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Chapter 6: Viscous Flow in Ducts

6.3 Turbulent Flow

Most flows in engineering are turbulent: flows over
vehicles (airplane, ship, train, car), internal flows (heating
and ventilation, turbo-machinery), and geophysical flows
(atmosphere, ocean).

V(x, t) and p(x, t) are random functions of space and time,
but statistically stationary flows such as steady and forced
or dominant frequency unsteady flows display coherent
features and are amendable to statistical analysis, i.e. time
and space (conditional) averaging. RMS and other low-
order statistical quantities can be modeled and used In
conjunction with the averaged equations for solving
practical engineering problems.

Turbulent motions range in size from the width in the
flow o6 to much smaller scales, which become
progressively smaller as the Re = Ud/v increases.
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Fig. 1.2. Planar images of concentration in a turbulent jet: (a) Re = 5000 and
(b) Re = 20,000, From Dahm and Dimotakis {1990) .

r(s)

Fig. 1.3. The time history of the axial component of velocity (/(t) on the centerling
of a turbulent jet. From the experiment of Tong and Warhaft (1995).
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Fig. 14 The mean axial velocity profile in & turbulent jet. The mean velocity (U;)
is normalized by its value on the centerling, {U/\); and the cross-stream {radial)
coordinate x; is normalized by the distance from the nozzle x,. The Reynolds number
is 95,500. Adapted from Hussein, Capp, and George (1994).
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Physical description:

(1) Randomness and fluctuations:

Turbulence Is irregular, chaotic, and unpredictable.
However, for statistically stationary flows, such as steady
flows, can be analyzed using Reynolds decomposition.

+T 1 to+T

u=u+u  u==JudT u'=0 Gﬁz?ju”df etc.

L
T

u = mean motion
u' = superimposed random fluctuation

u”= Reynolds stresses; RMS = /u*

Triple decomposition is used for forced or dominant
frequency flows

U=u+u"+u'
Where u" = organized oscillation

(2) Nonlinearity

Reynolds stresses and 3D vortex stretching are direct
result of nonlinear nature of turbulence. In fact, Reynolds
stresses arise from nonlinear convection term after
substitution of Reynolds decomposition into NS equations
and time averaging.
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(3) Diffusion
Large scale mixing of fluid particles greatly enhances
diffusion of momentum (and heat), i.e.,

viscous stress
- /_J%

Reynolds Stresses: —pu'u' >> 1, = e,

_ o — 2
Isotropic eddy viscosity: Ui U =vi&; —Z K

(4) Vorticity/eddies/energy cascade

Turbulence is characterized by flow visualization as
eddies, which varies in size from the largest Ls (width of
flow) to the smallest. The largest eddies have velocity
scale U and time scale Ls/U. The orders of magnitude of

the smallest eddies (Kolmogorov scale or inner scale) are:
1

YE
Lk = O(MmM) >> Limean free path = 6 X 10%m
Velocity scale = (ve)4= O(10m/s)
Time scale = (v/e)Y?= O(107s)

- L35 |4
Lk = Kolmogorov micro-scale = | —

Largest eddies contain most of energy, which break up
Into successively smaller eddies with energy transfer to
yet smaller eddies until Lk is reached and energy is
dissipated by molecular viscosity.
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Richardson (1922):
Ls Big whorls have little whorls
Which feed on their velocity;
And little whorls have lesser whorls,
Lk And so on to viscosity (in the molecular sense).

(5) Dissipation

5 5 5 Energy comes from
Ug =k  k=u“+v°+w . largest scales and

- 0(U) fed by mean motion

Re5:uO€0/U:b|g —
¢ = rate of dissipation = energy/time —

9 .

Uo fo Dissipation
= Ty = occurs at
To u0 —> smallest

scales

1
3 3 |4
=Y independentv Ly = {U} _

° 1 I

Dissipation rate is Decrease in v decreases

determined by the scale of dissipation Lk not

Inviscid large scale rate of dissipation &.
dynamics.
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Fig. below shows measurements of turbulence for
Re)_(=107.

Vs ..,f"’f";

° - s -, ) ~ (4

Note the following mean-flow features:
(1) Fluctuations are large ~ 11% U..

(2) Presence of wall causes anisotropy, i.e., the
fluctuations differ in magnitude due to geometric and
physical reasons. u” is largest, v* is smallest and reaches
its maximum much further out than u” or w”. w*" is
Intermediate in value.

(3) u'v'=0 and, as will be discussed, plays a very
important role in the analysis of turbulent shear flows.

(4) Although ﬁ =0 at the wall, it maintains large values
right up to the wall

(5) Turbulence extends to y > o6 due to intermittency.
The interface at the edge of the boundary layer is called
the superlayer.  This interface undulates randomly
between fully turbulent and non-turbulent flow regions.
The mean positionisaty ~ 0.78 o.
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(6) Near wall turbulent wave number spectra have more
energy, i.e. small A, whereas near o large eddies dominate.

m 1 1 L
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FIGURE 535 0] P4
Hat-wire measurements showing turbulent veloeity fluctuations: (a) typical 2‘ | 20 F/ *‘x- -
trace of a singls veloeity component in a turbulent flow; (5) trace showing E ‘ "~ “‘MH T
intermittent turbulence at the edge of a jel. 04 A
oy e 0.2 0.4 0.6 08 1.0 1.2 1.4
FIGURE 5-36 i
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i

! Flat-plate measurements of the fluctuating veloeities (sl.reamwiac): v
. { (M), and w’ {lateral) and the turbulent shear u'v’. [After Klebanoff (1955).]
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FIGURE 5-37
The phenomenon of intermittency in a turbulent boundary layer: {z) d

intermittency factors [after Kichanaff (1955)]; (b) the superlayer interface be-
tween tuﬂ)tl]ﬂl:nd sonturbulent fuid.

FIGURE 5.38

Mensured frequency spectra of flucty-
ations in a low-speed turbulent bound-
ary layer, scaled by inner-law varighles
(7o) o', ¢, w' from Bradshaw and
Ferriss (1965); p. from Bakewell
(1964).
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Averages:

For turbulent flow V (x, t), p(X, t) are randoin runcuons of
time and must be evaluated statistically using averaging
techniques: time, ensemble, phase, or conditional.

Time Averaging

For stationary flow, the mean is not a function of time and
we can use time averaging.

. tg +t B

u= = fu(t)dt T >any significant period of u'=u-u
to

(e.g. 1 sec. for wind tunnel and 20 min. for ocean)

Ensemble Averaging

For non-stationary flow, the mean is a function of time
and ensemble averaging is used

_ N . _
u(t) = % >u'(t) Nis large enough that u independent
i=1

u'(t) = collection of experiments performed under
Identical conditions (also can be phase aligned
for same t=0).
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058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2020 10

Phase and Conditional Averaging

Similar to ensemble averaging, but for flows with
dominant frequency content or other condition, which is
used to align time series for some phase/condition. In this
case triple velocity decomposition is used: u=u+u"+u'
where u”” i1s called organized  oscillation.
Phase/conditional  averaging  extracts all  three
components.

Averaging Rules:

f="Ff+f1 g=g+g s=xort

f'=0 f=f fg=fg  f'g=0
Tt~ of of N f N fi

f+g=1f+g v g=fg+f'g
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Reynolds-Averaged Navier-Stokes Equations

For convenience of notation use uppercase for mean and
lowercase for fluctuation in Reynolds decomposition.

~

Ui :Ui +Ui

p=P+p

O Ui
" NS
~ ~ ~ ~ — > equation
oui ~ Ou; 10p 0° U
—+Ui—=———+v —Q0.,
ot OX: P OX OX;OX;

Mean Continuity Equation

i(ui+ui):au‘ +8ui _ oy, 0
OX. OX. ~ OX  OX
au:8Ui+aui:O N %:O
OX. ~ OX  OX OX.

Both mean and fluctuation satisfy divergence = 0
condition.
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Mean Momentum Equation

0 10
at(U +Uu, )+ (U, +u) U, + ):——a—(P+ p) +

J p i
anXj (U| +ui)_g§i?>
Q(Uﬁ 0) = oU. au _ oy,
ot ot 6t ot
U+u—U+u U—+/a' +u—‘
( ) ( )= J@x Jax ' OX,
= .—+—u_u_
TOX OX
. 0 — . ou ou,
Since  —uu =y~/—r+u —=u—"
ox. ' /ox. Tox T OX
Q(P+p):ap+ap:ap
OX. OX. OX  OX
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2 o°U, o%ui &%,

v—sU; +U;)) =0 +v =0

asz( ) I 'S

. rel(TAVE 2
au,+Uj@u,+ (u; ‘)=—18P+082Ui—95i3
61: 8XJ 8XJ p@Xi aX

j

" Dt BT ook RANS
_ ou  ou — °  Equations
oc=—Po +u “+— | = puu
’ OX.  OX ’
with ~ i—o
X —

The difference between the NS and RANS equations is
the Reynolds stresses —puu , which acts like additional
stress.
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—pUY, = = puu,
=| — puv
— puw

u_f are normal stresses
iy, %]
6 new unknowns

(i.e. Reynolds stresses are symmetric)

—pu  — puw
—pVé  — pww
—PW  — pW?

are shear stresses

For homogeneous/isotropic turbulence uu. i= j =0 and
u’ =v’ =w’ = constant; however, turbulence is generally

non-isotropic.

For example, consider shear flow with du >0 as below,

g
<l

dy
U(y)

u<o .
ﬂj// fluid

y+dy

v OT particle

y-dy

The fluid velocity is: V = (U +u,v,w)
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Assuming that fluid particle retains its velocity V from y
to y#dy gives,

X-momentum tends towards
v>0 — u<0 | - decreasing y as turbulence
V<0 - uso [ W<0 diffuses gradients and

dU
decreases —
dy

X-momentum transport in y direction, i.e., across y =
constant AA per unit area

M,y = [ piilV - ndA, where i = (U + u)

dMyy .
” = pU +u)v= pUv+ puv = puv

i.e puu = average flux of j-momentum in

I-direction = average flux of
I-momentum in j-direction
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Closure Problem:

1.

2.

RANS equations differ from the NS equations due to
the Reynolds stress terms

RANS equations are for the mean flow (U,,P); thus,
represent 4 equations with 10 unknowns due to the
additional 6 unknown Reynolds stresses u;u;
Equations can be derived for &g, by summing

products of velocity and momentum components
and time averaging, but these include additionally 10
triple product G;u;u,unknowns. Triple products

represent Reynolds stress transport.

Again equations for triple products can be derived
that involve higher order correlations leading to fact
that RANS equations are inherently non-
deterministic, which requires turbulence modeling.
Turbulence closure models render deterministic
RANS solutions.

The NS and RANS equations have paradox that NS
equations are deterministic but have
nondeterministic solutions for turbulent flow due to
Inherent stochastic nature of turbulence, whereas the
RANS equations are nondeterministic, but have
deterministic solutions due to turbulence closure
models.
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Turbulent Kinetic Energy Equation

k = %u_ = %(u_ +V* + W) = turbulent Kinetic energy

Subtracting NS equation for u; and RANS equation for U;
results in equation for u;:

ou;
ot

,
b ox,

ou, ou, o ——  lop o
+Uj—+Uj — (uin):_——+U—2

+U

Multiply by ui and average

Dk 10— 10 3 0 oU. —
— =———pPU; - —U'u; +2o—ue; —uu, ——2ve;e;
Dt P 0X; X; OX; OX; y
I I 1l IV
Dk ok ., ok 1 du, ou;
Where Dt a  'ox; and T 950 ox
j i

%f_/

VI
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| =pressure transport

[1= turbulent transport

[11=viscous diffusion

IV = shear production (usually > 0) represents loss of

mean Kinetic energy and gain of turbulent kinetic energy

due to interactions of uu and %.
X

V = viscous dissipation = ¢
VI= turbulent convection

Recall previous discussions of energy cascade and
dissipation:

Energy fed from mean flow to largest eddies and cascades
to smallest eddies where dissipation takes place

Kinetic energy = k = Uo?

l :
Tg = — = turn over time
Uo
u: u : : :
e=-"L= I_ lo = Ls = width of flow (i.e. size of
T

0 0

largest eddy)
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Kolmogorov Hypothesis:

(1) local isotropy: for large Re, micro-scale { << o
turbulence structures are isotropic.

(2) first similarity: for large Re, micro-scale has
universal form uniquely determined by v and «.

/4
n= (03 /8)1 length nlly = Re3/4

u, =(ev)’*  velocity  u,/uy=Re™*

7, =(le)’? time 7,17y =Re™?

4

Micro-scale<<large scale

Also shows that as Re increases, the range of scales
Increase.

(3) second similarity: for large Re, intermediate scale
has a universal form uniquely determined by € and
independent of v.

(2) and (3) are called universal equilibrium range in
distinction from non-isotropic energy-containing range.
(2) is the dissipation range and (3) is the inertial subrange.
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Energy-containing Universal equilibrium range

|
|
range ]

| |
| Inertial subrange | Dissipation range
| |
| |

r I | T

Ko KEI KDI IC,7

21 /by 2n /P 21/ lpy 21 /n

Fig. 6.12. Wavenumbers (on a logarithmic scale) at very high Reynolds number
showing the various ranges.

Spectrum of turbulence in the inertial subrange

u® = ojoS(k) dk  k=wave number in inertial subrange.
0

S — A82/3k_5/3
For It <<k <<np™ (based on dimensional analysis)

A~15 Called Kolmogorov k™? law

| -
|

Kn
< o ved the ocean, plotted on a log-log scale
Fig. 1212 A typical wavenumber spectrum observed in the

~al dat
The unit of S is arbitrary, and the dots represent hypothetical data
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Velocity Profiles: Inner, Quter, and Overlap Layers

Detailed examination of turbulent boundary layer
velocity profiles indicates the existence of a three-layer
structure:

104 10 0.01 0.1 0.3 |

—_ N E— f I | y/8
OUTER LAYER
overlap region
log-law region
INNER LAYER
viscous wall region
buffer layer
viscous sublayer
l,‘+
| | | i | | |
| 5 10 30 50 100 1. 000 10, 000

Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of
vt = p/d, and y/o, for turbulent channel flow at high Reynolds number (Re, = 107).

Figure: Pope (2000, Fig. 7.8)

(1) A thin inner layer close to the wall, which is
governed by molecular viscous scales, and

Independent of boundary layer thickness J, free-
stream velocity Ue and pressure gradient.

(2) An outer layer where the flow is governed by
turbulent shear stresses,d, Ue and pressure gradient,
but independent of v.
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(3) An overlap layer which smoothly connects inner
and outer regions. In this region both molecular
and turbulent stresses and pressure gradient are
Important.

Considerable more information is obtained from the
dimensional analysis and confirmed by experiment.

Inner layer: U = f(t,,, 0, 1L, y)

U yu* *
+ 2 — _ Wall shear
U= u* f( v ) u TW/'O velocity

=f(y")
U™, y* are called inner-wall variables

Note that the inner layer is independent of & or ro, for
boundary layer and pipe flow, respectively.

Outer Layer: U,—-U =g(ty,p,y,6) forpx=0
velocity defect

Ue_U
u*

=g(m) where n=y/&

Note that the outer layer is independent of ..
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Overlap layer: both laws are valid

In this region both log-law and outer layer is valid.

It is not that difficult to show that for both laws to
overlap, f and g are logarithmic functions.

Inner region:
2

du u* df

dy 14 dy+

Outer region:

du u”dg

dy o dp

2
yu df yu'd

ut* v dy" u* o dpy

-

; valid at large y* and small #.

- /

f(y+) 2()

Therefore, both sides must equal universal constant, Kkt

+ 1 + *k  g. -
fly’)=—Iny"+B=U/u" (inner variables)

1 u,-u :
9(77)=;|m7+A= - (outer variables)



058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2020 24

K, A, and B are pure dimensionless constants

Kk = 041 Von Karman constant
Values vary
somewhat
dependingon | B = 5.5
different exp.
arrangements . -
A = 235 BL flow The difference is due to
= 0.65 pipe flow l0ss of intermittency in

duct flow. A = 0 means
small outer layer

The wvalidity of these laws has been established
experimentally as shown in Fig. 6-9, which shows the
profiles of Fig 6-8 in inner-law variable format. All the
profiles, with the exception of the one for separated flow,
are seen to follow the expected behavior. In the case of
separated flow, scaling the profile with u* is inappropriate
since u* ~ 0.
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Herring (1967)
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Wieghardt {1948)
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Bradshaw (1968)
Strong adverse:
Ludwieg {1843)
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Schubauer [ 1960

FIGURE 6-8%
turbulent-houndary-

Separating flow:
Moses [ 1964}
]

0.8

—24{1)

L

1

0.6

Experimental
tayer velocity profiles for various
pressure pradients. [Dawa  from

]

1.0

0.2

0.4

:n|'g

tou* = 221 at y* = 166

Coles amd Hirst | !9!_58}.]

Separating flow
{no discernible overlap layer)

Very strong .m:lllnrm:—-.__“.I!:M1

-
-h..-.___h__-

®» Strong favorable

7 Flat plate
{zaro gradient)

—— O law

A -
o Inly')+65

L qniy*}+5.0

LY
1

1
100 1,000
-
¥ ¥

10,000

FIGURE 6-9 .
Replot of the velocity profiles of Fig. 6-8 using inner-law variables y* and w*.
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Details of Inner Layer

Neglecting inertia and pressure forces in the 2D turbulent
boundary layer equation we get:

(%) - pm) =0
> u(5y) — P =1

The total shear stress i1s the sum of viscous and turbulent
stresses. Very near the wall y—->0, the turbulent stress
vanishes. Sublayer region:

i(22)- - 4(2)
imu|l—)—puv=pul— =1
yoo P dy P K dy/,_, W

From the inner layer velocity profile:

(dU) _urtdft) T
ay/y—o v dy?t u

d +
[ =1 o) =yt +C

No slip condition aty = 0 requires C = 0.

Sublayer: U*=y* valid for y <5




058:0160 Chapter 6-part3
Professor Fred Stern  Fall 2020 27

Buffer layer: Merges smoothly the viscosity-dominated
sub-layer and turbulence-dominated log-layer in the
region 5< y* < 30.

Unified Inner layer: There are several ways to obtain
composite of sub-/buffer and log-layers.

Evaluating the RANS equation near the wall using pt
turbulence model shows that:

W~y y >0

Several expressions which satisfy this requirement have
been derived and are commonly used in turbulent-flow
analysis. That is:

Hy = wce"{e’” ~1-xU* _("U2+)2}

Assuming the total shear is constant very near to the wall
a composite formula which is valid in the sub-layer,
blending layer, and logarithmic-overlap regions is
obtained

Ur=y" e"{e"‘” —1-xU* N (Kw)g}
2 6
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Fig. 6-11 shows a comparison of this equation with
experimental data obtained very close to the wall. The
agreement is excellent. It should be recognized that
obtaining data this close to the wall is very difficult.

1\ Spaiding's law of tha wall:
Eq. [5-41) [« =04, &= 5.5)

Duata of Lindgren (1965):
g

v u__;- & 100

= 10,000

o = 27000
» = 40,000

1 w 100 T

FIGURE 6-11
Comparison of Spalding’s inner-law expression with the pipe-flow data of Lindgren (196350

Details of the Outer Law

At the end of the overlap region the velocity defect is
given approximately by:

Ue_U
u*

=9.6(1 — n)?

With pressure gradient included, the outer law becomes
(Fig. 6-10):

Ue jU = g(ﬂlﬁ)
u
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0 dp; Clauser’s equilibrium

n=ylo p dx - Parameter
T X
w
I
30
{ & Strong favorable, 4 =1.0
5 ¥ Flat plate, A =2.5
- © Mild adverse, A = 5.6
a & Strong adverse, 4 =13
20
n
r
.
'
1= 1© &
I 4= ‘Fn
= M A A
10 A" 0
¢.;? ° A
(
e . v ? Fy
-."? - e
f L] Lv ik
¢ .7 o
o 7 4
ol ] ® 7 Yeom a i
0.0 0.2 0.4 0.8 0.8 1.0
y
§
FIGURE 6-10

Reglot of the velocity profiles of Fig. 6-8 using outer-law variables from Eq. (6-38), Success is not
evident because each profile has a different value of the parameter £,

Clauser (1954,1956):

BL’s with different px but constant g are in equilibrium,
l.e., can be scaled with a single parameter:
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. —U
VS. Yy/A

A = defect thickness= I Ye :U dy=5"1
0

u

A=J2IC,

Also, G = Clauser Shape parameter

© 2
:%I(Uej jdy - 61/4+181-17
u
° Curve—fit by Mach

Which is related to the usual shape parameter by
H=(Q1-G/A)" = const dueto A = A(X)

Finally, Clauser showed that the outer layer has a wake-
like structure such that

1 ~0.016 pU S

Mellor and Gibson (1966) combined these equations into
a theory for equilibrium outer law profiles with excellent
agreement with experimental data: Fig. 6-12
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. Duta: i
- & 9 # Fresman i
3 - o K wbasnofl and Ciisht
g # Schuler Gy
- Hama
0 UL - rough vl
o Moors - vy Fowgh wall
EY
m
[
FIGURE &12
Equilibrium-defeet profiles as
correlated by the Clagser pa-

rameter 8 and the theory al —_ e — |
Mellod and Cibson (1966) (a) ,

Aat-piate data: (b) equblibrium e

adverse gradicnts

Coles (1956):
A weakness of the Clauser approach is that the

equilibrium profiles do not have any recognizable shape.
This was resolved by Coles who showed that:

/ Deviations above log-overlap layer

U +—2.5In y" =55 zEW(ylé)
U,~/-25In6"-55 2
~ ~N ~ \
Max deviation at & Single wake-like function of y/d

W = wake function= 23in{%%) =3n? -2, n=YyIS

o J

A -
curve fit
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Thus, it is possible to derive a composite which covers
both the overlap and outer layers, as shown in Fig. 6-13.

U =Liny +B+ZwW(y/s5)
K K
= wake parameter = 7(f)

=0.8(8+0.5)">—— (curve fit for data)

Note the agreement of Coles’ wake law even for f #
constant. Bl’s is quite good.

! 100 =
! l —— Eq. (647 N <18

0 - ! 1 i I
o 0z 0.4 a8

¥

FIGURE &-13

Turbwlert velocity profiles computed fron

&%= J0, The 1 the Coles wall-wake formula, Eg. (6-47L assumin

curve for il = 0w the pure law of the wall from Eq. (41),

We see that the behavior in the outer layer is more
complex than that of the inner layer due to pressure
gradient effects. In general, the above velocity profile
correlations are extremely valuable both in providing
physical insight and in providing approximate solutions
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for simple wall bounded geometries: pipe, channel flow
and flat plate boundary layer.  Furthermore, such
correlations have been extended through the use of
additional parameters to provide velocity formulas for use
with integral methods for solving the BL equations for
arbitrary px.

Summary of Inner, Outer, and Overlap Layers

Mean velocity correlations

Inner layer:

U™ =1f(y")
ut=u/u y =y u =,/ p
Sub-layer: U*=y" for 0<y <5

Buffer layer: where sub-layer merges smoothly with
log-law region for 5<y" <30

Outer Layer:

U, -uU .
o =9(1. p) n=ylo, p=2"p,

forn>0.1
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Overlap layer (loqg region):

1
Ut = = Iny” +B inner variables
U.-U 1
eu* = Inp+ A outer variables

for y*>30 and #<0.3

Composite Inner/Overlap layer correlation

Ut =yt —e™®le® 1" -

(U*)? (z<u+>3}
6

for 0 <y" <50

Composite Overlap/Outer layer correlation

U =Ly 8+ Zw(y) W/=Sm2(§nj=3n2—2n3

7 =0.8(5+0.5)°7

for y*>50
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Reynolds Number Dependence of Mean-Velocity Profiles
and Reynolds stresses

10"

S
S yh=03
S—
[ log-hw outer
0 —ﬂ-&x-\iﬁﬂi“ layer  y5=0.1
] "“\\ \ ! Dve';lap
ylo ~ S || resion

)| h-uffr:ri - .
T

i visCous :\\
I ﬂ-j | sublayer | y =30
r !. inner

la -
yer \

y'=5

II]“‘- . M| P— ik b i i)
10° 10* 10° 10°
Re

Figure: Pope (2000, Fig. 7.13)

1. Inner/overlap U™ scaling shows similarity; extent of
overlap region (i.e. similarity) increases with Re.

2. Outer layer for px = 0 may asymptotically approach
similarity for large Re as shown by AU ‘(= 2z/k) Vs.

Reg, but controversial due to lack of data for Rey 5 x
10%,

3. The normalized Reynolds stresses wu,/k,
production-dissipation ratio and the normalized
mean shear stress are somewhat uniform in the log-
law region. Experiments in flat plate boundary layer,
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pipe and channel flow shows k = 3.34 - 3.43 u™ in
lower part of log-law region.

4, Decay of k ~ y? near the wall.

5. Streamwise turbulence intensity u™* =U% Vs. y*
u

shows similarity for 0 < y* <15 (i.e., just beyond the
point of kmax, Y* = 12), but u™ increases with Rex.
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Fig 10. Comparisan of mean-velocity profiles with logarithmic law at low
Reynolds numbers: Boundary layer data from Purtell o af (1981).

1 10 10g 1000

Fig 12, Meaa-velocity profiles non-dimeasionalized on inser varisbles.
Channel flow data from Wei and Willmarth (1989).
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Fig I1. Non-dimensionalized mean-velocity profiles at bigh Reynolds numbers. Boundary layer data from Andreopoulos er af (1984).
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Fig 25. Profiles of turbulence intensity in streamwise direction (open
points} and direction normal to wall (solid points), non-dimensionalized on
inner variables. Channel flow data of Wei aad Willmarth {1989).
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Fig 31. Reynolds stress profiles non-dimensionalized on inner variables.
Channel flow data of Wei and Willmarth {1989) at four different Reynolds
nbers. Solid line rep ball doulati
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Data compiled by Sreenivasan (1988) from various wall-bounded flow
experiments. Solid lines are least-square fit: (a) Directly measured Reynolds
stress; (b) Computed from measured mean velocity. The lowermost two data
Ppoints cotrespond to the critical Layer position in typical transitional flows.




