The exam is closed book and closed notes.

An open water jet exits from a nozzle into sea-level air, as shown, and strikes a stagnation tube $(\mathrm{V}=0)$. If the centerline pressure at section (1) is 110 kPa and losses are neglected, estimate (a) the mass flow in kg / s; and (b) the height H of the fluid in the tube.

Hint a): $\quad V_{1} A_{1}=V_{2} A_{2}$
Hint b): $\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}$
Hint c): Use Bernoulli from (2) to (3) and manometer equation from (3) to (4)

Solution:

Continuity:

$$
\begin{gathered}
\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2}+2 \\
\mathrm{~V}_{1}\left(\frac{\pi}{4} \mathrm{D}_{1}^{2}\right)=\mathrm{V}_{2}\left(\frac{\pi}{4} \mathrm{D}_{2}^{2}\right)+1 \\
\mathrm{~V}_{2}=\mathrm{V}_{1}\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2}+1
\end{gathered}
$$

Writing Bernoulli and continuity between pipe and jet yields jet velocity:

$$
\begin{gathered}
p_{1}-p_{a}=\frac{\rho}{2} V_{j e t}^{2}\left[1-\left(\frac{D_{\text {jet }}}{D_{1}}\right)^{4}\right]=110000-101350=\frac{998}{2} V_{j e t}^{2}\left[1-\left(\frac{4}{12}\right)^{4}\right], \quad+3 \\
\text { solve } V_{\text {jet }}=4.19 \frac{\mathrm{~m}}{\mathrm{~s}}+1
\end{gathered}
$$

Then the mass flow is $\quad \dot{\mathbf{m}}=\rho A_{j e t} V_{\text {jet }}=998 \frac{\pi}{4}(0.04)^{2}(4.19)=\mathbf{5 . 2 5} \frac{\mathbf{k g}}{\mathbf{s}} \quad$ Ans. (a) $\quad+1$
(b) The water in the stagnation tube will rise above the jet surface by an amount equal to the stagnation pressure head of the jet:

$$
\begin{aligned}
& p_{a}+\frac{\rho}{2} V_{j e t}^{2}=p_{a}+\rho g H \\
H & =\frac{V_{j e t}^{2}}{2 g}=\frac{4.19^{2}}{2(9.81)}=\mathbf{0 . 8 9 m} \quad \text { Ans. (b) }+1
\end{aligned}
$$

