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Chapter 7: Boundary Layer Theory 
 

7.1. Introduction:   

 

       Boundary layer flows: External flows around streamlined bodies at 

high Re have viscous (shear and no-slip) effects confined close to 

the body surfaces and its wake, but are nearly inviscid far from the 

body. 

       Applications of BL theory: aerodynamics (airplanes, rockets,  

       projectiles), hydrodynamics (ships, submarines, torpedoes),  

       transportation (automobiles, trucks, cycles), wind engineering  

       (buildings, bridges, water towers), and ocean engineering (buoys,  

       breakwaters, cables).  

 

7.2 Flat-Plate Momentum Integral Analysis & Laminar approximate 

solution 

 

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat 

plate fixed in a uniform stream of velocity ˆUi .   

 

 

 

 

 

 

 

 

 

 

Boundary-layer thickness arbitrarily defined by y = %99 (where, %99 is 

the value of y at u = 0.99U). Streamlines outside %99  will deflect an 

amount
* (the displacement thickness). Thus the streamlines move 

outward from Hy   at 0x  to 
*  HYy at 1xx  . 
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Conservation of mass: 

CS

V ndA  =0=
0 0

H H

Udy udy


 


    

Assuming incompressible flow (constant density), this relation simplifies 

to 

      
Y Y Y

dyUuUYdyUuUudyUH
0 0 0

 

Note: 
* HY , we get the definition of displacement thickness:     

                                     dy
U

uY
 










0
* 1  

       * ( a function of x only) is an important measure of effect of BL on 

external flow. To see this more clearly, consider an alternate derivation 

based on an equivalent discharge/flow rate argument: 

 

 



 0*

udyUdy
 

 

 

Flowrate between * and  of inviscid flow=actual flowrate, i.e., 

inviscid flow rate about displacement body = equivalent viscous flow 

rate about actual body 

 












0

*

000

1

*

dy
U

u
udyUdyUdy

   

w/o BL - displacement effect=actual discharge 

For 3D flow, in addition it must also be explicitly required that * is a 

stream surface of the inviscid flow continued from outside of the BL. 

δ* Lam=/3 

δ 

δ* Turb=/8 

Inviscid flow about δ* body 
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Conservation of x-momentum: 

   
0 0

H Y

x

CS

F D uV ndA U Udy u udy            

dyuHUDDrag
Y

0

22  = Fluid force on plate = - Plate 

force on CV (fluid) 

Again assuming constant density and using continuity: 
Y

dy
U

u
H

0  

dxdyuUdyuUD
x

w
Y

Y

  
00

0

22 /   

dy
U

u

U

u
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where,   is the momentum thickness (a function of x only), an 

important measure of the drag. 
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Per unit span 

Special case 2D 

momentum integral 

equation for px = 0 
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Simple velocity profile approximations: 

 

)//2( 22  yyUu   

 

u(0) = 0              no slip 

u(δ) = U             matching with outer flow 

uy(δ)=0  

 

Use velocity profile to get Cf() and () and then integrate momentum 

integral equation to get (Rex) 

 

δ* = δ/3  

θ = 2δ/15  

H= δ*/θ= 5/2 
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d
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d
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10% error, cf. Blasius 

𝑅𝑒𝑥 = 𝑈𝑥/𝜈 
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7.3. Boundary layer approximations, equations and comments 
                
 

 

 

 

 

 

 

 

2D NS, =constant, neglect g 

 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦) 

𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −
1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈(𝑣𝑥𝑥 + 𝑣𝑦𝑦) 

 

Introduce non-dimensional variables that includes scales such that all 

variables are of O(1): 







/Re

Re

/

/

Re

/

2
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*

*

*

*

*

UL

U

pp
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U
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LtUt

L

y
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𝑢 =  𝑣 =  0 

x 

y 
U, , 

𝑅𝑒𝑥 = 𝑈𝐿/𝜈 

𝑣∗ =
𝜈

𝑈
√𝑅𝑒 
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The NS equations become (drop *) 

 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +
1

𝑅𝑒
𝑢𝑥𝑥 + 𝑢𝑦𝑦 

1

𝑅𝑒
(𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) = −𝑝𝑦 +

1

𝑅𝑒2
𝑣𝑥𝑥 +

1

𝑅𝑒
𝑣𝑦𝑦 

 

For large Re (BL assumptions) the underlined terms drop out and the BL 

equations are obtained.  

 

Therefore, y-momentum equation reduces to 

 
0

. . ( , )

( )

y

x t x

p

i e p p x t

p U UU





   

 

 

2D BL equations: 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = (𝑈𝑡 + 𝑈𝑈𝑥) + 𝜈𝑢𝑦𝑦 

 

Note:  

 

(1) U(x,t), p(x,t) impressed on BL by the external flow. 

(2) 0
2

2






x
: i.e. longitudinal (or stream-wise) diffusion is 

neglected. 

(3) Due to (2), the equations are parabolic in x. Physically, this 

means all downstream influences are lost other than that 

contained in external flow. A marching solution is possible. 

 

 

      

From Euler/Bernoulli equation for 

external flow 
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(4) Boundary conditions 

 

 

 

 

 

 

 

 

 

          

           

           

          No slip: 𝑢(𝑥, 0, 𝑡) = 𝑣(𝑥, 0, 𝑡) = 0 

          Initial condition:   0,, yxu  known  

          Inlet condition:  tyxu ,,0 given at 0x  

          Matching with outer flow:    , , ,u x t U x t   

           

(5) When applying the boundary layer equations one must keep in 

mind the restrictions imposed on them due to the basic BL 

assumptions 

          → not applicable for thick BL or separated flows (although  

         they can be used to estimate occurrence of separation). 

 

(6) Curvilinear coordinates 

 

 

y 

x 

X0 

inlet 

Solution by 

marching 

matching 

No slip 

δ 
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         Although BL equations have been written in Cartesian    

         Coordinates, they apply to curved surfaces provided δ << R and 

         x, y are curvilinear coordinates measured along and normal to  

         the surface, respectively. In such a system we would find under  

         the BL assumptions 

               

2

y

u
p

R


  

         Assume u is a linear function of y:  u Uy          

 

              

2 2

2

2

( ) (0)
3

dp U y

dy R

U
p p

R





 




 
 

         Or 

 

         2
;

3

p

U R






  therefore, we require δ << R 

 

(7) Practical use of the BL theory 

         For a given body geometry: 

(a) Inviscid theory gives p(x) → integration gives L and D = 0 

(b) BL theory gives → δ*(x), τw(x), θ(x),etc. and predicts 

separation if any 

(c) If separation present then no further information → must 

use inviscid models, BL equation in inverse mode, or NS 

equation. 

(d) If separation is absent, integration of τw(x) → frictional 

resistance and body + δ* , inviscid theory gives → p(x) for 

body + δ*, can go back to (b) for more accurate BL 

calculation including viscous – inviscid interaction 
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(8) Separation and shear stress 

         At the wall, 𝑢 = 𝑣 = 0 → 
1

yy xu p


  

         1st derivative u gives τw → 
wyw u   

 

         τw = 0 separation 

 

         2nd derivative u depends on 
xp   

 

 
 

 

 

 

 

 

 

Inflection point 
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7.4. Laminar Boundary Layer (𝑹𝒆𝒕𝒓𝒂𝒏𝒔 = 𝟓 × 𝟏𝟎
𝟓 − 𝟑 × 𝟏𝟎𝟔) - 

Similarity solutions (2D, steady, incompressible): method of reducing 

PDE to ODE by appropriate similarity transformation; also, as a result of 

transformation at least one coordinate lacks origin such that the solution 

collapses to same form at all length or time scales 

𝑢𝑥 + 𝑣𝑦 = 0 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = 𝑈𝑈𝑥 + 𝜈𝑢𝑦𝑦 

 

BCs: 𝑢(𝑥, 0) = 𝑣(𝑥, 0) = 0 

            xUxu ,       

          + inlet condition 

 

For Similarity  

 
   











xg

y
F

xU

yxu ,

  expect  xg related to  x  

Or in terms of stream function  : yu   xv   

For similarity          fxgxU          xgy      

 
'Ufu y     xv  '( )x x xU gf Ug f Ug f     

BC:  

  0)0(0)0()(00,  ffxUxu  

 

 

0)0(

0)0()()()()(

0)0(0)()(

)0()()()0()()(00,









f

fxgxUxgxU

fxgxU

fxgxUfxgxUxv

xx

x

xx

 

      1)()()(,  fxUfxUxUxu  

Write boundary layer equations in terms of   

yyyxyyxyxy UU    

 

𝑣 

𝑣 

 𝜈 
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Substitute 

gUfyy

''  

2''' gUfyyy   

ggUffU xxxy /'''    

Assemble them together: 

 

    

 2'''

'''''''

gfUUU

gUffUgfUggfU
g

g
UffUUf

x

xxx
x

x

















 

'''

2

''2''2' f
g

U
UUffggUffUUfUU xxxx 

 

  '''

2

''2' f
g

U
UUffUg

g

U
fUU xxx 

 

 

    01 2'
2

'''''  fU
g

ffUg
g

f xx
  

 

 

Where for similarity C1 and C2 are constant or function  only 

 

 i.e. for a chosen pair of C1 and C2  xU ,  xg  can be found        

(Potential flow is NOT known a priori) 

 Then solution of   01 2'

2

''

1

'''  fCffCf  gives  f 

 yxu ,  , 
 '' 0

w

w

Ufu

y g


 


 


, , *,, H, Cf, CD 

 

C1 C2 

 𝜈 

 𝜈 

 

  

𝜈 

𝜈 𝜈 
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The Blasius Solution for Flat-Plate Flow 

          U=constant 0xU  02 C  

          Then xgg
U

C


1  

         
 

U

C
g

dx

d 12 2


                  21

12 UxCxg   

     Let 11 C , then  
U

x
xg

2
              x

U
y




2
  

 

02/1 '''''  fff  

    ,000 '  ff   1' f  

 

Solutions by series technique or numerical 

 

 
 

99.0
U

u
 when 5.3     

x
x Re

5



   



Ux
x Re  

 
U

x
dfdy

U

u 


2
11

0
'

0
*












            

x
x Re

7208.1*




  

 

  


 d
U

x
ffdy

U

u

U

u 2
11 '

0
'

0 










        

x
x Re

664.0



 

Blasius equations 

for Flat Plate 

Boundary Layer 

 

 
 

  

 

𝜈 
𝜈 

2𝜈𝑥 
2𝜈𝑥 

 

 

 

2𝜈𝑥 

2𝜈𝑥 

𝜈 

𝜈 
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So,  59.2
*

 H



 

 

Ux

Uf

y

u

w

w





2

0''





            x

U

C
x

w
f








Re

664.0

2

1 2  

L

L

fD
L

dx
C

LU

D
C

Re

328.1

2

1 02

 


 ;      


UL
L Re ; 

 

               
𝑣

𝑈
=
𝜂𝑓′−𝑓

√2𝑅𝑒𝑥
≪ 1            for    1Re x  

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜈 

2𝜈𝑥 
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 CD ReL 

Oseen 3-226 (3rd 

edition,vicous 

flows) 

<1 

Blasius  100<Re<Retr~3

×106 

 

LE Higher 

order      

correction      

  

LLDC Re/3.2Re/328.1   

 

 

 

 

Rex  small therefore local breakdown of BL approximation 

Similar breakdown occurs at Trailing edge. 

From triple – deck theory the correction is 

+2.661/ 8/7ReL
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Falkner-Skan Wedge Flows 

  01 2'

2

''

1

'''  fCffCf                

    ,000 '  ff       1' f              

   
 

xUg
g

C


1      xU
g

C


2

2       (Blasius Solution: C2=0, C1=1) 

 

Consider     xxx
UgUggUg 22 2   

                               xxx UgUgUgg 2222   

                                 xx
UgUgg 22   

                                   212 CC    

Hence       21

2 2 CCUg x  ,       xU
g

C


2

2   

     Choose C1=1 and C2 arbitrary=C,  

 

Integrate                    xCUg  22   

Combine                    xC

C

U

U x 1

2 


 

 

kx
C

C
U 


 ln

2
ln

 

 

Then                                  CCkxxU  2
 

 
 

C

C

x
k

C
xg 




 2

1
2

 

 

 

 

 ff   

 xgy  

 'fUu   

Similarity 

form of BL 

eq. 

 

xUgC 2  

  

  

 
 

 

 

 

𝜈 𝜈 

2𝜈 𝜈 

𝜈 

𝜈 

𝜈 

𝜈 

𝜈 
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Change constants 

  mkxxU   

x

Um
y

g

y




2

1
  

            01 2''''''  ffff  ,    1

2




m

m


, 






2
m

 

    000 '  ff                      1' f  

Solutions for 0.119884.0    

 

            Separation ( 0w ) 

Solutions show many commonly observed characteristics of BL flow: 

 The parameter   is a measure of the pressure gradient, dxdp . 

For 0 , 0dxdp and the pressure gradient is favorable. For 

0 , the 0dxdp  and the pressure gradient is adverse. 

 Negative  solutions drop away from Blasius profiles as separation 

approached 

 Positive  solutions squeeze closer to wall due to flow acceleration 

 Accelerated flow: max near wall 

 Decelerated flow: max moves toward 2  

 

 

 𝜈 
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7.5. Momentum Integral Equation 

 

Historically similarity and other AFD methods used for idealized flows 

and momentum integral methods for practical applications, including 

pressure gradients. 

 

Momentum integral equation, which is valid for both laminar and 

turbulent flow: 

  dyUu
y






0

continuityequation  momentum of form BL  

 
dx

dU

U
H

dx

d
C

U
f

w 




 2

2

1
2  

 

 







































0

*

*

0

1

;

;1

dy
U

u

H

dy
U

u

U

u

 

Momentum: 
y

p

x
vuuu yx






















1
 

The pressure gradient is evaluated form the outer potential flow using 

Bernoulli equation 

21
constant

2
p U   

02
2

1
 xx UUp   

xx UUp   

For flat plate equation 0
dx

dU
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(𝑢 − 𝑈) (𝑢𝑥 + 𝑣𝑦)⏟      
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦

= 𝑢𝑢𝑥 + 𝑢𝑣𝑦 − 𝑈𝑢𝑥 − 𝑈𝑣𝑦 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 − 𝑈𝑈𝑥 −
1

𝜌
𝜏𝑦

⏟                
0

+ 𝑢𝑢𝑥 + 𝑢𝑣𝑦 − 𝑈𝑢𝑥 + 𝑈𝑣𝑦⏟                
0

= 0 

−
1

𝜌
𝜏𝑦 = −2𝑢𝑢𝑥 − 𝑣𝑢𝑦 + 𝑈𝑈𝑥 − 𝑢𝑣𝑦 + 𝑈𝑢𝑥 + 𝑈𝑣𝑦

=
𝜕

𝜕𝑥
(𝑢𝑈 − 𝑢2) + (𝑈 − 𝑢)𝑈𝑥 +

𝜕

𝜕𝑦
(𝑣𝑈 + 𝑣𝑢) 

      
 




 





0 0
0

0

/)(
1

vuvUdyuUUdyuUu
x

dy xwy 


 

 

*2

00

2

2

1







xxx

x
w

UUUU

dyuUUdy
U

u

U
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U
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dx

dU

Udx

dC f 1
2

2

*


  

 
dx

dU

U
H

dx

dC f 
 2

2
, 



 *

H  

  xxf
w U

U
HC

U







 2

2

1
2

 

 

Historically two approaches for solving the momentum integral equation 

for specified potential flow U(x): 

 

1. Guessed Profiles 

2. Empirical Correlations 

 

Best approach is to use empirical correlations to get integral parameters 

(, *,, H, Cf, CD) after which use these to get velocity profile u/U 

0 
0 

 𝑣𝑈 − 𝑣𝑢 
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Thwaites Method 

Multiply momentum integral equation by 

U
 

 H
dx

dU

dx

dU

U

w  2
2












 

 

The equation is dimensionless and, LHS and H can be correlated with 

pressure gradient parameter 
dx

dU






2

 as shear and shape-factor 

correlations 

 

 

 

0.62

5
*

0

( 0.09)

/ (0.25 )

w

i

i

i

S
U

H H a

 
 



   


  

   
 

 

ai = (2, 4.14, -83.5, 854, -3337, 4576) 

 

Note 

 

















 2

2

1

dx

d
U

dx

dU
 

 

Substitute above into momentum integral equation 

 

 H
dx

d
US 








 2

2

1
)(

2





  

 
    


FHS

dx

Ud
U x  22

/
 

 

  0.45 6F     based on AFD and EFD 

 

 

  

 

 

𝜈 

𝜈 𝜈 

𝜈 

𝜈 
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Define 

 2

z so that 
dx

dU
z  

dx

dU
z

dx

dz
U 645.0645.0    

45.06 
dx

dU
z

dx

dz
U  

i.e.   45.0
1 6

5
zU

dx

d

U
 

CdxUzU
x

 
0

56 45.0             

 

x

dxU
U

0

5

6

2

0

2 45.0 


 

0)0(0 x  and U(x) known from potential flow solution 

 

Complete solution: 

 

 
dx

dU






2


 

 



S

U

w   

  H*
 

 

Accuracy: mild px  5% and strong adverse px (w near 0)  15% 
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i. Pohlhausen Velocity Profile: 

  432  dcbaf
U

u
  with 




y
  

a, b, c, d determined from boundary conditions 

1) 0y  u = 0, xyy U
U

u


  

2) y  Uu  , 0yu , 0yyu  

No slip is automatically satisfied. 

 

 

   3

43

1
6

22












G

F

     GF
U

u
 , 1212   

U
p

dx

dU
x






 22

   

pressure gradient parameter related to  

 

  












 





9072945315

37 2

  

 

Profiles are fairly realistic, except near separation.  In guessed profile 

methods u/U directly used to solve momentum integral equation 

numerically, but accuracy not as good as empirical correlation methods; 

therefore, use Thwaites method to get  etc., and then use  to get and 

plot u/U. 

 

 

 

 

 

 

(experiment: separation  = -5) 

separation 
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ii. Howarth linearly decelerating flow (example of exact 

solution of steady state 2D boundary layer)  

 

 
 

Howarth proposed a linearly decelerating external velocity distribution  











L

x
UxU 1)( 0

 as a theoretical model for laminar boundary layer study. 

Use Thwaites’s method to compute:  

a) Xsep 

b) 







 1.0

L

x
C f

 

Note Ux = -U0/L 

 

Solution 














































 11075.01

1

45.0
6

00

5

5

06

6

0

2

L

x

U

L
dx

L

x
U

L

x
U

x



 

 

can be evaluated for given L, ReL  

 

(Note: 
Lx

x







    ,00
) 

 

























11075.0

62

L

x

dx

dU
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123.009.0 
L

X sep

sep  

 

 3% higher than exact solution =0.1199 

 









 1.0

L

x
C f

i.e. just before separation 

 

 

0.0661

1
0.099 Re

2

2(0.099)

Re

f

f

S C

C









 

 



 

 

Compute Re in terms if ReL 

 

  

  2/12
1

2
1

2
1

0

2

2

0

6

0

2

Re77.0Re
257.0

099.02

Re257.0ReRe

Re

257.0

Re

0661.0
0661.0

0661.011.01075.0















LLf

LL

L

L

C

L

L

U

L

L

U

L

U

L












 

 

 

 

 

 

 

To complete 

solution must 

specify ReL 
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Consider the complex potential 
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Orthogonal rectangular hyperbolas 

 

 : asymptotes y = ± x 

 

 : asymptotes x=0, y=0 
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Potential flow slips along surface: (consider 
90 ) 

 

1) determine a such that 0Uvr  at r=L, 
90  

   00)902cos( UaLUaLvr  , i.e. 
L
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a 0  

2) let   rvxU  at x=L-r: 
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7.6. Turbulent Boundary Layer 
 

1. Introduction: Transition to Turbulence   

Chapter 6 described the transition process as a succession of Tollmien-

Schlichting waves, development of Λ - structures, vortex decay and 

formation of turbulent spots as preliminary stages to fully turbulent 

boundary-layer flow. 

The phenomena observed during the transition process are similar for 

the flat plate boundary layer and for the plane channel flow, as shown in 

the following figure based on measurements by M. Nishioka et al. 

(1975). Periodic initial perturbations were generated in the BL using an 

oscillating cord.  

For typical commercial surfaces transition occurs at 5

, 105Re trx . 

However, one can delay the transition to 6

, 103Re trx  with care in 

polishing the wall.  

 
2. Reynolds Average of 2D boundary layer equations   

    

;;      ;     ; pppwwwvvvuuu   

 

Substituting u, v and w into continuity equation and taking the time 

average we obtain, 



ME:5160  Chapter 7 

Professor Fred Stern     Fall 2020  29 

 

 

0














z

w

y

v

x

u
       

0
'''
















z

w

y

v

x

u

 

Similarly for the momentum equations and using continuity (neglecting 

g), 

ij

DV
p

Dt
     

Where  
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Assume  

a.   xx  which means uv  ,    yx 








 

b. mean flow structure is two-dimensional: 0w ,  
0





z  

Note the mean lateral turbulence is actually not zero, 02' w  , but its z 

derivative is assumed to vanish. 

Then, we get the following BL equations for incompressible steady 

flow: 
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Laminar Turbulent 
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Where eU is the free-stream velocity and: 

''vu
y

u
 






 

Note:  

 The equations are solved for the time averages u and v  

 The shear stress now consists of two parts: 1. first part is due to 

the molecular exchange and is computed from the time-averaged 

field as in the laminar case; 2. The second part appears 

additionally and is due to turbulent motions.  

 The additional term is new unknown for which a relation with 

the average field of the velocity must be constructed via a 

turbulence model. 

 

Integrate y- momentum equation across the boundary layer 

  2'vxpp e   

So, unlike laminar BL, there is a slight variation of pressure across the 

turbulent BL due to velocity fluctuations normal to the wall, which is no 

more than 4% of the stream-wise velocity and thus can be neglected. 

The Bernoulli relation is assumed to hold in the inviscid free-stream: 

/ /e e edp dx U dU dx   

Assume the free stream conditions,  xUe  is known, the boundary 

conditions: 

No slip:                               00,0,  xvxu  

Free stream matching:       xUxu e,  
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3. Momentum Integral Equations valid for BL solutions   

 

The momentum integral equation has the identical form as the 

laminar-flow relation: 

 
2

2
2

f

e

we

e

C

Udx

dU

U
H

dx

d





 

 

For laminar flow:  

( ,, HC f ) are correlated in terms of simple parameter  
2

edU

dx





  

 

For Turbulent flow:  

( ,, HC f ) cannot be correlated in terms of a single parameter. 

Additional parameters and relationships are required that model the 

influence of the turbulent fluctuations. There are many possibilities all of 

which require a certain amount of empirical data. As an example we will 

review the  method. 

 

4. Flat plate boundary layer (zero pressure gradient)   

 
a. Smooth flat plate  

 

Ret = 5×105 3×106 for a flat plate boundary layer 

        Recrit  100,000 

  
dx

d

2

cf 
      

 

as was done for the approximate laminar flat plate boundary-

layer analysis, solve by expressing cf = cf () and  = () and 

integrate, i.e. assume log-law valid across entire turbulent 

boundary-layer 
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  power-law fit 

Next, evaluate 
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can use log-law or more simply a power law fit 
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neglect laminar sub layer and 

velocity defect region 

cf () 

Note: cannot be used to 

obtain  cf () since w   
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or 
1/70.16Rex

x

   

7/6x  almost linear 

 

1/7

0.027

Re
f

x

c   

𝜏𝑤,𝑡𝑢𝑟𝑏 =
0.0135𝜇1/7𝜌6/7𝑈13/7

𝑥1/7
  

w,turb decreases slowly with x, increases with  and U2 and insensitive to 

 

𝐶𝐷 = 𝐶𝑓 =
0.031

𝑅𝑒𝐿
1/7 =

7

6
𝑐𝑓(𝐿)  

𝛿∗ =
1

8
𝛿  

𝐻 =
𝛿∗

𝜃
= 1.3  

These formulas are for a fully turbulent flow over a smooth flat 

plate from the leading edge; in general, give better results for 

sufficiently large Reynolds number ReL > 107. 

 
Comparison of dimensionless laminar and turbulent flat-plate velocity profiles (Ref: White, 

F. M., Fluid Mechanics, 7th Ed., McGraw-Hill) 

i.e., much faster 

growth rate than 

laminar 

boundary layer  

𝑢

𝑈
≈ (

𝑦

𝛿
)

1
7
 

𝑢

𝑈
≈ 2(

𝑦

𝛿
) − (

𝑦

𝛿
)
2

 

(See Table 4-1 on 

page 13 of this 

lecture note) 
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Alternate forms by using the same velocity profile u/U = (y/)1/7 

assumption but using an experimentally determined shear stress  

formula w = 0.0225U2(/U)1/4 are: 

 

         
1/50.37 Rex

x

       1/5

0.058

Re
f

x

c         1/5

0.074

Re
f

L

C        

shear stress:    
2

1/5

0.029

Re
w

x

U
    

 

These formulas are valid only in the range of the experimental 

data, which covers ReL = 5  105  107 for smooth flat plates.  

 

Other empirical formulas are by using the logarithmic velocity-

profile instead of the 1/7-power law: 

 

   
𝛿

𝐿
= 𝑐𝑓(0.98 log 𝑅𝑒𝐿 − 0.732)  

 

   𝑐𝑓 = (2 log 𝑅𝑒𝑥 − 0.65)
−2.3 

 

   𝐶𝑓 =
0.455

(log10 𝑅𝑒𝐿)
2.58     

 
These formulas are also called as the Prandtl-Schlichting skin-

friction formula and valid in the whole range of ReL  109. 

 

For these experimental/empirical formulas, the boundary layer is 

usually “tripped” by some roughness or leading edge disturbance, to 

make the boundary layer turbulent from the leading edge. 

 

No definitive values for turbulent conditions since depend on 

empirical data and turbulence modeling. 
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Finally, composite formulas that take into account both the initial 

laminar boundary layer and subsequent turbulent boundary layer, i.e. 

in the transition region (5  105 < ReL < 8  107) where the laminar 

drag at the leading edge is an appreciable fraction of the total drag:  

 

𝐶𝑓 =
0.031

𝑅𝑒𝐿

1
7

−
1440

𝑅𝑒𝐿
 

 

𝐶𝑓 =
0.074

𝑅𝑒𝐿

1
5

−
1700

𝑅𝑒𝐿
 

 

𝐶𝑓 =
0.455

(log10 𝑅𝑒𝐿)
2.58

−
1700

𝑅𝑒𝐿
 

 

with transitions at Ret = 5  105 for all cases.  
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Local friction coefficient 𝑐𝑓 (top) and friction drag coefficient 

𝐶𝑓(bottom) for a flat plate parallel to the upstream flow. 
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b. Influence of roughness 

The influence of roughness can be analyzed in an exactly analogous 

manner as done for pipe flow i.e.  
*1

ln ( )

1
( ) ln(1 0.3 )

yu
u B B

B


 

 


 

 

   

   
 

i.e. rough wall velocity profile shifts downward by a constant amount  

)(  B  which, increases with  /*u
 

 

A complete rough-wall analysis can be done using the composite log-

law in a similar manner as done for a smooth wall i.e. determine Cf(δ) 

and θ(δ) from       and equate using momentum integral equation 

)(2)( 
dx

d
C f   

Then eliminate δ to get )/,( xxC f   

However, analysis is complicated: solution is Fig. 7.6. For fully rough-

flow a curve fit to the Cf and CD equations is given by,  

 

1 

1 
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Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on 

smooth and rough flat plates.  
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Again, shown on Fig. 7.6. along with transition region curves developed 

by Schlichting which depend on Ret =     5×105  

                                                                  3×106  

 

Fully rough flow 
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5. Boundary layer with pressure gradient   
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The pressure gradient term has a large influence on the solution. In 

particular, adverse pressure gradient (i.e. increasing pressure) can cause 

flow separation. Recall that the y momentum equation subject to the 

boundary layer assumptions reduced to 

 

py= 0 i.e. p = pe = constant across BL. 

 

That is, pressure (which drives BL equations) is given by external 

inviscid flow solution which in many cases is also irrotational. Consider 

a typical inviscid flow solution (chapter 8) 
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Even without solving the BL equations we can deduce information about 

the shape of the velocity profiles just by evaluating the BL equations at 

the wall (y = 0) 
2

2

e  - U

e

e e

pu

y x

p dU
where

x dx








 






 

 

which, shows that the curvature of the velocity profile at the wall is 

related to the pressure gradient. 

 

Effect of Pressure Gradient on Velocity Profiles 

Point of inflection: a point where a graph changes between concave 

upward and concave downward. 

The point of inflection is basically the location where second derivative 

of u  is zero, i.e. 0
2

2






y

u
 

 

(a) favorable gradient: px<0, Ux>0, uyy<0 

 

 
No point of inflection i.e. curvature is negative all across the BL and BL 

is very resistant to separation.  Note uyy()<0 in order for u to merge 

smoothly with U. 
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(b) zero gradient: px = Ux = uyy = 0 

 
 

 

 

 

 

 

(c) weak adverse gradient:  px>0, Ux<0, uyy>0 

 

 
PI in flow, still no separation 
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(d) critical adverse gradient: px>0, Ux<0, uyy>0, uy = 0 

 

 

PI in flow, incipient separation 

 

(e) excessive adverse gradient: px>0, Ux<0, uyy>0, uy < 0 

 

 

 
 

PI in flow, backflow near wall i.e. separated flow region 

 

i.e. main flow breaks away or separates from the wall: large increase in 

drag and loss of performance: 

 Hseparation = 3.5 laminar          

               = 2.4 turbulent          

τw < 0 
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6. -Method 

 

 

𝜆 =
√2

𝑐𝑓
= 𝑎(Π)

𝐻

𝐻 − 1
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7. 3-D Integral methods 

 

Momentum integral methods perform well (i.e. compare well with 

experimental data) for a large class of both laminar and turbulent 2D 

flows. However, for 3D flows they do not, primarily due to the inability 

of correlating the cross flow velocity components. 

 

 
 

The cross flow is driven by 
z

p




, which is imposed on BL from the 

outer potential flow U(x,z). 

 

3-D boundary layer equations 

 

equations closure   
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Differential methods have been developed for this reason as well as for 

extensions to more complex and non-thin boundary layer flows. 
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7.7 Separation 

What causes separation? 

  The increasing downstream pressure slows down the wall flow and 

can make it go backward-flow separation. 

   0dxdp   adverse pressure gradient, flow separation may occur. 

   0dxdp   favorable gradient, flow separation can never occur 

 

Previous analysis of BL was valid before separation. 

Separation Condition 

0
0















y

w
y

u
  

 

 
Note: 1. Due to backflow close to the wall, a strong thickening of the  

              BL takes place and BL mass is transported away into the  

              outer flow 

         2. At the point of separation, the streamlines leave the wall at a  

             certain angle.  
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Separation of Boundary Layer 

 
Notes:  

 1. D to E, pressure drop, pressure is transformed into kinetic energy. 

 2. From E to F, kinetic energy is transformed into pressure. 

 3. A fluid particle directly at the wall in the boundary layer is also  

     acted upon by the same pressure distribution as in the outer flow  

     (inviscid). 

 4.  Due to the strong friction forces in the BL, a BL particle loses so  

    much of its kinetic energy that is cannot manage to get over the  

    “pressure gradient” from E to F. 

 5. The following figure shows the time sequence of this process: 

a. reversed motion begun at the trailing edge 

b. boundary layer has been thickened, and start of the reversed  

    motion has moved forward considerably. 

c. and d. a large vortex formed from the backflow and then soon  

    separates from the body. 
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Examples of BL Separations (two-dimensional) 
Features: The entire boundary layer flow breaks away at the point of 

zero wall shear stress and, having no way to diverge left or right, has to 

go up and over the resulting separation bubble or wake. 

 

1. Plane wall(s) 

 
(a). Plane stagnation-point flow: no separation on the streamlines of  

      symmetry (no wall friction present), and no separation at the wall  

      (favorable pressure gradient) 

(b).Flat wall with right angle to the wall: flow separate, why? 

 

2. Diffuser flow: 

 

Thin wall 
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3. Turbulent Boundary Layer 

 
  

 
 Influence of a strong pressure gradient on a turbulent flow  

 (a) a strong negative pressure gradient may re-laminarize a flow 

 (b) a strong positive pressure gradient causes a strong boundary  

       layer top thicken.  (Photograph by R.E. Falco)   

 

Examples of BL Separations (three-dimensional) 

Features: unlike 2D separations, 3D separations allow many more  

options.  

There are four different special points in separation: 

(1). A nodal Point, where an infinite number of surface streamlines  

      merged tangentially to the separation line 

(2). A saddle point, where only two surface streamlines intersect and  

       all others divert to either side 

(3). A focus, or spiral node, which forms near a saddle point and  

      around which an infinite number of surface streamlines swirl 

(4). A three-dimensional singular point, not on the wall, generally  

       serving as the center for a horseshoe vortex. 

 

 

 

 

 

 

 

(a) 

(b) 
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1. Boundary layer separations induced by free surface (animation) 

 
                                              CFDSHIP-IOWA 

 

 

2.  Separation regions in corner flow 
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3. 3D separations on a round-nosed body at angle of attack 

 

 

 

 

 

 

 

 

 

 

 

Video Library (animations from “Multi-media Fluid Mechanics”,  

          Homsy, G. M., etc.) 

            
       Conditions Producing Separation                      Separations on airfoil (different attack angles) 

  
                           Leading edge separation                                  Separations in diffuser 
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     Effect of body shape on separation                          Laminar and Turbulent separation 

                   
Flow over cylinders: effect of Re                                     Flow over spheres: effect of Re 
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           Flow over edges and blunt bodies                              Flow over a truck 

 

 
  Effect of separation on sports balls 


