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Chapter 6: Viscous Flow in Ducts

6.4 Turbulent Flow in Pipes and Channels using mean-
velocity correlations

1. Smooth circular pipe

Recall laminar flow exact solution

f = 82'\' =64/Reg Rey = Uaved <2000
Paye v

A turbulent-flow “approximate” solution can be
obtained simply by computing uaw based on log law.

U_LwWog
u x Vv
Where

u=u(y);x=04LB=5u =.r,/p;y=R-r

V:u 9 i
A

ae —
K Vv
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u {llnﬂ+ B:|27ZI’ dr

Or:
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Vo oa4mY 134
u \Y

f %% =1.99log[Re, f'?]-1.02

=2log[Re, f¥?]1-0.8 ~_,
EFD Adjusted constants
f only drops by a factor of 5 over 10* < Re < 108

Since f equation is implicit, it is not easy to see
dependency on p, 1, V, and D

S -1/4 4000 < Rep < 10°
f (pipe) =0.316Rep Blasius (1911) power law

curve fit to data
no_Ap_Lve
'y D 29

Turbulent Flow: |Ap =0.168Lp™ " /D" "

/ Drops weakly

Only slightly pipe size
with pt

Near quadratic
(as expected)

Nearlv linear

_ 0-241|—,03/4,U1/4 D—4.75Q1.75

Laminar flow: |Ap =84LQ/ zR*
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Ap (turbulent) decreases more sharply with D than
Ap (laminar) for same Q); therefore, increase D for smaller
Ap. 2D decreases Ap by 27 for same Q.

U oo u(r—O) 1, Ru

L =—In—+B
u u’ K U
Combine with
V_1.RC 3
u K L 2K
:>V*:umfx—3:>V—um 3u :umaX:1+3L
u u K 2K V 2K\
Also
*2 *
u
r,=pu” and f = = Y _ [f/8
= /8,0V2 1/8pV* V

u 3u”
—, _max :1+—:1+—w/f/8=1+1.31/f
V 2KV 2K

Or:

For Turbulent Flow: |;,  ~

T R TS A T L L

TN Ly LYY 808

Recall laminar flow:
V /U, =05
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TABLE 10.1 EXPONENTS FOR POWER-LAW EQUATION AND
RATIO OF MEAN TO MAXIMUM VELOCITY

Re— 4 x 10° 2.3 x 104 1.1 x 10° 1.1 x 10° 3.2 x 10°
1 1 1 1
m—> = e — S e
B 6.0 6.6 7.0 8.8 10.0
V[ Viax — 0.791 0.807 0.817 0.850 0.865

source: Schlichting (36). Used with permission of the McGraw-Hill Companies.

Power law fit to velocity profile:

_— m

B el B

. " m = m(Re)
11
10
a

LS

7\
6
siu.‘ 10° 105

pVD
H

Re=

MFIGURE 8.7 Exponent, #, for power-law velocity profiles.
(Adapted from Ref. 1.)

10
Laminar =
’
7 U
P
Turbulent <=
|
‘I[ HFIGURE B.18
) 0.4 L0 'Typical laminar flow and
7 turbulent Now velocity
Vv profiles.
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2.

Turbulent Flow in Rough circular pipe

Ut=f(y" k") f = f(Reg,k/d)

Ut= E In y+ +B —AB(k+) +«——  Log law shifts downward
K

which leads to three roughness regimes:

1. k"<4 hydraulically smooth
2. 4<k*<60 transitional roughness (Rre dependence)
3. k">60 full rough (no Re dependence)

¢-1/2 _ _2log k/d N 2.51 Moody diagram
3.7 Red f—1/2

g + 37 formula

~ 138lo {6.9 (k/d)l-“} Approximate explicit
Red

There are basically four types of problems involved with
uniform flow in a single pipe:

1.

2.

Determine the head loss, given the kind and size of pipe
along with the flow rate, Q = A*V

Determine the flow rate, given the head, kind, and size of
pipe

Determine the pipe diameter, given the type of pipe, head,
and flow rate

Determine the pipe length, given Q, d, hs, ks, , ¢
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1. Determine the head loss
The first problem of head loss is solved readily by obtaining f
from the Moody diagram, using values of Re and ks/D
computed from the given data. The head loss hs is then
computed from the Darcy-Weisbach equation.

f = f(Rep, ks/D)

2
hfoLV_ZAh Ah:(21—22)+(&—&j
D 2¢g Yo7

— A(B + zj
/4
Rep = ReD(V, D)

2. Determine the flow rate
The second problem of flow rate is solved by trial, using a
successive approximation procedure. This is because both
Re and f(Re) depend on the unknown velocity, V. The
solution is as follows:
1) solve for V using an assumed value for f and the Darcy-

Weisbach equation

v :|:Zghf }1/2 f-L2
L/D

%—/

known from note sign
given data
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2) using V compute Re
3) obtain a new value for f = f(Re, ks/D) and reapeat as
above until convergence

DSIZ Zghf 1/2
fl/2:
Or can use Re » ( 1

scale on Moody Diagram

1) compute re 2 and ks/D

2)read f
2
3)solve V from h; =f Lve
D 29
4)Q =VA

3. Determine the size of the pipe
The third problem of pipe size is solved by trial, using a
successive approximation procedure. This is because hg, f,
and Q all depend on the unknown diameter D. The solution
procedure is as follows:

1) solve for D using an assumed value for f and the Darcy-
Weisbach equation along with the definition of Q

8|_Q2 1/5

D:|: 5 :| -f1/5
n°gh;
%{—/

known from
given data
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2) using D compute Re and ks/D

3) obtain a new value of f = f(Re, ki/D) and repeat as above
until convergence

4. Determine the pipe length
The four problem of pipe length is solved by obtaining f from

the Moody diagram, using values of Re and ks/D computed

from the given data. Then using given h¢,V, D, and

29 Dh;

calculated f to solve L from L_\? =
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Colabrook White l
20 - < 48% smoath, 47% fine graing, 5% large graing
0 85% uniform sand, 5% large grains ~
W 97 5% uniform sand, 2,5% large grains ~
& 95% smooth, 5% large grains ,-ff
& Uniform nrnl:l ’," 1
= === Prandtl-Schlichting | P
sand-grain roughness
A8 10
A
0 F. . Hama M_{Dsaﬂlkﬂ\ﬂl [ flurme)
o A | |
1 10 102 103 10
£ = vk
»
FIGURE #6-18
Composite plot of the profile-shift parameter AB{k*} for various roughness geometries, as com-
piled by Clauser {1958),
L
d
“Fully rough” flow >
10 — 4
8 T 3 rx 102
6 : / :
1.
5 Py S 1
a - . | E
s e = : W ig—3
P Y \ e =5 2
20 % ot
1.5 A 7 —— 2
. .
1.2 \ %""'h% S = o4 pX 10
1.0 : N4 ] “‘\2
0.8 i | = 1
J523468 1523468 1523468 152 3468 152 3 4 5}1 1078
10 1ot 1 108 107 !
A= u
[
FIGURE 6-19

Friction factors for turbulent flow in rough pipes. [ After Moody (1944).)
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3. Concept of hydraulic diameter for noncircular
ducts

For noncircular ducts, tw= f(perimeter); thus, new

87y 2
7 and C¢ =—%
,OV oV

definitions of T =

Define average wall shear stress
1P :
=5 [z, ds ds=arc length, P = perimeter
0
Momentum:

ApA— TWPL+74°\L(AZ) 0
L

L
Ah=A(p/ _ v
(p/y+2) AP

7, L

A/P =Rn= Hydraulic radius (=R/2 for circular pipe and Ah= RI2
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Energy:
Tl

Al P

- _AAhy _-Aydh_—Ad(p+)
TP L P dx P  dx

Ah=h, =

N
Al dp
E _a non-circular duct

Recall for circular pipe:

In analogy to circular pipe:

N N

- Al dp| _D,| dp jé_& AN Hydraulic
P

Tw = =

P dx 4 dx

=Dy =— diameter

For multiple surfaces such as concentric annulus P and A
based on wetted perimeter and area

— 8rw VD

f= E = f(Re, ,&/D,) Rep =—+
— 2 ¢ . 2

Ah:hL:rWL:,oV f L _ 7 LV

R, 8 R, D, 29
However, accuracy not good for laminar flow (40%) and
marginal turbulent flow (15%).
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a. Accuracy for laminar flow (smooth non-circular

pipe)

Recall for pipe flow:

P_=C,Re=16

Oc;

P, =fRe=064

Poiseuille# (PO){

Recall for channel flow:

f_24/1_ 48 96
pvh  Re, Re,
—
Rep,
C,=fld=
c _bu_ 12 _ 24
" oVh Re, Re,
Rep,

P =C,Re, =24

Oc;

R =fRe, =96

Poiseuille# (PO){

Therefore:

Pch pipe POf pipe _ 16 _ % _ g
Pch channel based on D, R 24 96 3

0 channel based on D,
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Thus, If we could not work out the laminar theory and
chose to use the approximation f Re, ~64or C; Re, ~16,
we would be 33 percent low for channel flow.

25 — Concentric
annulus
F 9

&
-»
r 3

For laminar flow, P,

20 4 I
: varies greatly,
2 therefore it is better to
) .
: use the exact solution
16 -
15 ~ Table 6.4 Laminar Friction
Constants f Re for Rectangular and
~ Triangular Ducts
Circular sector )
i Rectangular Isosceles triangle
ol L1 L b 4
00 0.2 04 0.6 0.8 10 _ u
- b
a
FIGURE 3-13 bla JRep, B, deg J/Rep,
Comparison of Poiscuille numbers for various duct cross sections when Reynolds number is scaled
by the hydraulic diameter. [ Numerical data taken from Shah and London (1978)] 0.0 06.00 0 48.0
0.05 89.91 10 51.6
0.1 84.68 20 52.9
0.125 82.34 30 53.3
0.167 78.81 40 52.9
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3

1.0 56.91 90 48.0
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b. Accuracy for turbulent flow(smooth non-circular

pipe)

For turbulent flow, Dn works much better especially if
combined with “effective diameter” concept based on
ratio of exact laminar circular and noncircular duct Pg

numbers, i.e. 16/Poc, Or 64/Pos .

First recall turbulent circular pipe solution and compare
with turbulent channel flow solution using log-law in both
cases

Channel Flow

h *
V:ﬁju*{lm(h_y)“JrB}dy Y=h-y wall coordinate
0

K v

:u*[llnhu+ B—lJ
K v K
4A _ . 4(2hB) _

D, =—=1Iim =4h p= i
" T T B 2B+ 4h h=half width

. VD, V4h
Define Rep, = U“ =

v
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f? = 2Iog(ReDh £42)-1.19

\

Very nearly the same as circular pipe
7% to large at Re = 10°
4% to large at Re = 108

Therefore error in Dy concept relatively smaller for
turbulent flow.

Note  f**(channel)=2log(0.64Re, f**)-0.8

—0.64D Py (circle) =16
Define Deffective =" " P (channel)=24 "

\ J
Y

Laminar solution

(therefore, improvement on Dy is)
VDeff

)
P, (circle) Poc, (circle)

- P, (non—circular) " - Poc, (non—circular)

Repgs; =

eff

Or

B 64 D - 16
P,; (non—circular) " Poc, (non—circular)

N /

From exact laminar solution

eff
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10.5 Flow at Pipe Inlets and [osses From Fittings
For real pipe systems in addition to friction head loss these
are additional so called minor losses due to

1. entrance and exit effects

. . can be
2. expansions and contractions laree
3. bends, elbows, tees, and other fittings <
, . effect
4. valves (open or partially closed) )

For such complex geometries we must rely on experimental
data to obtain a loss coefficient

1]' 111

K= —2'\\ head loss due to minor losses

2¢g
In general,

K = K(geometry, Re, €/D)
-
dependence usually
not known

Loss coefficient data 1s supplied by manufacturers and also
listed in handbooks. The data are for turbulent flow
conditions but seldom given in terms of Re.
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Modified Energy Equation to Include Minor Losses:

1 1 5
Pi. o +2—0L1V12 +h, P2 +5-0,V3 +h +h; +3h,

Y g Y 2g /2
v

hm =K—
2g

Note: Xh,, does not include pipe friction and e.g. in elbows
and tees, this must be added to hs.

1. Flow1in a ben_d:

- N 1o 1ép
\ R A 4
N, ‘;S . .
\ & ) p er
8 ve \ / \ centrifu
-y \ acceler:
ek ‘ " G >
”H‘"F‘\J f} < 6w
&=0. /
1.e. o > 0 which 1s an adverse pressure gradient in r
@

direction. The slower moving fluid near wall responds first
and a swirling flow pattern results.

Q This swirling flow represents an
¢ o energy loss which must be added
Q to the hy.
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Also, flow separation can result due to adverse longitudinal
pressure gradients which will result in additional losses.

A AL Chea

TN
S \\‘

oy 1o \Sa LY

This shows potential flow is not a good approximate in
internal flows (except possibly near entrance)
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2. Valves: enormous losses
3. Entrances: depends on rounding of entrance

4. Exit (to a large reservoir): K= 1
i.e., all velocity head is lost

5. Contractions and Expansions

sudden or gradual
'\—.v_f

theory for expansion:

. (2
(Vl B Vq )2 O
h, = =
2g
from continuity, momentum, and energy
(assuming p = p; 1n separation pockets)
d>) h
— KSE = ].__2 = 2111
D V]
2g
no theory for contraction:
d? A
KSC = .42— 1_ i - -
1l 2 i ) o
D™ N
—_— Vina,  Camivido

from experiment
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If the contraction or expansion 1s gradual the losses are
quite different. A gradual expansion is called a diffuser.
Diffusers are designed with the intent of raising the static
pressure.

C, = I)lz Pi
—pV/
2F 1
2 ®
c —1_| A Bernoulli and
Pies A, continuity equation

K= —C, Energy equation

h
V Zm - Cpideal
Ag

Actually very complex flow and

C, = C, (geometry, inlet flow conditions)
1.e., fully developed (long pipe) reduces C,
thin boundary layer (short pipe) high C,
(more uniform inlet profile)
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i
FIGURE 10. 10
Flow characteristics at a Limit of boundary layer
pipe infet (not io scale).

Region of developing flow Fully developed flow
(nonuniform flow) (uniform flow)
1o %D =0 .
| xD=45 ~
08} Cles EI SN Re = 388.000

FIGURE 10. 11 D= .

Distribution of velocity 06 _;\‘“‘ wpe | o Turbulent

md pressure in the inlet U4k 3 405 avgiz oy L

region of a pipe [Barbin | \l/ ﬂ oW

and Jones (3)]. 0.2 I kY L

fa) Velocity distribution. \ 1 P T S R TR
(B Pressure distribution. 0.5 1.1 1.2 1.3 o 5 10 15 20 25 30
D
()

FIGURE 10, 12

Flow ar a sharp-edged
inler.

FIGURE 10.13

Flow pattern in an
elbow.

Bl o e R
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TABLE 10.2 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
b rid K. )"
Pipe entrance N 0.0 0.50
0.1 0.12
h, =K, V?/2g r(r >0.2 0.03
Kc Ke
Contraction DDy 8 =60 #=180° 2)
Dy 0.0 0.08 0.50
—,—ﬁ\_jf‘@ 020 0.8 0.49
Dy i 0.40 0.07 0.42
—t 060  0.06 0.27
0.80 0.06 0.20
hy = KcVif2g 0.90 0.06 0.10
'K.I.‘,' Kg
Expansion » D/D, 8=20" 0=180° (2)
: 0.0 1.00

¥
%L"e L] 020 030 0.87
Tt 040 025 0.70

0.60 0.15 0.41
h, = KeV3/2g 0.80 0.10 0.15
Vanes Without
VANEs K, =11 (37)
90° miter bend
With
vanes Ky = 0.2 (37
rid (3)
and
= 5
90° smooth ] Ky = 0.33 (19)
bend 2 0.19
o 4 0.16
6 0.21
8 0.28
10 0.32
Globe valve —wide open K, =100 (37)
Angle valve—wide open K.= 50
Gate valve—wide open K,= 02
Gate valve —half open K.= 56
Thnlaaded Return bend K,= 22
.pl,pc Tee
fittings straight-through flow K= 04
side-outlet flow K= 18
90° elbow Ky= 09

457 elbow K,= 04

*Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditioni1
Engineers, Atlanta, Georgia, from the 1981 ASHRAE Handbook-Fundamentals.



058:0160 Chapter 6-part4

Professor Fred Stern  Fall 2020 23
HOURE10.14 Steeper gradient in the EGL due to
EGL and HGL at g turbulence produced at the entrance
sharp-edged pipe
Lenfrance.
EGL
Drop in the HGL
due to high
velocity in flow
just downstream
iy due to
—— entrance
-:A__-’—::.*-.'r:- p2
2
hy due to partially
closed valve
GURE 10.15 — =Ll Aa o

ead losses in a pipe.
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FIGURE 10.14 .
S el Steeper gradient in the EGL due to
EGL and HGL at g turbulence produced at the entrance
sharp-edged pipe
Lenfrance.
EGL
Drop in the HGL
due to high
velocity in flow
just downstream
iy due to
—— entrance
-:A__-’—::.*-.'r:- p2
2
hy due to partially
closed valve
GURE 10.15 — =Ll Aa o

ead losses in a pipe.
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For a gradual contraction, the loss is very small, as seen from the following exper-
imental values [15]:

Contraction cone angle 28, deg I 30 | 435 I &0
K for gradual contraction I 002 | om | owm

References 15, 16, 43, and 46 contain additional data on minor losses.

EXAMPLE 6.16

Water, p = 1.94 slugs/ft® and » = 0.000011 fi¥/s, is pumped between two reservoirs at
0.2 ft*/s through 400 ft of 2-in-diameter pipe and several minor losses, as shown in
Fig. EA.16. The roughness ratio is &/d = 0.001. Compute the pump horsepower required.

Screwed Sharp@ HL=1201

Half-open
gate valve
[2-in
bend radius
Open globe 2
valve 400 ft of pipe, 4 = E&
E6.16
Solution

Write the steady flow energy equation between sections 1 and 2, the two reservoir surfaces:

g (Pz Vi )
E ety =52 =4 + A, + E:h —h
o g zg "'1 h)’ m P

where h, is the head increase across the pump. But since py = py and V) = V5 = 0, solve
for the pump head:

b=z — o+t Ehm=120ft~20ﬂ+£(%+ EK) (1)
Now with the fiow rate known, calculate
g 02f's

V=E—m—9.l7ﬂfs

Now list and sum the minor loss coefficients:
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6.10 Multiple-Pipe Systems®

Pipes in Series

6.10 Multiple-Pipe Systems 393

Loss K
Sharp entrance {(Fig. 6.21) 0.5
Open globe valve (2 in, Table 6.5) 6.9
12-in bend (Fig. 6.20) 0.25
Regular 90° elbow (Table 6.5) 0.95
Half-closed gate valve (from Fig. 6.185) 27
Sharp exit {Fig. 6.21) 10
) TK=123

Calculate the Reynolds number and pipe friction factor:

vd _ 9.17¢)

" Doooo1] 12000

Re, =

For efd = 0.001, from the Moody chart read f = 0.0216. Substitute into Eq. (1):

(9.17 fi/s)* [ 0.0216(400)
20221y &

= 1001t + 84 ft = 184 ft pump head

hy = 100 ft + = 12.3]

The pump must provide a power to the water of
P = pgOh, = [1.94(32.2) b/ }(0.2 f*/s)(184 ft) = 2300 ft - Ibf/s
The conversion factor iz 1 hp = 550 ft + 1bifs. Therefore

2300 : )
= —— = g .
P 550 2hp . _ ) Ans

Allowing for an efficiency of 70 to 80 percent, a pump is needed with an input of about 6 hp.

If you can solve the equations for one-pipe systems, you can solve them all: but when
Systems contain two or more pipes, certain basic rules make the calculations very
smooth. Any resemblance between these rules and the rules for handling electric cir-
cuits is not coincidental,

Figure 6.24 shows three examples of multiple-pipe systems.

The first is a set of three (or more) pipes in series. Rule 1 is that the flow rate is the
same in all pipes:

O = 0, = Q3 = const
or Vidi = Vydi = Vid} (6.84)

Rule 2 is that the total head loss through the system equals the sum of the head loss
in each pipe:

Aty = Ay + by + Aby (6.85)

*This section may be omitted without Joss of continuity.



058:0160

Chapter 6-part4

Professor Fred Stern  Fall 2020 27

394 Chapter 6 Viscous Flow in Ducts

Fig. .24 Examples of multiple-
pipe systems: (a) pipes in series;
() pipes in parailel; () the three-
reservoir junction problem.

In terms of the friction and minor losses in each pipe, we could rewrite this as

Aly_p= 4 (f Ly + EK,) (f!L“ + EK,)

74
+ (sts + zx,) (6.86)

and so on for any number of pipes in the series. Since ¥, and V5 are proportional to
V, from Eq. (6.84), Eq. (6.86) is of the form
VZ
Ahgp = 2_;(30 T afi + arfo + azfy) (6.87}

where the «; are dimensionless constants. If the flow rate is given, we can evaluate
the right-hand side and hence the total head loss. If the head loss is given, a littie iter-
ation is needed, since f|, fs, and f; all depend on V| through the Reynolds number.
Begin by calculating fy, f>, and f3, assuming fully rough flow, and the selution for V,
will converge with one or two iterations. EES is ideal for this purpose.
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EXAMPLE 6.17

Given is a three-pipe series system, as in Fig, 6.24a. The total pressure drop is p, — pg =
150,000 Pa, and the elevation drop is z4 — zp = 5 m. The pipe data are

Pipe L.om 4, cm €, mm eld
1 100 g 024 0.003
2 150 & 012 0.002
E] A1 4 0.20 0005

The fluid is water, p = 1000 kg/m” and » = 1.02 x 10™* m%/s. Calculate the flow rate Q in
m*/h through the system.

Solution

The total head loss across the system is

ﬁﬁA__’a = Pa ™ Pg + 2y~ 2 = lﬂﬂ.mc‘

kil hhelil = 20,
o2 100008 o™= 203m

From the continuity relation (6.84) the velocities are

di 16 di
V, =S¥, =—V Vi ==V, = 4V
: d% 1 9 1 3 fﬁ | 1
V. 4
and Re, b Re, = =Re, Re; = 2Re,

TV T3

Neglecting minor losses and substituting into Eq. (6.86), we obtain
1 2
Ahy g = Ef.gl'[ 1250, + 2500(?6) L+ 2000(4)?}}

2
or 203 m= —;{‘é (1250, + 79007 + 32,0006) (1)

This is the form that was hinted at in Eq. (6.87). It seems 10 be dominated by the third
pipe loss 32,000f;. Begin by estimating £, f2, and f, from the Moody-chart fully rough
regime:

Ai=00262 £ =003 f=00304

Substitute in Eq. (1) to find V§ = 2(20.3)/(33 + 185 + 973). The first estimate thus is V, =
0.58 m/s, from which

Re, = 45,400 Re, = 60,500 Re, = 90,800
Hence, from the Moody chart,

fi=00288  f=0020 f, =0.0314
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Pipes in Parallel

Substitution into Eqg. (1) gives the beter estimate
vV, =0565mfs @ =1imdV, =284 x 10 mYs
or Q= 102m*h Ans.

A second iteration gives @ = 10.22 m*/h, a negligible change.

The second multiple-pipe system is the parallel flow case shown in Fig. 6.24b. Here
the pressure drop is the same in each pipe, and the total flow is the sum of the indi-
vidual flows:

Ay = Ahy = Ah, = Al (6.884)

0= +Q:+ O {6.88b)

If the total head loss is known, it is straightforward to solve for Q; in each pipe and
sum them, as will be seen in Example 6.18. The reverse problem, of determining ZQ;
when /iy is known, requires iteration. Each pipe is related to i by the Moody relation
he = ALIYV*I2g) = fQ%C, where C = 7°gd’/8L. Thus each pipe has nearly quad-
ratic nonlinear parallel resistance, and head loss is related to total flow rate by

3 Q? a ﬂi‘,gd!}

Since the f; vary with Reynolds number and roughness ratio, one begins Eq. (6.89)
by guessing values of f; (fully rough values are recommended) and calculating a first
estimate of /i Then cach pipe yields a flow-rate estimate Q; = (Cihidf)'"? and hence
a new Reynolds number and a better estimate of f;. Then repeat Eq. {6.89) to con-
vergence.

It should be noted that both of these parallel-pipe cases—finding either ZQ or i—
are easily solved by EES if reasonable initial guesses are given.

EXAMPLE 6.18

Assume that the same three pipes in Example 6.17 are now in parallel with the same total
head loss of 20.3 m. Compute the total flow rate @, neglecting minor losses.

Solution

From Eq. (6.88a) we can solve for each V separately:

v vi vi '
203 m = — 1250f, = — 2500/, = == 200); (1

% i 7 1) %0 000 }
Guess fully rough flow in pipe 1: fi = 0.0262, V| = 349 m/s; hence Re; = V,d;/v =
273,000, From the Moody chart read fi = 0.0267; recompute ¥, = 346 mfs, 0, = 62.5
mfh. [This problem can also be solved from Eq. {6.51).]
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Next guess for pipe 2: f> = 0.0234, V-, = 2.61 mys; then Re; = 153,000, and hence £,
= 0.0246, ¥, = 2.55 mfs, @, = 259 m*/h.

Finally guess for pipe 3: f3 = 0.0304, ¥; = 2.56 m/s; then Re; = 100,000, and hence
S5 =00313, ¥V, =252 mfs, 03 = 11.4 m>th.

This is satisfactory convergence. The total flow rate is

Q=0 %0+ Q3 =625+259+ 11.4 = 998 m*/h Ans,

These three pipes carry 10 times more flow in parallel than they do in series.

This example is ideal for EES, One enters the pipe data (L, 4, &) the fluid properties
(p, p); the definitions 3, = (#M)d,-’V;, Re; = pVidiu, and by = f; (LJd) (V2r2g); plus the
Colebrook formula (6.48) for each friction factor £, There is no need to use resistance ideas
such as Eq, (5. 89) Specify that f; > 0 and Re; > 4000. Then, if one enters @ = £ 0, =
£99.8/3600) m’fs, EES quickly solves for b= 20.3 m. Conversely, if one enters A = 20.3
m, EES solves for @ = 99.8 m’/h.

Consider the third cxample of a three-reservoir pipe junction, as in Fig, 6.24¢. If all
flows are considered positive toward the junction, then

D+ Qe+ Q=0 (6.90)
which obviously implies that one or two of the flows must be away from the junc-
tion. The pressure must change through each pipe so as to give the same static pres-
sure p; at the junction. In other words, let the HGL at the junction have the elevation
o
4

where p; is in gage pressure for simplicity. Then the head loss through each, assum-
ing p; = p» = p3 = 0 (gage) at each reservoir surface, must be such that

h;=z_;+

VEFL
1 = g% =z~ Mk
VZ.
Ahy = Vifla 3~k (6.91)
2g dy
Vil
133 _ ~h
&n‘lg 28’ dg Iy Ly

We guess the position #; and solve Eqgs. (6.91) for ¥y, Vs, and V5 and hence (3, (..
and (s, iterating until the flow rates balance at the junction according to Eq. (6.90).

i we guess k; too high, the sum Q) + @, + O will be negative and the remedy is
to reduce hy, and vice versa.

EXAMPLE 6.19

Take the same three pipes as in Example 6.17, and assume. that they connect three reser-
voirs at these surface elevations

z, =20m = 100m  z;=40m
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Find the resulting flow rates in each pipe, neglecting minor losses.

Solution

As a first guess, take iy equal to the middle reserveir height, 23 = h; = 40 m. This saves
one caleulation (Q; = 0) and enables us to get the lay of the land:

Reservoir By, m 5=hn,m i ¥, mis @ mh Lifd:

1 40 -20 0.0267 ~3.43 -62.1 1250

2 40 60 0.0241 442 450 2500

3 40 0 0 0 2000
20 = —17.1

Since the sum of the flow rates toward the junction is negative, we guessed /i; too high.
Reduce #; to 30 m and repeat:

Reservoir hypm = hpm 5 Vy m/s 0 m*h
1 30 =10 0.0269 =242 —-437
30 0 0.0241 4.78 48.6
3 30 10 00317 1.76 8.0
Q=129

This is positive £, and so we can linearly intcrpolate to get an accurate puess: hy=343m.
Make one final list:

Reservoir hy, m 5 =hy, m fi Vi mis g, m’h
1 3.3 =143 0.0268 —2.80 —-52.4

2 4.3 05.7 0.0241 4.63 47.1

3 343 57 .0321 1.32 6.0
Q=07

This is close enough; hence we caleulate that the flow rate is 52.4 m*/h toward reservoir 3,
balanced by 47.1 m*/h away from reservoir 1 and 6.0 m*/h away from reservoir 3.

One further iteration with this problem would give k; = 34.33 m, resulting in o=
—~52.8, @, = 47.0, and Q3 = 5.8 m’/h, so that EQ = 0 to three-place accuracy. Pedagogi-
cally speaking, we would then be exhausted.

Pipe Networks The ultimate case of a multipipe system is the piping network illustrated in Fig. 6.25.
This might represent a water supply sysiem fer an apartment or subdivision or even
a city. This network is quite complex algebraically but follows the same hasic rules:

1. The net flow into any junction must be zero.

2. The net pressure change around any closed loop must be zero. In other words,
the HGL at each junction must have one and only one elevation.

3. All pressure changes must satisfy the Moody and minor-loss friction
correlations.
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Fig, 6.25 Schematic of a piping
network.

By supplying these rules to each junction and independent loop in the network, one
obtains a set of simultaneous equations for the flow rates in each pipe leg and the
HGL (or pressure) at each junction. Solution may then be obtained by numerical iter-
ation, as first developed in a hand calculation technique by Prof. Hardy Cross in 1936
[17]. Computer solution of pipe network problems is now quite common and covered
in at least one specialized text [18]. Network analysis is quite useful for real water
distribution systems if well calibrated with the acmal system head loss data.



