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Chapter 6: Viscous Flow in Ducts

6.2 Stability and Transition

Stability: can a physical state withstand a disturbance and
still return to its original state.

In fluid mechanics, there are two problems of particular
Interest: change in flow conditions resulting in (1)
transition from one to another laminar flow; and (2)
transition from laminar to turbulent flow.

(1) Transition from one to another laminar flow
(a) Thermal instability: Bernard Problem

A layer of fluid heated from below is top heavy,
but only undergoes convective “cellular’” motion
for

Raleigh #:  ra-920d _gald” o bouyancy force
ow/d®* kv ” viscous force

a = coefficient of thermal expansion =—i(g—¢)
P ’

r=at/d=-9T/  p=p (1-aAT)
d = depth of layer
k, v =thermal, viscous diffusivities
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w=velocity scale: convection (w/) = diffusion (k/7d)
from energy equation, i.e., w=k/d

Solution for two rigid plates:

Racr = 1708 for progressive wave disturbance
occr/d =3.12 w:\//\vei“(X_Ct) :ecit[cos(x—ct)+sin(x—ct)]
Jer = 2m/ = 2d T - larlich)
O = Or C=Cr + IC; For temporal stability

or = 2r/A=wavenumber
Cr = wave speed

Ra > 5 x 10* transition

S
Ci: >0 unstable to turbulent flow

=0 neutral

<0 stable

Thumb curve: stable for low Ra < 1708 and very long or
short A.
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g 115  Convection rolls in a Bénard problem.

(b) finger/oscilIatofﬁnstability: hot/salty over
cold/fresh water and vise versa.

(Rs — Ra)y = 657 Rs = g4d*(ds/dz)/ 1k,
o o =p,(1-aAT + BAS)
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{a} Finger regime

(b) Exiffusive regime

Fig. 11.7 Two kinds of double-diffusive instabilities. (a) Finger [(nstability, showing up- and
down-going selt fingers and their temperature, salinity, and density. Arrows indicate direction of
motion. (b) Oscillating instability, finally resulting in a series of convecting layers separated by
“diffusive™ interfaces. Across these interfaces T and 5 vary sharply, but heat is transparted much
faster than salt.

Fig. V1.8 Sult Angers, produced by pouring sall solution on top of s stable temperature gradiont.
Flow visualization by Auorescent dye and a horizontal beam of light. [From Turner {1985).]

(c) Centrifugal instability: Taylor Problem

Bernard Instability: buoyant force > viscous force
Taylor Instability: Couette flow between two
rotating cylinders where centrifugal force (outward
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from center opposed to centripetal force) > viscous
force.

= centrifugal force/viscous force

Tacr — 1708 OcrC = 312 9 icr — 2C
Tatrans — 160,000

Square counter rotating vortex
pairs with helix streamlines

!
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Fig. 1011 G. I Taylor's observation and narrow-gep calculation of marginal stability in rotating

Couette Aow of water. The ratie of radii is Ryf B, = 1.14. The region above the curve is unstable.

A The dashed line represents Rayleigh's inviscid criteripn, with the region w the laft of the line
a Q representing instability. .

Fig- 1LI0 Definitian skeich of instability in rotating Coeite flow.
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T s

Fig. 11.12 Instability of rotating Couette flow. Panels a, b, ¢, and d correspond to increasing
Taylor number. [ From Coles {1965).]
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(d) Gortler Vortices

Longitudinal vortices in concave curved wall
boundary layer induced by centrifugal force and
related to swirling flow in curved pipe or channel
induced by radial pressure gradient and discussed
later with regard to minor losses.

For /R > .02~.1 and Res; =Uod/v > 5

. e A CvT .—"7"HJ‘
Fig. 1113 Gdnler vortices in a boondary laver along a concave wall,
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(e) Kelvin-Helmholtz instability

Instability at interface between two horizontal
parallel streams of different density and velocity with
heavier fluid on bottom, or more generally
p=constant and U = continuous (i.e. shear layer
Instability e.g. as per flow separation). Former case,
viscous force overcomes stabilizing density
stratification.

g(pf—pf)<aplp2(U1—U2)2 — ¢ >0 (unstable)

U, =U, large a l.e. short A always unstable

Vortex Sheet

1
=P = Cizi(ul—'_UZ) >O

Therefore always unstable

Ty ¥

ifa
Fig. 11.14 Dhsenniinuous shear 3cross 4 density interlece.
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Fig. 11.16 Kelvin-Helmholtz instability generated by tilting a horizontal channel containing two
liquids of different densities. The lower layer is dyed. Mean flow in the lower layer is down the
plane and that in the upper layer is up the plane. [From Thorpe (1971).]

Fig. 11.17 Billow cloud near Denver, Colorade. [From Drazin and Reid {1981).]
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(2) Transition from laminar to turbulent flow

Not all laminar flows have different equilibrium states,
but all laminar flows for sufficiently large Re become
unstable and undergo transition to turbulence.

Transition: change over space and time and Re range of
laminar flow into a turbulent flow.

Re = vo . 1000 0 = transverse viscous thickness
3

Retrans > Reécr with Xtrans ~ 10-20 Xer

Small-disturbance (linear) stability theory can predict Re
with some success for parallel viscous flow such as plane
Couette flow, plane or pipe Poiseuille flow, boundary
layers without or with pressure gradient, and free shear
flows (jets, wakes, and mixing layers).

Note: No theory for transition, but recent DNS helpful.
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Outline linearized stability theory for parallel viscous
flows: select basic solution of interest; add disturbance;
derive disturbance equation; linearize and simplify; solve
for eigenvalues; interpret stability conditions and draw
thumb curves.

N

Hea u,v= mean flow, which is solution steady NS
V=\_/+V
p=p+p u,v = small 2D oscillating in time disturbance is

solution unsteady NS

N _/\ /\_ _/\ /\_ 1 N N
Ut+UUx+UUyx +VUy+VUy =——p +0V°U
0

N N N N N 1 N N
Vi+UVx+UVx +VVy+VVy =—=p +0V2U
Yo,

N N
UX+Vx :0

N AN AN

Linear PDE for U, V, P for (U,V, P) known.

Assume disturbance is sinusoidal waves propagating in x
direction at speed c: Tollmien-Schlicting waves.

: _ e (x—ct) _

o yA't) P Stream function

L= OV _ el (xct) y =distance across
% shear layer

N
N .
oY 'a¢e'a(x_0t)

OX
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N N

u+v =0 Identically!

a =a +ia = wave number = 2%

C=cC +IiCc = wave speed :%

Where A = wave length and w =wave frequency

Temporal stability:
Disturbance (o = oy only and c,real)

ci >0 unstable
=0 neutral
<0 stable

Spatial stability:
Disturbance (ca = real only)

ai <0 unstable
=0 neutral
>0 stable
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Inserting u, v into small disturbance equations and
eliminating p results in Orr-Sommerfeld equation:

inviscid Raleigh equation

U0 —u"p = (¢" ~20’g" o)

u=u/U Re=UL/N y=y/L

4™ order linear homogeneous equation with
homogenous boundary conditions (not discussed here) I1.e.
eigen-value problem, which can be solved albeit not
easily for specified geometry and (u.v.p) solution to

steady NS.

STABLE
T F STABLE (5; < 0)
adverse pressure grodient
o °
[ty
kL zera or favorable

prossore pradient

i
I
UNSTABLE(z ) i
|
i
|
|
|
|

0 i) a0 !
Re -EﬂE mn il Re5 = Ui+ A
¥
Fig. 1124 Skeich of marginal stabilit :
Fig. 1123 Marginal stability curve for @ shear layer w = Uy lanh{y/ L), pressure gradients. ’ 1ty cuves for 2 boundacy layer with fuvorsble and adverse
TABLE 1.1 Linear Stability Results of Common Viscous Parallel Flaws
Flow LIy} Ly Re,, Remarks

Jet sech{y/ L) 4

Shear layer tanhiy/L) 0 Always unstable

Blasius 520 Re based on §*

Plane Poiseville 1-iy/ L} $180  L=hall width

Pipe Row I=(efR)} w Always stable

Plane Couette wL o Always stable
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Although difficult, methods are now available for the
solution of the O-S equation. Typical results as follows

. c ﬂ&-f) ——— ¢, constant
LTy —— £, constand
0.30
o .
g .
IFA"._’—"({
= < . 020 —
c = +Y LJ" g 1 =]
. A , .
ME g A . %_
-7 0.10 K‘"“m:}-_
a
2 8 108

2 ‘._‘ir;lw

FILUNYE -8 . o
Amplifieativn curves fur the Blasius fAat-plate bovmdary loyer. [Aficr Wazzan,

Okamura, and Sisth (1068a).] —_—

(1) Flat Plate BL.:

Re = Uo' _ 520
v
(2) ad =0.35

> Amin =188 =68 (smallest unstable 1)
. unstable T-S waves are quite large

(3) ci = constant represent constant rates of damping
(ci < 0) or amplification (Ci > 0). Cimax =.0196 is
small compared with inviscid rates indicating a
gradual evolution of transition.
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(4) (c/Uo)max = 0.4 > unstable wave travel at average
velocity.

(5) Reﬁ*crit =520 - Rex crit =~ 91,000

Exp: Rexcrit ~ 2.8 X 10° (Res«crit = 2,400) if care taken,
I.e., low free stream turbulence

4x 010 =~

&
I

2w 0% =

Re, = LGt

Fig. 11.26 Marginal stability ewrve for a Blesivs boundary tayer. Theorerical solations of Shen
and Schlichting are compared with experimental data of Schubauer and Skramstadt.
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FIGURE 57
Nentrnlstability éurves fur the Falkner-Skun boundary-layer profiles. [Afler

Falkner-Skan Profiles: Res+crit : f
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520 fp bl
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(1) strong influence of 3
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FIGURI 5-12 .
Cyrrelation of the critical Reynulds munber with the profile shape factor for

aminar fow.
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FIGURY 5-24

'I‘Im. classic pipe—ﬂ?w dye experiment_rpl' Iteynolds (1881): (a) low speed:
:mnn{i:r flow; (b) high speed: turbulent fow; (c} spark photograph of condi-
ion (B).

Our overall picture of the transition process in nuiet flow past n smooth
flat plate consists of the following processca as one moves downstream:

W f\aﬁk\ ! Stable laminar flow near the leading edge -
£  Unstable two-dimensional Tollmien-Schlichting waves
3 Development of three-dimensional unstable waves nnd hairpin eddics
Vertex brenkdown at regions of high localized shear
“Cascading vortex breakdown into fully three-dimensional Aluctuations
Formation of turbulent spots at loeally intense flucbuations
Coaleseence of spots into fully turbulent flow

—‘_\\(‘_‘-_

\'\-.

r ~2 @ W@

Extent and details of these processes depends on Re and
many other factors (geometry, pg, free-stream, turbulence,
roughness, etc).
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FIGURE 5.25 .'\ 2

Development of spanwise varintions in the streamwise velowity Suctuntion
dnwnstream of a vibrating ribbon with spacers. [After Kichanaff, T'isirom,
wned Sargend (1162).]

- stretched vortices disintigrate
- cascading breakdown into
families of smaller and smaller
vortices

- onset of turbulence

=9m/s

Laminar boundary laver Turbulent spot
o e

P wei-w-.... o,

- ‘h ‘-‘-\' AR A r——— E q
FIGURE 5-26 8 I;

Plan and elevation of the ed >0 = S

growth of a turbulent spot, [Affer ° 0 40 60 80 {00

Schubaner and Klebaroff (1055).) o X, EM Rege = 2,100
B opk L4 AReng

I ] 5 ise Three- Turbulant  Fully -

Tves ity ) amensional /" spots
Note: apg may undergo

much more abrupt
transition. However, in
general, pg effects less
on transition than on
stability

‘Laminar

fe,,

FIGURE 5-27
Idenlized sketch of transition process on a fiat plate.
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E xperiment:
» Dryden (1936)

© Hall and Hyslop {1938)
& Schubauer and Skramstad (1947)

Theory: Van Driest and Blumer [1963)

1 i

WS (T = 0004

Compnrison of theory and experiment for transition lleynolds number on &
fat plate at various levels of freestream turbulence. |After van Driest and

b 3X10%L
1.% x\0¢
2_.
’!h
&
-
o
FIGUNLLTE 5-28

Blumer (1953) ]

10°

Freestresm turbulence, T (pevcent}

Falkner-Skan profiles: Eq. (5-100)
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FIGUERL -2

Fffect of presanre gradient and freesiream turbulence on transition Rteynobda

Freastieam turbulence, T [percent)

mumber. [Affer van Driest and Blumer (1563).)
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Freestream lurbulence:
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FIGURE 5-30

Tdeslized effect of hvo-dlmmmtml rouglmeas on transition: (a) flat plale with
trip wire; (b) transition dala.
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M# = 2.1 {Brinich, 1954)
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FIGURE 5-3L .
Flat-plate, two-dimensional roughness transition (Inta normalized to eliminate
freestrenm Lurbulence effects: () incompressible flow [Aflrr Drwden (1953)); !
{b) compressible flow.

Some recent work concerns recovery distance:




