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Chapter 6:  Viscous Flow in Ducts 

 

6.3 Turbulent Flow 

 

Most flows in engineering are turbulent:  flows over 

vehicles (airplane, ship, train, car), internal flows (heating 

and ventilation, turbo-machinery), and geophysical flows 

(atmosphere, ocean). 

 

V(x, t) and p(x, t) are random functions of space and time, 

but statistically stationary flows such as steady and forced 

or dominant frequency unsteady flows display coherent 

features and are amendable to statistical analysis, i.e. time 

and space (conditional) averaging.  RMS and other low-

order statistical quantities can be modeled and used in 

conjunction with the averaged equations for solving 

practical engineering problems. 

 

Turbulent motions range in size from the width in the 

flow δ to much smaller scales, which become 

progressively smaller as the Re = Uδ/υ increases. 
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Physical description: 

 

(1)  Randomness and fluctuations: 

 Turbulence is irregular, chaotic, and unpredictable.  

However, for statistically stationary flows, such as steady 

flows, can be analyzed using Reynolds decomposition. 
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u  = mean motion 

'u = superimposed random fluctuation 
2'u = Reynolds stresses; RMS = 2'u  

 

Triple decomposition is used for forced or dominant 

frequency flows 

 

''' uuuu   
 

Where ''u  = organized oscillation 

 

(2)  Nonlinearity  

 Reynolds stresses and 3D vortex stretching are direct 

result of nonlinear nature of turbulence.  In fact, Reynolds 

stresses arise from nonlinear convection term after 

substitution of Reynolds decomposition into NS equations 

and time averaging. 
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(3)  Diffusion 

 Large scale mixing of fluid particles greatly enhances 

diffusion of momentum (and heat), i.e., 

 

Reynolds Stresses:    
 stressviscous

ijijji
uu   ''  

Isotropic eddy viscosity: kuu ijijtji 
3

2
''   

 

(4)  Vorticity/eddies/energy cascade 

 Turbulence is characterized by flow visualization as 

eddies, which varies in size from the largest Lδ (width of 

flow) to the smallest. The largest eddies have velocity 

scale U and time scale Lδ/U. The orders of magnitude of 

the smallest eddies (Kolmogorov scale or inner scale) are: 

LK = Kolmogorov micro-scale = 
4
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LK =  O(mm) >> Lmean free path = 6 x 10-8 m 

Velocity scale = (νε)1/4=  O(10-2m/s) 

Time scale = (ν/ε)1/2=  O(10-2s) 

 

Largest eddies contain most of energy, which break up 

into successively smaller eddies with energy transfer to 

yet smaller eddies until LK is reached and energy is 

dissipated by molecular viscosity. 
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Richardson (1922): 

Lδ Big whorls have little whorls 

 Which feed on their velocity; 

 And little whorls have lesser whorls, 

LK And so on to viscosity (in the molecular sense). 

 

(5)  Dissipation 
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Energy comes from 

largest scales and 

fed by mean motion 

Dissipation 

occurs at 

smallest 

scales 

Dissipation rate is 

determined by the 

inviscid large scale 

dynamics. 

Decrease in  decreases 

scale of dissipation LK not 

rate of dissipation . 
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Fig. below shows measurements of turbulence for 

Rex=107. 

 
Note the following mean-flow features: 

 

(1) Fluctuations are large ~ 11% U∞ 

 

(2) Presence of wall causes anisotropy, i.e., the 

fluctuations differ in magnitude due to geometric and 

physical reasons.  2'u  is largest, 2'v  is smallest and reaches 

its maximum much further out than 2'u  or 2'w .  2'w  is 

intermediate in value. 

 

(3) 0'' vu  and, as will be discussed, plays a very 

important role in the analysis of turbulent shear flows. 

 

(4) Although 0
ji

uu  at the wall, it maintains large values 

right up to the wall 

 

(5)  Turbulence extends to y > δ due to intermittency.  

The interface at the edge of the boundary layer is called 

the superlayer.  This interface undulates randomly 

between fully turbulent and non-turbulent flow regions.  

The mean position is at y ~ 0.78 δ. 
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(6) Near wall turbulent wave number spectra have more 

energy, i.e. small λ, whereas near δ large eddies dominate. 
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Averages: 

 

For turbulent flow V (x, t), p(x, t) are random functions of 

time and must be evaluated statistically using averaging 

techniques: time, ensemble, phase, or conditional. 

 

Time Averaging 

 

For stationary flow, the mean is not a function of time and 

we can use time averaging. 
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 T > any significant period of uuu '   

(e.g. 1 sec. for wind tunnel and 20 min. for ocean) 

 

Ensemble Averaging 

 

For non-stationary flow, the mean is a function of time 

and ensemble averaging is used 

 





N

i

i tu
N

tu
1

)(
1

)(  N is large enough that u  independent  

ui(t) = collection of experiments performed under  

identical conditions (also can be phase aligned 

for same t=o). 
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Phase and Conditional Averaging 

 

Similar to ensemble averaging, but for flows with 

dominant frequency content or other condition, which is 

used to align time series for some phase/condition.  In this 

case triple velocity decomposition is used: ''' uuuu   

where u΄΄ is called organized oscillation. 

Phase/conditional averaging extracts all three 

components. 

 

 Averaging Rules: 
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Reynolds-Averaged Navier-Stokes Equations 

 

For convenience of notation use uppercase for mean and 

lowercase for fluctuation in Reynolds decomposition. 
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Mean Continuity Equation 

 

00

~

0)(









































i

i

i

i

i

i

i

i

i

i

i

i

i

ii

i

x

u

x

u

x

U

x

u

x

U

x

u

x

U
uU

x
 

 

Both mean and fluctuation satisfy divergence = 0 

condition. 

 

NS 

equation 



058:0160  Chapter 6-part3 

Professor Fred Stern     Fall 2020  12 

 

Mean Momentum Equation 
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The difference between the NS and RANS equations is 

the Reynolds stresses 
ji

uu , which acts like additional 

stress. 
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ji
uu = 

ij
uu    (i.e. Reynolds stresses are symmetric) 
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i
u  are normal stresses 

jiuu
ji

  are shear stresses 

6 new unknowns  

For homogeneous/isotropic turbulence jiuu
ji

  = 0  and 

 222 wvu  constant; however, turbulence is generally 

non-isotropic. 

 

For example, consider shear flow with 0
dy

dU
 as below,  

 

 

 

 

 

 

 

 

 

 

 

The fluid velocity is:  ),,( wvuUV   

y-dy 

y 

y+dy 

y 

U 

U(y) 
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u > 0 

u < 0 
fluid 

particle 
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Assuming that fluid particle retains its velocity V from y 

to ydy gives, 
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x-momentum transport in y direction, i.e., across y = 

constant AA per unit area 

 

𝑀𝑥𝑦 = ∫𝜌𝑢̃𝑉 ∙ 𝑛 𝑑𝐴, where 𝑢̃ = (𝑈 + 𝑢) 

 
𝑑𝑀𝑥𝑦̅̅ ̅̅ ̅̅

𝑑𝐴
= uvuvvUvuU   )(  

 

i.e  
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uu  = average flux of j-momentum in 

i-direction = average flux of  

i-momentum in j-direction 

 

 

 

 

 

 

 

 

x-momentum tends towards 

decreasing y as turbulence 

diffuses gradients and 

decreases 
dy

dU
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Closure Problem: 

 

1. RANS equations differ from the NS equations due to 

the Reynolds stress terms 

2. RANS equations are for the mean flow ( , )iU P ; thus, 

represent 4 equations with 10 unknowns due to the 

additional 6 unknown Reynolds stresses i ju u  

3. Equations can be derived for i ju u by summing 

products of velocity and momentum components 

and time averaging, but these include additionally 10 

triple product i j lu u u unknowns.  Triple products 

represent Reynolds stress transport.  

4. Again equations for triple products can be derived 

that involve higher order correlations leading to fact 

that RANS equations are inherently non-

deterministic, which requires turbulence modeling. 

5. Turbulence closure models render deterministic 

RANS solutions. 

6. The NS and RANS equations have paradox that NS 

equations are deterministic but have 

nondeterministic solutions for turbulent flow due to 

inherent stochastic nature of turbulence, whereas the 

RANS equations are nondeterministic, but have 

deterministic solutions due to turbulence closure 

models. 
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Turbulent Kinetic Energy Equation 
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Multiply by ui and average 
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I =pressure transport 

II= turbulent transport 

III=viscous diffusion 

IV = shear production (usually > 0) represents loss of 

mean kinetic energy and gain of turbulent kinetic energy 

due to interactions of 
ji

uu  and 
j

i

x

U




. 

V = viscous dissipation = ε 

VI= turbulent convection 

 

Recall previous discussions of energy cascade and 

dissipation: 

 

Energy fed from mean flow to largest eddies and cascades 

to smallest eddies where dissipation takes place 

 

Kinetic energy = k = uo
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   l0 = Lδ = width of flow (i.e. size of    

      largest eddy) 
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Kolmogorov Hypothesis: 

 

(1) local isotropy: for large Re, micro-scale ℓ << ℓ0 

turbulence structures are isotropic. 

 

(2) first similarity: for large Re, micro-scale has 

universal form uniquely determined by υ and ε. 

 

  4/13 /    length  4/3
0 Re/ l  

 

  4/1
 u   velocity  

4/1
0 Re/ uu  

 

  2/1
/    time   

  
2/1

0 Re/   

 

Also shows that as Re increases, the range of scales 

increase. 

 

(3) second similarity:  for large Re, intermediate scale 

has a universal form uniquely determined by ε and 

independent of υ. 

 

(2) and (3) are called universal equilibrium range in 

distinction from non-isotropic energy-containing range.  

(2) is the dissipation range and (3) is the inertial subrange. 

 

Micro-scale<<large scale 
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Spectrum of turbulence in the inertial subrange 





0

2 )( dkkSu  k = wave number in inertial subrange. 

3/53/2  kAS     
For 1 1

0l k      (based on dimensional analysis) 

 

A ~ 1.5   Called Kolmogorov k-5/3 law 
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Velocity Profiles: Inner, Outer, and Overlap Layers 

 

Detailed examination of turbulent boundary layer 

velocity profiles indicates the existence of a three-layer 

structure: 

 
Figure: Pope (2000, Fig. 7.8) 

 

(1) A thin inner layer close to the wall, which is 

governed by molecular viscous scales, and 

independent of boundary layer thickness , free-

stream velocity Ue and pressure gradient. 

 

(2) An outer layer where the flow is governed by 

turbulent shear stresses,, Ue and pressure gradient, 

but independent of . 
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(3) An overlap layer which smoothly connects inner 

and outer regions. In this region both molecular 

and turbulent stresses and pressure gradient are 

important.  

 

Considerable more information is obtained from the 

dimensional analysis and confirmed by experiment. 

 

Inner layer: 𝑈 = 𝑓(𝜏𝑤, 𝜌, 𝜇, 𝑦) 
 

                 𝑈+ =
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𝑦𝑢∗

𝜈
)        /*

wu   

 

     )(  yf  

 

U+, y+ are called inner-wall variables 

 

Note that the inner layer is independent of δ or r0, for 

boundary layer and pipe flow, respectively. 

 

Outer Layer: 𝑈𝑒 − 𝑈⏟    
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑒𝑓𝑒𝑐𝑡

= 𝑔(𝜏𝑤, 𝜌, 𝑦, 𝛿)   for px = 0 

 

    
𝑈𝑒−𝑈

𝑢∗
= 𝑔(𝜂)         where   /y  

 

Note that the outer layer is independent of μ. 

 

Wall shear 

velocity 



058:0160  Chapter 6-part3 

Professor Fred Stern     Fall 2020  23 

 

Overlap layer: both laws are valid 

 

In this region both log-law and outer layer is valid.  

 

It is not that difficult to show that for both laws to 

overlap, f and g are logarithmic functions. 
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




dy

dfu

dy

dU



2

 

 

Outer region: 

 d

dgu

dy

dU 



 
 

 d

dgu

u

y

dy

dfu

u

y 








2

 ; valid at large y+ and small η.  

 

 

Therefore, both sides must equal universal constant, 
1  

 

  uUByyf /ln
1

)(


 (inner variables) 






u

UU
Ag e


 ln

1
)(     (outer variables) 

 

f(y+) g(η) 



058:0160  Chapter 6-part3 

Professor Fred Stern     Fall 2020  24 

 

 , A, and B are pure dimensionless constants 

 

   = 0.41  Von Karman constant 

 

 B = 5.5         

 

 A = 2.35  BL flow 

  = 0.65  pipe flow   

 

 

 

The validity of these laws has been established 

experimentally as shown in Fig. 6-9, which shows the 

profiles of Fig 6-8 in inner-law variable format.  All the 

profiles, with the exception of the one for separated flow, 

are seen to follow the expected behavior.  In the case of 

separated flow, scaling the profile with u* is inappropriate 

since u* ~ 0. 

Values vary 

somewhat 

depending on 

different exp. 

arrangements 

The difference is due to 

loss of intermittency in 

duct flow. A = 0 means 

small outer layer 
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---------------------------------------------------------------------- 
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Details of Inner Layer  

 

Neglecting inertia and pressure forces in the 2D turbulent 

boundary layer equation we get: 

 
𝑑

𝑑𝑦
(𝜇 (

𝑑𝑈

𝑑𝑦
) − 𝜌𝑢𝑣 ) = 0 

 

                       𝜇 (
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𝑑𝑦
) − 𝜌𝑢𝑣 = 𝜏𝑡                               

 

The total shear stress is the sum of viscous and turbulent 

stresses. Very near the wall y0, the turbulent stress 

vanishes.  Sublayer region: 

 

lim
𝑦→0

𝜇 (
𝑑𝑈

𝑑𝑦
) − 𝜌𝑢𝑣 = 𝜇 (

𝑑𝑈

𝑑𝑦
)
𝑦=0

= 𝜏𝑤 

 

From the inner layer velocity profile: 

 

                       (
𝑑𝑈

𝑑𝑦
)
𝑦=0

= 
𝑢∗
2

𝜈

𝑑𝑓(𝑦+)

𝑑𝑦+
=
𝜏𝑤

𝜇
                               

 

               
𝑑𝑓(𝑦+)

𝑑𝑦+
= 1    𝑓(𝑦+) =  𝑦+ +  𝐶                  

 

No slip condition at y = 0 requires 𝐶 = 0. 

    Sublayer:    U+ = y+             valid for             y+ ≤ 5          
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Buffer layer: Merges smoothly the viscosity-dominated 

sub-layer and turbulence-dominated log-layer in the 

region 5< y+ ≤ 30.  

 

Unified Inner layer: There are several ways to obtain 

composite of sub-/buffer and log-layers.   

 

Evaluating the RANS equation near the wall using μt 

turbulence model shows that: 

 

μt  ~ y3  y    0 

 

Several expressions which satisfy this requirement have 

been derived and are commonly used in turbulent-flow 

analysis.  That is: 

 

 
















 

2
1

2
U

Uee UB

t


 

                 

Assuming the total shear is constant very near to the wall 

a composite formula which is valid in the sub-layer, 

blending layer, and logarithmic-overlap regions is 

obtained 

 

   
















 

62
1

32
UU

UeeyU uB 

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Fig. 6-11 shows a comparison of this equation with 

experimental data obtained very close to the wall.  The 

agreement is excellent.  It should be recognized that 

obtaining data this close to the wall is very difficult. 

 

 
 

Details of the Outer Law 

 

At the end of the overlap region the velocity defect is 

given approximately by: 

 

 
𝑈𝑒−𝑈

𝑢∗
= 9.6(1 − 𝜂)2                                                

  

With pressure gradient included, the outer law becomes 

(Fig. 6-10): 

 

 ),(
*

g
u

UU e 

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  /y   
dx

dpc

w




*

  =  

 

 

 

 

 

Clauser (1954,1956): 

 

BL’s with different px but constant   are in equilibrium, 

i.e., can be scaled with a single parameter: 

Clauser’s  equilibrium 

parameter 
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 *u

UUe 
 vs. /y  

 

  *

0

*



 



dy
u

UU
thicknessdefect e

 

 

 
f

C/2  

 

Also, G = Clauser Shape parameter 

 

   
MachbyfitCurve

dy
u

UU e










 


 



7.181.11.6
1

0

2

*
  

 

Which is related to the usual shape parameter by 

 

   )(./1
1

xtodueconstGH  


 

 

Finally, Clauser showed that the outer layer has a wake-

like structure such that  

 

 
*016.0  et U       

 

Mellor and Gibson (1966) combined these equations into 

a theory for equilibrium outer law profiles with excellent 

agreement with experimental data: Fig. 6-12 
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Coles (1956): 

 

 A weakness of the Clauser approach is that the 

equilibrium profiles do not have any recognizable shape.  

This was resolved by Coles who showed that:  

 

 

)/(
2

1

5.5ln5.2

5.5ln5.2



yW

U

yU

e


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 



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


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
fitcurve

y
functionwakeW





2
sin2 2 32 23   ,  /y  

Max deviation at δ Single wake-like function of y/δ 

Deviations above log-overlap layer 
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Thus, it is possible to derive a composite which covers 

both the overlap and outer layers, as shown in Fig. 6-13. 

 

)/(ln
1







yWByU  

 

 parameterwake  = π(β) 

 
75.0)5.0(8.0      (curve fit for data) 

 

Note the agreement of Coles’ wake law even for β   

constant.  Bl’s is quite good. 

 

 
 We see that the behavior in the outer layer is more 

complex than that of the inner layer due to pressure 

gradient effects.  In general, the above velocity profile 

correlations are extremely valuable both in providing 

physical insight and in providing approximate solutions 
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for simple wall bounded geometries: pipe, channel flow 

and flat plate boundary layer.  Furthermore, such 

correlations have been extended through the use of 

additional parameters to provide velocity formulas for use 

with integral methods for solving the BL equations for 

arbitrary px. 

 

Summary of Inner, Outer, and Overlap Layers 

 

Mean velocity correlations 

 

Inner layer:  

 

)(   yfU  
*/ uUU 
  

  uyy /   /*
wu   

  

Sub-layer: U+ = y+            for  50  y    

Buffer layer:    where sub-layer merges smoothly with 

                       log-law region for 305  y   

 

 

Outer Layer: 

 

 ),(
*

g
u

UUe 


   /y ,  x

w

p





*

  

                                           for  > 0.1 
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Overlap layer (log region): 

 

 ByU   ln
1


  inner variables 

 

 A
u

UUe 





ln
1

*  outer variables 

  

               for  y+ > 30  and   0.3 

 

Composite Inner/Overlap layer correlation 
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for  0 < y+  50 

 

Composite Overlap/Outer layer correlation 

 

 )(
2
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                                 for  y+ > 50   
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Reynolds Number Dependence of Mean-Velocity Profiles 

and Reynolds stresses  

 
Figure: Pope (2000, Fig. 7.13) 

 

1. Inner/overlap U+ scaling shows similarity; extent of 

overlap region (i.e. similarity) increases with Re. 

  

2. Outer layer for px = 0 may asymptotically approach 

similarity for large Re as shown by )/2( kU    vs. 

Reθ, but controversial due to lack of data for Reθ 5 x 

104. 

 

3. The normalized Reynolds stresses 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅/𝑘, 

production-dissipation ratio and the normalized 

mean shear stress are somewhat uniform in the log-

law region. Experiments in flat plate boundary layer, 
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pipe and channel flow shows k = 3.34 - 3.43 u*2 in 

lower part of log-law region.  

 

4. Decay of k ~ y2 near the wall. 

 

5. Streamwise turbulence intensity 
*

2

u
uu   vs. y+ 

shows similarity for 150  y  (i.e., just beyond the 

point of kmax, y
+ = 12), but u+ increases with Reθ. 
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