Name :	Quiz: No. 3	Time: 15minutes
Student ID# :	Course: ME 5160, Fall 2022	

The exam is closed book and closed notes.

The horizontal nozzle in Fig. has D_1 = 30cm, D_2 = 15cm, with p_1 = 262kPa and V_2 = 17 m/s. For water at 20°C, find the force provided by the flange bolts to hold the nozzle fixed.

Continuity Equation:

$$-\frac{d}{dt}\int_{CV}\rho d\forall = \int_{CS}\rho \underline{V}_R.\,\underline{n}\;dA$$
 Momentum Equation:

$$\sum \underline{F} = \frac{d}{dt} \int_{CV} \underline{V} \rho d \forall + \int_{CS} \underline{V} \rho \underline{V}_R . \underline{n} \, dA$$

Student ID# : _____ Course: ME 5160, Fall 2022

Solution: For an open jet, $p_2 = p_a = 101325$ Pa. Subtract p_a everywhere so the only nonzero pressure is $p_1 = 262kPa - 101kPa = 160675$ Pa.

a) Continuity:

$$Q = V_1 A_1 = V_2 A_2$$
 (+2)

$$Q = (17\text{m/s})\frac{\pi}{4}(0.15m)^2 = 0.3m^3/s$$
 (+1)

$$V_1 = \frac{Q}{A_1} = \frac{0.3}{\left(\frac{\pi}{4}\right)(0.30)^2} = 4.25 \, m/s$$
 (+1)

b) x-Momentum:

The density of water is $998 \text{ kg/}m^3$. Then the horizontal force balance is

$$\sum F_x = \dot{m}u_2 - \dot{m}u_1 \tag{+2}$$

$$-F_{x,bolts} + p_1 A_1 = \dot{m}(V_2 - V_1)$$
 (+3)

$$F_{x,bolts} = (160675Pa) \frac{\pi}{4} (0.30m)^2 - (998) \frac{\pi}{4} (0.30m)^2 (4.25 \, m/s) (17 - 4.25m/s) \approx 7531N \quad \text{(+1)}$$

Name :	Quiz: No. 3	Time: 15 minutes
Student ID# :	Course: ME 5160, Fall 2021	