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Chapter 6: Viscous Flow in Ducts

6.1 Laminar Flow Solutions

Entrance, developing, and fully developed flow
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Le=f (D, V, p, 1)
I1, theorem — 1/, =  (Re) f(Re) from AFD and EFD

Laminar Flow: Regit ~ 2000 Re < Reqit laminar
L /D =.06Re Re > Reqit  unstable
Re > Rewans  turbulent

L =.06Re_ D~138D
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Max Le for laminar flow
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Turbulent flow:

Re L./D
4000 18 L /D~ 4.4Re"
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105 30 _
106 44 (Relatively shorter than for
107 65 laminar flow)
108 95

Laminar vs. Turbulent Flow
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Reynolds 1883 showed that the difference depends on Re = VD/v
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Laminar pipe flow:

1. CV Analysis

gr=gsing

Fig. 6.7 Control volume of steady, \ Z,

f““}f developed flow between two l
Sections in an inclined pipe. ™ =0 ' e e

Continuity:
0= [pV-dA— pQ, = pQ, = const.
CS
eV, =V, since A=A, p=const,andV =V,
Momentum:

YF, = (py — p2) mR? — 7, 2nRL + ynR2L sin ¢ = m(B,V, — 1 V1)

Ap w Az/L =0
Ap/R* —7 27RL+ y7R°Az =0

AP+ JAZ = szgL
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Ah:hl—hzzA(p/y+z):2%%

or
. _RyAh  Rydh
T2 L 2 dx
R d
=———(p+
20|X(|o 7Z)

For fluid particle control volume:

r d
=———(p+z
T Zme 7Z)

I.e. shear stress varies linearly in r across pipe for either
laminar or turbulent flow

Energy:
P, & P2 , @
—+—=V,+7; =—=+—=V,+2,+h_
y 29 y 29
ah=h =25k

-, once Tw IS known, we can determine pressure drop

In general, roughness
r =7 (o,V, 4, D,g{

ITi Theorem
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87, -
> = f = friction factor = f(Rep,&/D)
oV

where Rep _vb
v

2
Ah=h =f Lve Darcy-Weisbach Equation
- D2g

f (Rep, &/D) still needs to be determined. For laminar
flow, there is an exact solution for f since laminar pipe
flow has an exact solution. For turbulent flow,
approximate solution for f using log-law as per Moody
diagram and discussed later.

2. Differential Analysis

Continuity:
V-V =0

Use cylindrical coordinates (r, 0, z) where z replaces
X in previous CV analysis

EE(rv )+Ei(v )+avZ
ror- " ro0 " oz

=0
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where V = v,.é, + vgég + 1,6,

Assume Yo =0 i.e. no swirl and fully developed

flow — az =0 which shows YV, = constant = 0 since
v.(R) =0
~V=v,6, =u(r)é,
Momentum:
DV aV 5
p—=p—+pV -V =-V(p+vyz) +uv¥
Dt ot
Where
V.- 0 N 10 N 0
R R T I P
Z equation:
ou o 2
+V-Vu|=——(p+22)+uV-U
p[at } az(p 7Z)+ i
10/( ou
O0=—— Sl B e
. (p+7/22+\ﬂr6r(rarj

f(2) f(r)

. both terms must be constant
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U 0
r ar( Gr) 0z
rau 1 op 24 A
or 2u 82
- a1 8p A
or 2,u 82
= U= 18pr + Alnr+B pP=p+y
4u 0z
u(r=0) finite 2> A=0
R2 dp
—p\ — B=——_
u(r=R)=0 > 44 dz
_r’—R*dp . R*dp
U(r)— 4ﬂ dZ umax _U(O)__EE
T=U 8vr u ﬂa_u fluid shear stress
0z ar or
_rop
26z
T, :luﬁ_u = lu@_u :—Ea—p As per CV analysis
oy yo or|,_s 2 01
du dr du du
Yy=R-—r, = - —
dy dy dr dr
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N

7 —7R'dp 1 ,
Q—z[u(r)Zyzrdr_ o =~ Una 7R

N\
v .. Q 1 _-Rdp

ave_ﬂ_Rz_z max ~ 8,Ll dZ

Substituting V = Vae

_ _B 8LV ave _ ALV e _8uV
Ty =——X — —

2 _R? R D

or

2 2
Ao LVE_ B4 L V?_ 32V

ocV
D2g oDV "D 29 pgD?

forAz=0 — ApocV
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Both f and Ct based on V2 normalization, which is
appropriate for turbulent but not laminar flow. The more
appropriate case for laminar flow is:

P,, =C, Re=16

Oc;

P, =fRe=64 for pipe flow

Poiseuille# (P, ){

Compare with previous solution for flow between parallel

plates with p
k-3
44 il

Y Uty
8
-\

4 2h3( " j
q = _humax = - pX
3 3,u

Vav — E — 5 (_A) = umax

-
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f_24y_ 48 96
pvh  Re, Re,
S —
Rep,
C,=fld=

6y 12 24

‘T Vh Re, Re,
——

Rep,

P, =C,Re, =24

Oc;

Poiseuille# (F,)
R =fRe, =96

Same as pipe other than constants!
Pch pipe B I:)Of pipe B 16 B 64 B g
24 96 3

Oc; channel based on D, 0 ; channel based on D;,
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Exact laminar solutions are available for any “arbitrary”
cross section for laminar steady fully developed duct flow

O:_ px+lLl(uYY+uZZ)

u(h) =0

Reonly . . . h* "
enters Y =Y/h z=12/h u=u/U U=—( px)
throggh H

Ztnaé)lllty Related Umax
transition Viu=-1 Poisson equation

u(l) =0 Dirichlet boundary condition
Can be solved by many methods such as complex
variables and conformed mapping, transformation into
Laplace equation by redefinition of dependent variables,
and numerical methods.
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Table 6.4 Laminar Friction

Constants fRe for Rectangular and

Triangular Ducts

e Table 6.3 Laminar Friction Factors
Rectangular Isosceles triangle for a Concentric Annulus
a 0.0 64.0 1060

0.00001 70.09 0.913

bla fRey, 8, deg FRey, 00001 7178 0.892
0.001 468 857

0.0 96.00 0 48.0 001 ;] 11 g 33‘9

005 899 10 51.6 0.05 26,27 0.742

0.1 84.68 20 52.9 0.1 29.37 0.716

0125 §2.34 30 533 0.2 92.35 0.69%

0.167 7881 40 52.9 0.4 94.71 0.676

025 7203 sp 5240 0E 95.50 0.670

04 65.47 60 511 08 95.92 0.667

0.3 62.10 0 49.5 1. 96.0 0.667

075 57.89 80 a8.3 ' : '

1.0 56.91 90 48.0

3-3.3 Noncircular Ducts

Since Eq. (3-32) for fully developed duct flow is equivalent to a classic Dirichlet
problem, it is not surprising that an enormous number of exact solutions are
known for noncircular shapes, as reviewed by Berker (1963). Some of these
shapes are shown in Fig. 3-9. Each solution is fascinating, but our mathematical
ardor should be dampened somewhat by the practical fact that limagon-shaped
ducts, for example, are not commercially available at present. Nevertheless we
list a few of these solutions because they lead to a valuable approximate
principle, the hydraulic radius. The velocity distribution would suffice, but the
volume rate of flow is a bonus,

Elliptical section: y?/a” +z%/b* < 1:
1 ( dﬁ) a’b* (1 y? zz)

u(y,z) = 5;‘ dx | a? + b2 42 bz, —
T dpy a’b?
a 4;;( dx | a* + b?
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1280  viscous FLUID FLOW

Rectangular section: —a <y <@, —b £z 5 b:

62 - o
ano) = os(-2) E {-1}“'””[1-

3
BT i=1,3,5,...

cosh(imz,/2a)
m-sh(hrbﬂa]] -
. cns(i'r:::,f’Za) (3-48].

I

_ dba’ _f’i][] _ 192a i mﬂh{f'rrbfz.{z)]

5 5
3u b ey 3 i

Equilateral triangle of side a: coordinates in Fig. 3-9:

- —aV3 |(3y* - 2?
2V3ap (Z 2° )(y )

a3 [ dp
Q 32[};.&{ a'.t]
Circular sector: — @ <0< + 3o, 0<r<a

dp’/’dx[ ) cos 28 16a%a?
-

u( ¥ 2’) =
(3-49)

u(r,8) = p— e

X i (- 1)(i+1}j2[£)! cos(imd/a) ]

i=1,%5... 4] 3(! + 2“/’17'){1 - Zﬂ'fﬂ')
at 1 dp
¢- E(_Tir“) o (350)
tang -a  32a° i 1
% 4 _175 i=1,3.5,... fz(l' + 2&;""&'}2(5 - Za/‘rr)

Concentric circular annulus: b < r < @

—dp /dx

u(r) =

[az —r?+ (a* - b?)

In(a/r)
In(b/a)

232 (3-51)
. :f_(_ﬁ g B0
e ] 4 In(a/b)

This is but a sample of the wealth of solutions available. The formula for a
concentric annulus is important in viscometry, with a measured Q being used to
calculate w. To increase the pressure drop, the clearance (¢ — b) is held small,
in which case Eq. (3-51) for Q becomes the difference between two nearly equal
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SOLUTIONS OF THE NEWTONIAN VISCOUS-FLOW EQUATIONS 121

Circle Rectangle Elipse Concentric annulus
Eq. (3-34) Eq. (3-48) Eq. (3-47) Eq. (3:61)
AT ’
2
- a a
a
a
Half moon Circular sector Eccentric annulus  Equilatera! triangle Limacon
Berker {1963) Eq. {3-50) Eq. (3-52) Eq. (3-49) Barker (1963)

FIGURE 3.9
Some cross sections for which fully developed flow solutions are known; for still more. consult
Berker (1963, pp. 67f1.) or Shah and London (1978).

numbers. However, if we expand the bracketed term [ ] in a series, the result is

2 _ p2y\2
(a‘—b"')—(a b —b(a—b)3+-§-(a-b)‘+---+¢’(a-—b)s

in(a/b) 3
so that Q for small clearance is seen to be cubic in (a - b).
The eccentric annulus in Fig. 3-9 has practical applications, as for example
when a needle valve becomes misaligned. The solution was given by Piercy et al.
(1933), using an elegant complex-variable method which transformed the geom-

etry to a concentric annulus, for which the solution was already known, Eq.
(3-51). We reproduce here only their expression for volume rate of flow:

™ dﬁ 4 4 4CZM2 ya had ne-"(ﬁ*a)
-—] - bt = - -52
0 8;1.( dz)[a b B-a BasE ney Sinh(ng — na) 92

a* - b* + c?

where M=(F-a)'"? F= 7

F+M 1l F-c+M

1

2 F-M PT3F-i-m

Flow rates computed from this formula are compared in Fig. 3-10 to the
concentric result Q. _, from Eq. (3-51). It is seen that eccentricity substantially
increases the flow rate, the maximum ratio of Q/Q,_, beihg 2.5 for a narrow
annujus of maximum eccentricity. The curve for b/a = 1 can be derived from
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122 visCOus FLUID FLOW

256

20

15+

1 L 1
9 02 04 08 08 10 FIGURELO
Volume flow through an eccentric annulus as a

¢
Relative eccentricity, .~ function of eccentricity, Eq. (3-52).

1.0

lubrication theory:

N 1 D iR ep) 353
: =14 = -
arrow annulus 0. 3 (a =% ) ( )
The reason for the increase in Q is that the fluid tends to bulge through the
wider side. This is illustrated for one case in Fig. 3-11, where the wide side
develops a set of closed high-velocity streamlines. This effect is well known to
piping engineers, who have long noted the drastic leakage that occurs when a
nearly closed valve binds to one side.

3.3.4 The Concept of Hydraulic Diameter

The definition of A proposed in Eg. (3-39) fails for a noncircular duet since 7,
varies around the perimeter. For example, in the equilateral-triangle duct, Eq.

FIGURE 3-11
Constant-velocity fines for an ec-
centric annulus, b/a = ¢c/a = 4.

[ After Piercy et al. (1933).]




