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Chapter 6:  Viscous Flow in Ducts 

 

6.2 Stability and Transition 

 

Stability:  can a physical state withstand a disturbance and 

still return to its original state. 

 

In fluid mechanics, there are two problems of particular 

interest: change in flow conditions resulting in (1) 

transition from one to another laminar flow; and (2) 

transition from laminar to turbulent flow. 

 

(1)  Transition from one to another laminar flow 

 

(a) Thermal instability:  Bernard Problem 

 

A layer of fluid heated from below is top heavy, 

but only undergoes convective “cellular” motion 

for 
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w=velocity scale: convection (w) = diffusion (k/d) 

from energy equation, i.e., w=k/d 

 

Solution for two rigid plates: 

 

Racr = 1708   for progressive wave disturbance 

 αcr/d = 3.12   
^ ( )
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c ti x ct iw we e x ct x ct
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 α = αr    c=cr + ici 

αr = 2π/λ=wavenumber 

 cr =  wave speed 

 

 ci : > 0  unstable 

  = 0  neutral 

  < 0  stable 

 

Thumb curve: stable for low Ra < 1708 and very long or 

short λ. 

For temporal stability 

Ra > 5 x 104 transition 

to turbulent flow 
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(b) finger/oscillatory instability:  hot/salty over 

cold/fresh water and vise versa. 

 

(Rs – Ra)cr = 657   
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(c) Centrifugal instability:  Taylor Problem 

 

Bernard Instability: buoyant force > viscous force 

Taylor Instability:  Couette flow between two 

rotating cylinders where centrifugal force (outward 
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from center opposed to centripetal force) > viscous 

force. 
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Tacr  = 1708  αcrc = 3.12  λcr = 2c 

Tatrans  = 160,000 

 

 

 
 

Square counter rotating vortex 

pairs with helix streamlines 
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(d) Gortler Vortices 

 

Longitudinal vortices in concave curved wall 

boundary layer induced by centrifugal force and 

related to swirling flow in curved pipe or channel 

induced by radial pressure gradient and discussed 

later with regard to minor losses. 

 

For  δ/R > .02~.1  and  Reδ = Uδ/υ  >  5 
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(e) Kelvin-Helmholtz instability 

 

Instability at interface between two horizontal 

parallel streams of different density and velocity with 

heavier fluid on bottom, or more generally 

ρ=constant and U = continuous (i.e. shear layer 

instability e.g. as per flow separation).  Former case, 

viscous force overcomes stabilizing density 

stratification. 
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UU   large  α  i.e. short λ always unstable 
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Therefore always unstable 
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(2) Transition from laminar to turbulent flow 

 

Not all laminar flows have different equilibrium states, 

but all laminar flows for sufficiently large Re become 

unstable and undergo transition to turbulence. 

 

Transition:  change over space and time and Re range of 

laminar flow into a turbulent flow. 

 



U
cr
Re  ~ 1000  δ = transverse viscous thickness 

 

Retrans > Recr   with  xtrans ~ 10-20 xcr 

 

Small-disturbance (linear) stability theory can predict Recr 

with some success for parallel viscous flow such as plane 

Couette flow, plane or pipe Poiseuille flow, boundary 

layers without or with pressure gradient, and free shear 

flows (jets, wakes, and mixing layers). 

 

Note:  No theory for transition, but recent DNS helpful. 
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Outline linearized stability theory for parallel viscous 

flows: select basic solution of interest; add disturbance; 

derive disturbance equation; linearize and simplify; solve 

for eigenvalues; interpret stability conditions and draw 

thumb curves. 
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Linear PDE for 

^

u , 

^

v , 

^

p     for (u ,v , p ) known. 

 

Assume disturbance is sinusoidal waves propagating in x 

direction at speed c: Tollmien-Schlicting waves. 
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
^^

,vu   small 2D oscillating in time disturbance is  

             solution unsteady NS 

 

Stream function 

y =distance across 

shear layer 



058:0160  Chapter 6- part2 

Professor Fred Stern     Fall 2020  12 

 

0
^^
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yx

vu   Identically! 

 

 
ir

i   = wave number = 


2  

 
ir

iccc     = wave speed    = 


   

 

 Where λ =  wave length and ω =wave frequency 

 

Temporal stability: 

Disturbance (α = αr only and cr real) 

  

ci > 0  unstable 

 = 0  neutral 

 < 0   stable 

 

Spatial stability: 

 Disturbance (cα = real only) 

 

 αi < 0  unstable 

  = 0   neutral 

  > 0  stable 
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Inserting 
^

u , 

^

v  into small disturbance equations and 

eliminating 
^

p  results in Orr-Sommerfeld equation: 

 

 2 2 4( )( '' ) '' ( 2 '' )
Re

IV

inviscid Raleigh equation
i

u c u        


        

 

 Uuu /   Re=UL/υ  y=y/L 

 

 4th order linear homogeneous equation with 

homogenous boundary conditions (not discussed here) i.e. 

eigen-value problem, which can be solved albeit not 

easily for specified geometry and (u ,v , p) solution to 

steady NS. 
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 Although difficult, methods are now available for the 

solution of the O-S equation.  Typical results as follows 

 
 

(1)  Flat Plate BL: 

 520Re 




U
crit

 

 

(2)  αδ* = 0.35 

   λmin = 18 δ* = 6 δ  (smallest unstable λ) 

  unstable T-S waves are quite large 

 

(3)  ci = constant represent constant rates of damping  

(ci < 0) or amplification (ci > 0).  ci max = .0196 is 

small compared with inviscid rates indicating a 

gradual evolution of transition. 
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(4) (cr/U0)max = 0.4   unstable wave travel at average  

velocity. 

 

(5)  Reδ*crit = 520   Rex crit ~ 91,000 

 

Exp: Rex crit ~ 2.8 x 106 (Reδ*crit = 2,400) if care taken, 

i.e., low free stream turbulence 
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Falkner-Skan Profiles: 

 

(1)  strong influence of  

 

 Recrit    > 0    fpg 

 

 Recrit    < 0   apg 

Reδ*crit : 

67 sep bl     

520 fp bl 

12,490 stag point bl 
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Extent and details of these processes depends on Re and 

many other factors (geometry, pg, free-stream, turbulence, 

roughness, etc). 
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Rapid development of span-

wise flow, and initiation of 

nonlinear processes 

- stretched vortices disintigrate 

- cascading breakdown into 

families of smaller and smaller 

vortices 

-  onset of turbulence 
 

Note:  apg may undergo 

much more abrupt 

transition.  However, in 

general, pg effects less 

on transition than on 

stability 
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Some recent work concerns recovery distance: 


