Specific weight	γ	$ML^{-2}T^{-2}$	FL^{-3}
Thermal conductivity	k	$MLT^{-3}\Theta^{-1}$	$FT^{-1}\Theta^{-}$
Thermal expansion coefficient	β	Θ^{-1}	Θ^{-1}

ME:5160

Solution:

$$F = f(D, \Omega, V, \rho, \mu)$$

$$n = 6 \quad (+1)$$

$$F = \{MLT^{-2}\}; \quad D = \{L\}; \quad \Omega = \{T^{-1}\}$$

$$V = \{LT^{-1}\}; \quad \rho = \{ML^{-3}\}; \quad \mu = \{ML^{-1}T^{-1}\}$$

$$j = 3 \rightarrow k = n - j = 6 - 3 = 3 \quad (+1)$$

The repeating variables are ρ , *V*, *D*. Using the Pi theorem, we find the three Pi groups:

$$\begin{split} \Pi_{1} &= \rho^{a} V^{b} D^{c} F = \{ (ML^{-3})^{a} (LT^{-1})^{b} (L)^{c} (MLT^{-2}) \} = \{ M^{0} L^{0} T^{0} \} \quad (\texttt{+1}) \\ &= -1, \, \texttt{b} = -2, \, \texttt{c} = -2 \\ &\Pi_{1} = \frac{F}{\rho V^{2} D^{2}} \quad (\texttt{+1}) \\ &\Pi_{2} = \rho^{a} V^{b} D^{c} \Omega = \{ (ML^{-3})^{a} (LT^{-1})^{b} (L)^{c} (T^{-1}) \} = \{ M^{0} L^{0} T^{0} \} \quad (\texttt{+1}) \\ &= -0, \, \texttt{b} = -1, \, \texttt{c} = 1 \\ &\Pi_{2} = \frac{\Omega D}{V} \quad (\texttt{+1}) \\ &\Pi_{3} = \rho^{a} V^{b} D^{c} \mu = \{ (ML^{-3})^{a} (LT^{-1})^{b} (L)^{c} (ML^{-1}T^{-1}) \} = \{ M^{0} L^{0} T^{0} \} \quad (\texttt{+1}) \\ &= -1, \, \texttt{b} = -1, \, \texttt{c} = 1 \\ &\Pi_{3} = \frac{\mu}{\rho V D} \rightarrow \frac{\rho V D}{\mu} = Re \quad (\texttt{+1}) \end{split}$$

Thus, the arrangement of the dimensionless variables is:

$$\Pi_{1} = f(\Pi_{2}, \Pi_{3})$$

$$\frac{F}{\rho V^{2} D^{2}} = f\left(\frac{\Omega D}{V}, \frac{\rho V D}{\mu}\right)$$
(+1)