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Absolute inertial, relative inertial and non-inertial coordinates for 

a moving but non-deforming control volume 

Tao Xing1, Pablo Carrica, and Fred Stern 

 
Objective  Derive and correlate the governing equations of motion in integral and 

differential forms in absolute inertial, relative inertial and non-inertial coordinates for a 

moving but non-deforming control volume and evaluate the advantages and disadvantages 

of using the three coordinates. 

 

Approach The governing differential equations of motion are derived and solved in the 

absolute inertial earth-fixed coordinates (X,Y,Z), non-inertial ship-fixed coordinates (x,y,z), 

and relative inertial coordinates (X´,Y´,Z´) that translate at a constant velocity in (i.e. with 

respect to) (X,Y,Z) for an arbitrary moving but non-deforming control volume (CV), as 

shown in Figure 1. The control volume is for either the ship in red or background in green 

while the solution domain includes both. The origin of (x,y,z) o is located at the center of 

gravity of the ship. The origin of (X´,Y´,Z´) O´ is located at the intersection of the bow and 

the static water line. r  is the instantaneous position vector of any grid point or fluid 

particle in (x,y,z).    

In the absolute inertial earth-fixed coordinates (Fig. 1(a)), the position vector of o is 

R. S R r   is the instantaneous position vectors of any grid point or fluid particle. The ship 

translation velocity is 0 0 0
ˆˆ ˆ

i i iR R t u i v j w k      , where 0î , 0ĵ , and 0k̂  are the unit vectors of 

X, Y, and Z axes, respectively, and iu ,
iv , and iw  are the surge, sway, and heave velocities 

of the ship respect to (X,Y,Z). The ship rotation is angular velocity 0 0 0
ˆˆ ˆ

X Y Zi j k    of 

(x,y,z) in (X,Y,Z). The velocity of the control volume is defined by:                                                                                 
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                                      CSV R r           (1) 

In relative inertial coordinates (Fig. 1(b)), the position vector of o is R  in (X´,Y´,Z´). 

S R r    and OOS R S   are the instantaneous position vectors of any grid point or fluid 

particle in (X´,Y´,Z´) and (X,Y,Z), respectively. The ship translation velocity is 

0 0 0
ˆˆ ˆ

i i iR R t u i v j w k          , where unit vectors of (X´,Y´,Z´) are the same as those for 

(X,Y,Z). iu , iv , and iw  are the surge, sway, and heave velocities of the ship respect to 

(X´,Y´,Z´). The ship rotation is angular velocity 0 0 0
ˆˆ ˆ

X Y Zi j k       of (x,y,z) in 

(X´,Y´,Z´). The velocities of the control volume in (X´,Y´,Z´) and (X,Y,Z) are:                                                                          

                                      CSV R r        (2) 

                                                    OCSV R R r       (3) 

where the relative inertial coordinates are moving at a constant speed VC respect to (X,Y,Z), 

0
ˆ

O CR V i . Comparison between equations (2) and (3) shows: 

                                                            CS O CSV R V        (4) 

The red control volume performs up to 6 degrees of freedom (6DOF) motions (surge, 

sway, heave, roll, pitch, and yaw). The green control volume performs up to 3DOF (surge, 

sway, yaw) motions copied from the corresponding degrees of freedom of the ship’s 

motions. Any number of degrees of freedom can be imposed and the rest is predicted by 

6DOF solvers, which results in captive, free, or semi-captive motions. î , ĵ , and k̂  are the 

unit vectors of  x, y, and z axes, respectively. 
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                                         (a)                                                                (b) 

  Figure 1 Definition of different coordinates for ship Hydrodynamics simulations with  

         absolute inertial earth-fixed coordinates (X,Y,Z), non-inertial ship-fixed coordinates  

         (x,y,z), and relative inertial coordinates (X´,Y´,Z´): (a) solve in (X,Y,Z), (b) solve in  

         (X´,Y´,Z´). 

 

1. Velocity correlations 

1.1 Correlation between (X,Y,Z) and (x,y,z) 

If r  represents the position vector of a fluid particle in (x,y,z), the position vector of 

that fluid particle in (X,Y,Z) is: 

                                                              S R r        (5) 

The absolute velocity in (X,Y,Z) and relative velocity in (x,y,z) are defined by Eqns. (6) 

and (7), respectively: 

                                                               V dS dt      (6) 

                                                               rV dr dt      (7) 
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Differentiate Eqn. (5) is differentiated respect to time and with use of the correlation of 

d dt  in (X,Y,Z) and d dt  in (x,y,z) [Greenwood, 1988]: 

                                                           
d d

dt dt
       (8) 

The velocities are related by: 

                                                                  CSrV V V       (9) 

1.2 Correlation between (X,Y,Z) and (X´,Y´,Z´) 

Derivation similar to 1.1 is applied in (X´,Y´,Z´). The absolute velocity in (X,Y,Z) and 

relative velocity in (X´,Y´,Z´) are defined by equations (10) and (11), respectively: 

                                                                    OV dS dt      (10) 

                                                                    rV dS dt       (11) 

       Use Equation (8) and differentiate S R r    respect to time: 

                                                                    r r CSV V V  
      (12) 

Differentiate OOS R S   respect to time: 

                                                       O O rV d R S dt R V        (13) 

 
2. Reynolds transport theorem (RTT) 

       RTT for flow with an arbitrary CV moving at RV  is applied:  

 
SYS

R

CV CS

dB d
d V n dA

dt dt
         (14) 

                      

       For a non-deforming CV, RTT for incompressible flow: 
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syst

R

CV CS

dB
d V ndA

dt t


  


  

      (15) 

   

       To convert it to the differential form of RTT, the flux term is transformed to a volume     

       integral using the Gauss divergence theorem: 

 

 

 

syst

R

CV CV

R

CV

dB
d V d

dt t

V d
t


  


 


   



 
    

 

 


   (16)

 

 

 

Taking limit for elemental CV for which integrand is independent of the volume    

and divided by  : 

                 syst

R

dB
V

dt t


 

 
  

 
    (17) 

  

3. Application of RTT for  , ,X Y Z : 

   3.1 Integral form for a CV 

         Conservation of mass with systB M , 1   for Eqn.(15) and note steady flow with     

         R CSV V V  , 

                                     0CS

CS

V V ndA        (18) 

          Conservation of momentum with systB MV  and V 
 
for Eqn. (15):

 

    

( )
( )CS

CV CS

d MV V
F d V V V ndA

dt t
 


    


     (19) 

For steady flow: 
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                                      ( )CS

CS

F V V V ndA       (20) 

   3.2 Differential form 

 For mass conservation, substitute systB M , 1   and R GV V V 
 (when the  

          CV is limited to a point, GV  is the local grid velocity so CS GV V ) to Eqn. (17)  

           and note 0GV  :  

                                                                  0V       (21) 

 

For momentum equation, substitute systB MV  and V 
 
to Eqn. (17): 

                                                                                

                                Gsyst

d V
MV V V V f

dt t


 
       

      (22) 

 

The 2nd term on the left-hand-side can be simplified using the divergence operator  

expansion with the use of the continuity equation,                                                                             

                  

                         
     

0

G G G

continuity

V V V V V V V V V



         

  

(23) 

After the body and surface forces are expressed per unit volume, the NS equation in  

(X,Y,Z) is: 

       
    2

32
1

G

V
V V V p Z V

t
  

 
        
 
             

(24) 

4. Application of RTT for  , ,X Y Z   : 

   4.1 Integral form for a CV 
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         For mass conservation, systB M  and 1   for Eqn. (15) and note R rV V  . For 

steady flow:  

                                            0r

CS

V ndA  
                                                

(25) 

Conservation of momentum with  r CSsystB M V V   , r CSV V   
 
and  

 R rV V                      

                                

 

 
 

[ ]r CS

r CS

r CS r

CV CS

d M V V

dt

V V
F d V V V ndA

t
 

 


  
     


    

(26)

 

       For steady flow with the use of continuity: 

                               

 r CS r

CS

r r CS r

CS CS

F V V V ndA

V V ndA V V ndA



 

    

      

 

 
0

         

(27)

 

                 

r r

CS

F V V ndA    
                    

(28) 

4.2 Differential form 

For mass conservation, replace V  in Eqn. (21) using Eqn. (13): 

                                                                0rV         (29)

                  

 

For conservation of momentum, GV  and V  in equation (24) are substituted by Eqns. (4) 

and (13). Note the time derivatives in (X´,Y´,Z´) and (X,Y,Z) are the same as they are 

both inertial coordinates, term [1] in equation (24) becomes: 
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0

r r
O

V VV
R

t t t

  
  

  
     (30) 

For term [2] in Eqn. (24),  

                         G r O G O r O r G rV V V V R V R V R V V V                (31) 

For term [3] in Eqn. (24), 

                                                       2 2 2

r O rV V R V         (32) 

Equations (30) to (32) are substituted back to equation (24) and note gradient, 

divergence, and Laplacian operators are frame invariant. The governing equations in
 

terms of rV 
 
are obtained:

 

                                          2r
r G r r

V
V V V p Z V

t
  

             
  (33) 

 

5. Application of RTT for (x,y,z): 

   5.1 Integral form for a CV 

         For mass conservation, systB M , 1   for Eqn.(15) and note steady flow, 

                                                0R

CS

V ndA 
                                       

(34) 

          Conservation of momentum with  r CSsystB MV M V V   , V                      
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 

 r CS R

CV CS

r R CS R

CV CS CS

d MV

dt

V
F d V V V ndA

t

V
d V V ndA V V ndA

t

 

  




   




    



  

  
0   

(35) 

                         

 

 2

rel

r

r
r

a

rVV
R

t t t

V
R V r r

t

 
  

  


      

   (36) 

             where 

                                             
0

t t t


  
    

  
    

(37) 

       So,  

                  
           

r
rel r R

CV CV CS

V
F a dm d V V ndA

t
 


   


   

   

(38)
 

       Note when the CV is moving together with (x,y,z), the RV Fin the above equations 

will be replaced by rV
 

 

   5.2 Differential form 

   For mass conservation, replace V  in Eqn. (21) using Eqn. (9): 

                                                                0rV        (39) 

         The differential form for momentum equation in (x,y,z) can be derived from Eqn.  

          (24), note 
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                                          GV R r 
      (40) 

                                       GrV V V 
      (41) 

           For term [1], from Eqn.(36),   

                                                    
r

rel

VV
a

t t


 

        
(42)

 

             For term [2],                                                                   

                       G Gr r r rV V V V V V V V      
  

 (43)  

             For term [3],                                                                              

                               
2 2 2 2

0

Gr rV V V V     

     

(44) 

The above four equations are substituted back to the differential form of the momentum 

equation in (X,Y,Z)  and note gradient, divergence, and Laplacian operators are frame
 

invariant. The governing equations in terms of
 

rV  are obtained:                                                        

              2r
r r rel r

body force

V
V V a p z V

t
   
 

        
 

  (45)  

where                                                                 

                  2rel ra R V r r     
   

(46) 

6. Comments on application of different approaches 

     6.1 Solving fluid mechanics problems analytically using integral forms 
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          As shown in the lecture notes, it is easier to solve the continuity and momentum 

equation in the relative inertial coordinates. 

     6.2 Solving differential equations using CFD [Xing et al., 2008] 

The governing differential equations (GDEs) for continuity and momentum in (X,Y,Z) 

and (X´,Y´,Z´) are transformed from the physical domain in Cartesian coordinates 

 , , ,X Y Z t  to the computational domain in non-orthogonal curvilinear coordinates 

 , , ,   
 
using the chain rule without involving grid velocity for the time derivative 

transformation: 

                              
1

0j

i ij
b U

J 





     (47)                                                                

      
1 1 1

Re

kj k l
j jk ki i i i i t i

j j Gj i ik k j k k l

eff

b UU U b b U bp
b U U b S

J J J J J J



      

      
               

 (48) 

Eqs. (47) and (48) are identical to Warsi et al., who transformed the standard NS 

equations in  , , ,X Y Z t
 
to a fixed computational domain  , , ,   

 
with the inclusion of 

the grid velocity iX    in the time derivative transformation. In the present derivation of 

Eqs. (24) and (33) the solution domain and control volume are coincident with each other, 

which conceptually better shows the relationship between the moving but non-deforming 

control volume and solution domain and additionally provides the continuous GV /
GV   form 

of the NS equations. Compared with Eq. (33), Eq. (24) allows non-constant CV . When 

0CV  , Eq. (33) reduces to Eq. (24). Transformation of the continuous GV  form of the NS 

equations in (X,Y,Z) into (x,y,z) clearly shows the difference of GDEs using the absolute 

inertial earth-fixed or non-inertial ship-fixed coordinate systems. Compared with Eq. (45), 

application of Eq. (24) simplifies the specification of boundary conditions, saves 

computational cost by reducing the solution domain size, and can be easily applied to 
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simulate multi-objects such as ship-ship interactions. In general, implementation of Eq. 

(24) to simulate captive, semi-captive, or full 6DOF ship motions is straightforward. 
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