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Chapters 3 & 4: Integral Relations for a Control Volume
and Differential Relations for Fluid Flow

Laws of mechanics are written for a system, i.c., a fixed
amount of matter.

Suum..l»:q‘g_
s e
M

‘m-.‘w-r

1. Conservation of mass: EIM =0

dt
d(MV)

dt

2. Conservation of momentum: F=Ma=

3. Conservation of energy: db Q-W

dt
AE=heat added — work done

Also _
dHg

Conservation of angular momentum: 5 Mo

. dS 3Q .
Second Law of Thermodynamics: % = T +6

&, entropy production due to system irreversibilities
6<0
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In fluid mechanics we are usually interested in a region of
space, i.€, control volume and not particular systems.
Therefore, we need to transform GDE’s from a system to a
control volume, which is accomplished through the use of
RTT (actually derived
in thermodynamics for
v S “8 CV forms of continuity
and 1% and 2™ laws, but

Ly )
== not in general form or
referred to as RTT).

Note GDE’s are of form:

— (M MV,E)=RHS
dt —
system extensive properties By depend on mass

dB
> which needs to be related to changes in

1.€., involve

CV. Recall, definition of corresponding system intensive
properties

B=(1,V,e) independent of mass
where

B= [Bdm = [BpdV

Le., B= SIEB
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Reynolds Transport Theorem (RTT)

d :
Need relationship between it (Bsys) and changes in

:ijﬁdmzcjvﬁpdv.

CN. o
-eb dt Mwmj o\eﬁmvwivxﬁ Vi

,51$+¢ -

ot tidt Ve = VU~ N

ey & ‘glsw \L = -C[M.‘A UL\OU*‘&
Ng = €S debima oll i
-L—\w\-e-('- —E_C.\J urA»odAj 50-»Wl€
*3 wordd'w{'e

\)__: = relutive Vo[ooi'\'b $\15+M
_@is__ Lown (Bey %AB)EME {Bey + BB,
dt This0 b
Brene - DBy
R P T o o
b g,ﬂ_/
L_\”‘"/
©
dB.,
1 = time rate of change of B in CV = dt = j,Bp \Y

2 = net outflux of B from CV across CS = I PPV g -1 dA
CS

As with Q and m, AB flux though A per unit time is:
dQ =Vz.ndA
dm = pVr.n dA
dAB = BpVr.n dA
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Therefore:

d BSYS

d
= — dVv + \V ., -n dA
= dtcfvﬁp Cfsﬁp_R n

General form RTT for moving deforming control volume
Special Cases:

1) Non-deforming CV

Boss = [ 2 (gp)av + [ AV n dn
2) Fixed CV
SYS a
Byys _ —(Bp)dV + | BoV -n dA
=L ]

Greens Theorem: | Vb dv¥=[b-ndA
cv CS

d BSYS

= CIV E(ﬂpﬁ v (ﬂp\i)} dv

Since CV fixed and arbitrary limgives governing
differential equation.
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3) Uniform flow across discrete CS (steady or unsteady)

J‘ﬁp\iR -ndA= ;ﬂp\iR -ndA (- inlet, + outlet)
CS

or for fixed CV, Vy =V, Vs =0

4) Steady Flow: % =0

Continuity Equation:

B = M = mass of system

B=1

dd—l\t/l =0 by definition, system = fixed amount of mass

Integral Form:

dM

d
— —0=—[pdv+ [pV.-ndA
dt dtcfvp CJSP—R -

-S [pdv=[pV, nda
dtCV CS

Rate of decrease of mass in CV = net rate of mass outflow across CS
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Note simplifications for 1) non-deforming and fixed CV
(V #V (1), Vs = 0), 2) uniform flow across discrete CS

(J=3), 3) steady flow (% =0), and 4) incompressible fluid

d
(p=constant => ~ 4 j dv = j V-0 dA . «conservation of

Ccv CS
volume™)

1) Non-deforming and fixed CV
ja—pdV+jpy-gdA:o
at CS

Ccv

2) and uniform flow over discrete inlet/outlet
j%dV+Zp\i-ﬂA:O

Cv

3) and steady flow
> pV-nA=0

2 (PVA), + 2 (pVA),, =0
\
pQ=m= 3 (M), => (M),

4) and incompressible flow

_ZQin +ZQout =0

If non-uniform flow over discrete inlet/outlet

Qes, = \i'DdAZ(VaVA)CS_ V 2% V-ndA

or

av
CS CSs
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Differential Form:
dM dp
— =0 = — ] \v
a ! “atJ’V (pz)]d
(04

=1
op
L v (pV)=0
=+ (pV)

%0+,0V-\1+\1-Vp:0

Dp
—+pV-V =0
Dt PV -V

M=pV= dM =pdVvV+Vdp=0= _dVV:d_p
0

1Dp__ 1DV

o Dt v Dt

1bp _ 0
p Dt ——
Hﬁ_/
rate of changep OU vV ow_ 1Dp_ 1DV
per unit p ox oy oz pDt VDt
rateof changeV
per unit v

Called the continuity equation since the implication is that
p and V are continuous functions of x.

Incompressible Fluid: p = constant
V-V=0
ou oV ow
+—+—=0
oXx oy oz
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P3.15 Water, assumed incompressible, flows steadily
through the round pipe in Fig. P3.15. The entrance

velocity is constant, u=U;, , and the exit velocity

approximates turbulent flow, U=U,, (1-r/ R)]/7. Determine
the ratio Uo/Umax for this flow.

-
=
N\
x=10 ; x=1 L‘
P3.15

Steady flow, non-deforming, fixed CV, one inlet uniform
flow and one outlet non-uniform flow

—My,, + My =0; p= constant; — Qin + Qout =0
0=-U,zR*+ IOR Uy (1— r/R)]/7 27crdr
0=—U 7R? +u_ 27 R2
60
U, 49
u_ 60

max

R r v 1 15/7 1 8/7
2ﬂumaxjo 1_E rdr = 27U, (1-r/R)™" - 1 (1-r/R)
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank
as shown. At time t=0, the water depth in the tank is
30cm. Estimate the time required to fill the remainder of
the tank.

<~— D =75cm—~

v ey | {._;"1 m

V,=2.5 m/s "d=12cm Y= ibnk
P3.12

Unsteady flow, deforming CV, one inlet one outlet
uniform flow

d
0=— | pdV—-pQ, +
o j pdV — pQ, + pQ,

d 7rd? 7rd?
O0=— dV—pV,—+pV,
qi | PO T

D?
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0_,07ZD2@Jr zd?

4 dt 4 (V.=V)
dh (dY)
E == (Bj (Vl _VZ) - 00153
dh 0.7

t = = =
0.0153 0.0153

Steady flow, fixed CV with one inlet and two exits with
uniform flow

v
Note: Q:!\\i‘ﬂdA:a <
0=-0Q,+Q,+Q,
% d?
Q3=E=Q1—Q2=T(V1—V2)
2
. o
dt=Q =7rd2
> (1)
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P4.17 A reasonable approximation for the two-
dimensional incompressible laminar boundary layer on

2y Yy
the flat surface in Fig.P4.17 is ! = U( S5 52] for y<g,
where 6 =Cx¥?, C =const
(a) Assuming a no-slip condition at the wall, find an
expression for the velocity component V(x,Y) for y<d.
(b) Find the maximum value of v at the station x=1m, for
the particular case of flow, when U =3m/s and 6 =1.1cm.

Layer thickness &(x)

U )
y e U = constant
= -
o U
7’7 * u(x, y) u(x, y)
/
0: >\
P4.17
ou ov
Zi%-0
oX oy
oV ou 00

y: oy C.uyp O
(8) V=Y (252 353] §=Cx* =X =gy
(b) Since v, =0 at y=¢
2Us(1 1
Vinax =V (y_é) (___j vo 3X0011—00055m/3
2x \2 3) 6x
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Momentum Equation:

B = MV = momentum, =V

Integral Form:

d(MV) d
dv + V.-ndA=)> F
dt ot ve j oL 2E

— & .3
1 2

> F = vector sum of all forces acting on CV

= FetFs
Fg = Body forces, which act on entire CV of fluid due to

external force field such as gravity or electrostatic or
magnetic forces. Force per unit volume.
Fs = Surface forces, which act on entire CS due to normal
(pressure and viscous stress) and tangential (viscous
stresses) stresses. Force per unit area.

When CS cuts through solids Fs may also include Fr =

reaction forces, e.g., reaction force required to hold nozzle

or bend when CS cuts through bolts holding nozzle/bend
In place.

1 = rate of change of momentum in CV
2 = rate of outflux of momentum across CS

3 = vector sum of all body forces acting on entire CV

and surface forces acting on entire CS.
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Many interesting applications of CV form of momentum
equation: vanes, nozzles, bends, rockets, forces on bodies,
water hammer, etc.

Differential Form:

[|GW)+v (o) v

0 0 oV
Where 7 (V p)=V P+ o~
and VoV = pVV = put V. + pvJV + pWKV s a tensor
VWA =V (AN) = £ (V) + (o) + £ (o)

=VV-(pV)+pV -V

=0, continuity
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oV DV
Since o LYY=
Ip—dv ZF
Ccv
- Z_ per elemental fluid volume
pg = ib + is

= body force per unit volume
surface force per unit volume

T,
is
Body forces are due to external fields such as gravity or

magnetic fields. Here we only consider a gravitational
field; that is,

> F., =dF,_, = pgdxdydz

and 92—9‘2 for lg TZ
e, fo, =—P0K

—Dbody
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Surface Forces are due to the stresses that act on the sides
of the control surfaces

o =—po +1
” / ” ‘I\
Normal pressure Viscous stress
— =l T —p+7 T
/ ks ¥ W vz
A oy T T — P+
L X 7y |
*
Symmetric Ojj = Ojji
z 2" order tensor

As shown before, for p alone it is not the stresses
themselves that cause a net force but their gradients.

Symmetry condition from requirement that for elemental
fluid volume, stresses themselves cause no rotation.

fo=1,+1

Recall f,=-Vp based on 1% order TS. f. is more
complex since 7, is a 2" order tensor, but similarly as for

P, the force Is due to stress gradients and are derived
based on 1% order TS.
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A A A
0, =0, 1+0, J+0o,K Resultant
N N N Stress
o,=0,i+o, jto,kK on each face
o A N A
o, =0, i+0Zy j+o,k

y 5ny
3 + dy [dxdz
/' [ny 2 yj

>

o, dydz +=——mr | X' (Uxx + aaaxxx dx) dydz

* "/ g, andsimilarly for z
yX

0 %) %) X
= [a (Oxx) + — (ayx) + — (crzx)] dxdydz 1

+ (axy) + (ayy) + — az (crzy)] dxdydz j

+ a (0,,) + @ (ayz) + 3, (O'ZZ)] dxdydz k

:|:—(a )+5(0_)+—(6 )}dxdydz
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Divided by the volume:

0 0 0
f,=—(c)+—(0,)+—=(o,)
— OX — oy — 07 —

fszv-aij =iaij

— axj

Putting together the above results,

DV .
a=p—=—pgk+V-o,
pa=p-—==-p9 j

Inertial f body force surface force = p + viscous terms
nertial force due to (due to stress gradients)
gravity

Next, we need to relate the stresses oij to the fluid motion,
I.e. the velocity field. To this end, we examine the
relative motion between two neighboring fluid particles.

@B: V+dV=V+dr-VW 1%t order Taylor Series

u, u, u, |ldx
dV =dr-VW=lv, v, v, |dy|=¢g;dx,
al
relative motion _Wx VVy W, | _dZ_

deformation rate
tensor = €

ij
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ou.  1f ou ou; 1{ ou, au,
g =—t=>|—"+—L|+ Z|2L-—L| =g+
ox;  2{ 0x; OX 2( 0X;  OX
symmetric part anit—symmetric part
—_= . . _—C()..

E.=¢€ Q.. =
I ] JI
n
1 1
0 —(u,-v,) —(u,—-w
2( y X 2( z x)
1 1 - :
@y = E(vx—uy) 0 E(VZ_WV) =rigid body rotation
of fluid element
g
E(Wx_uz) E(Wy_Vz) 0
2 2
S

where &= rotation about x axis
n = rotation about y axis
¢= rotation about z axis

Note that the components of wj; are related to the vorticity
vector define by:

@=VxV = (W, —V,) T +(U,—W,) j+(v,-u,)k
| —— |
28 21 2¢

= 2 x angular velocity of fluid element
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g; =rate of strain tensor

I 1 1 ]

u Z(u,+v) =(u,+w
5 Uy +v) S (U + W)

X

1 1
= E(vX+uy) v, E(vz+wy)

1 1
—(W, +u — (W, +V W
2( X z) 2( y z) z

u, +V, +W, =V -V = elongation (or volumetric dilatation)
. 1 DV
of fluid element =V Dt

%(uy +v,) = distortion wrt (x,y) plane

%(uz +w, ) = distortion wrt (x,z) plane

%(VZ +w,) = distortion wrt (y,z) plane

Thus, general motion consists of:

1) pure translation described by V

2) rigid-body rotation described by w

3) volumetric dilatation described by V-V

4) distortion in shape described by s; 1#]
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It is now necessary to make certain postulates concerning
the relationship between the fluid stress tensor (i) and
rate-of-deformation tensor (ej). These postulates are
based on physical reasoning and experimental
observations and have been verified experimentally even
for extreme conditions. For a Newtonian fluid:

1) When the fluid is at rest the stress is hydrostatic and
the pressure is the thermodynamic pressure

2) Since there is no shearing action in rigid body
rotation, it causes no shear stress.

3) i is linearly related to &jj and only depends on &j;.

4) There is no preferred direction in the fluid, so that
the fluid properties are point functions (condition of
Isotropy).
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Using statements 1-3

o, =—po, +k, &

ijmn " ij

kijmn = 4™ order tensor with 81 components such that each
stress 1s linearly related to all nine components of &jj.

However, statement (4) requires that the fluid has no
directional preference, i.c. cij IS iIndependent of rotation of
coordinate system, which means Kkimn IS an isotropic
tensor = even order tensor made up of products of di.

Ky = A8, O + 18,8 + Y8081

ijmn ij Pmn im? jn
(A, 1, 7) = scalars
Lastly, the symmetry condition ij = oji requires:
Kijmn = Kjimm =y = u = viscosity

0ij = —POij + UOimOjn&;j + UOinOjm&;j + A0;jOmn&i;

o =—Po; +2ug; + A&, O
VvV
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A and p can be further related 1f one considers mean
normal stress vs. thermodynamic p.

o; =—3p+(Q2u+34)V-VY

1 2

= —-—0; +| —pu+1|V-V

p 3GII (3# j —_
HK_J

p=mean
normal stress

p—p{%umjvy

Incompressible flow: p=p and absolute pressure is
Indeterminant since there is no equation of state for p.
Equations of motion determinevp.

Compressible flow: p= p and A = bulk viscosity must be

determined; however, it is a very difficult measurement

requiring large V-\1=—%% 1DV . g., within shock

WaVeEs.

Stokes Hypothesis also supported Kkinetic theory

monotonic gas.
A= %,u
P
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2
o :_(p+§ﬂv'\ijé}j + 2y

Generalization 7 = yg—u for 3D flow.
y

Gu ou, o _
= -+ | # | relates shear stress to strain rate
ax OX.

a“=—p—§yv-\i+2y[2§‘] —p+ Zy{—%v V+Z—l:(}

1
Y]

normal viscous stress

Where the normal viscous stress is the difference between
the extension rate in the Xx; direction and average
expansion at a point. Only differences from the average =
1(8u oV, ow

3lox oy ez
incompressible fluids, average =0 1.e. V-V =0.

j generate normal viscous stresses. For

Non-Newtonian fluids:

7, « g, for small strain rates @, which works well for
air, water, etc. Newtonian fluids
. 0

T B Non-Newtonian

non-linear history effect

Viscoeslastic materials
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Non-Newtonian fluids include:
(1) Polymer molecules with large molecular
weights and form long chains coiled together
In spongy ball shapes that deform under shear.
(2) Emulsions and slurries containing suspended
particles such as blood and water/clay

Navier Stokes Equations:

DV

a=p—=—pgk+V-o.

pa=p Dt PY ij

DV A 0 2
——==—pgk-Vp+—| 2us; —— uV-V 0,
P o = PIK=VP Gx[ pey =g 1YV .,}

J

Recall p = w(T) pincreases with T for gases, decreases
with T for liquids, but if it is assumed that p = constant:

DV - o 2 0
—==—pgk—Vp+2u——&, —= p—V-V
TR P TP v

. OU. 2.
20 o = 0| M M T gy ey
OX i OX j OX j OX. OX J@x j
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DV _ _hgk-vp+u vV -2-2 vy
p oy L9 Y A{ T

For incompressible flow v-v =0

p2_ pgk-vp vV
Dt L
—Vp where p=p+yz
plezometric pressure

Foru=20
DV

p5c="PIk=VP  Euler Equation

NS equations for p, p constant

DV
—==-Vp+uv?V
P b P+uvVV

p{aa—\ti +\L'V\4 =-Vp+uv*V

oV, 1_. Y7,
{E HLW} = —;Vp +WV v= 5 kinematic viscosity
Non-linear 2" order PDE, as is the case for p, # not constant
Combine with v-v for 4 equations for 4 unknowns v , p
and can be, albeit difficult, solved subject to initial and

boundary conditions for v, patt=to and on all
boundaries 1.e. “well posed” IBVP.
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Application of CV Momentum Equation:

d
net force on CV time rate bf change net momentum
of momentum in CV outflux

F =F. +FE. (E, includes reaction forces)
Note:
1. Vector equation
2. n =outward unit normal: V,-n <0 inlet, > 0 outlet

3. 1D Momentum flux, fixed CV

I\lp\i ndA=2 (MmV,),, — 2 (MV,),

CS

Where V., pare assumed uniform over fixed discrete
inlets and outlets

m = pV,;A

YF = %fcvzp av + ;(ml Zi)out — g(ml Zi)iLl

outlet momentum  inlet momentum flux
flux
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4. Momentum flux correlation factors
ju,DZ-QdA = pfuz dA = pBAVS, = MV,

axial flow with
non—uniform
velocity profile

1 uY
Where 'B:Zj(\/_] dA

av

CS
V., :iju dAz%
ACS

Laminar pipe flow:

1
r? r2
u :Uo[l—EJ zUO(l—Ej

Vav :'53UO ﬁ — g = 1.33

Turbulent pipe flow:

u=UO(1—%jm %Smﬁ%

vV, =U 2 - —

av 0(1+m)(2+m). for m= 7 Vav =.82U¢
[+ m)(2+m)y
~ 2(1+2m)(2 + 2m)

. for m=1/7, f=1.02
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5. Constant p causes no force; Therefore,
Use Pgage = Patm-Pabsolute

F,=—[pndA=-[Vpdv=0 for p = constant
CS Ccv

6. For jets open to atmosphere: p = Pa, 1.€. Pgage = O.

7. Choose CV carefully with CS normal to flow (if
possible) and indicating coordinate system and > F
on CV similar as free body diagram used in
dynamics.

8. Many applications, usually with continuity and
energy equations. Careful practice is needed for
mastery.

a. Steady and unsteady developing and fully
developed pipe flow

Emptying or filling tanks

Forces on transitions

Forces on fixed and moving vanes

Hydraulic jump

Boundary Layer and bluff body drag

Rocket or jet propulsion

Nozzle

Propeller

Water-hammer

—mS@ oo oo0oT
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P3.53 Consider incompressible fiow in the entrance of a cir-
cular tube, as in Fig. P3.53. The inlet flow is uniform,
uy = Uy The flow at section 2 is developed pipe flow.

———

Find the wall drag force F as a function of (py, py.
Uy, R) if the flow at section 2 is

r 17
(b} Turbulent: u, = .um(I - E)

First relate umax to Ug using continuity equation

- Qin + Qout = 0 :> Qin = Qout = Q :>Vav,in :Vav,out; Vav =

U, R’ =Tumax(1—%e)m2ﬂr dr

> |O

1 % m
= — _ r =
U, =y !umax (1 R) 27y dr =V,
Vav = umax 2
(L+m)(2+m)
m= 1/2 Va\/ = .5SUmaX 9 Umax = Vav/53
Mm=1/7 Va=.82Unx =2 Umax= Va/.82
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Second, calculate F using momentum equation:

F = wall drag force = z,,22Rdx (force fluid on wall)
-F = force wall on fluid

> F, =(p,— pJR’ —F = u,(pu,27r dr)-U,(pmRU,)

R
F=(p,—p,)7R* + pU 7R —IpuéZm‘ dr
0

. /

W 2
PPAVS,
= Ug? from
<« continuity
F = (p; — p2)nR? + pUsnR? — B,pAV,,
PUg”Ré(l—.Bz)
=1 (1)2 dA
:B a4t \y, )
momentul flux
correction factor
= 4/3 laminar flow
= 1.02 turbulent flow
2 1 2 2
F..=(p.— p,)7R —§on 7R
F —(p—p)R —.020U 7R’ Complete analysis
R ° using CFD!
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Reconsider the problem for fully developed flow:
Continuity:

_min + rhout =0
M=rh =m or Q = constant

Momentum:
>F, = (P—p)aR*~F = p[u(V.-n)dA+p [ u(V n)dA

out

= _p(ﬁAVa%/e)in + ,O(ﬂAVaie)out

:pQVave (ﬂout _ﬁin)
=0
(p1 — p,)TR? — 1,,2nRdx = 0

AprR?* — 1,,2nRdx = 0
Since Ap = p; —p; = —dp = —(p2 — p1)

T :E(—@j or for smaller CV r < R, T:E(—@j
20 dx 2\ dx

(valid for laminar or turbulent flow, but assume laminar)

T = Iud—u = —lud—u = £(— %) Yy = R-r (wall coord.)
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il o)
U=——|—— |+¢
4u\  dx

uir=R)=0 - c=R2(—d—p)
4u\  dx

u(r) = R=r (— dpj (If & < 0 flow moves from left to right)
411 dx >

U = i (— @) u(r) :umax(l—r—)
Au\ dx R*

G _ AR _dp
Q—lu(r)andr_Sﬂ( dx)

r = E(_%j _ E 8:uvave _ 4luvave
2 2\ R? R

¢ 8z, _ 32u _ 64 u _ 64
p Vaie p RVave p Vave D Re
Re — Vave D
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Piezometric head
h=z+ P
14

For a horizontal pipe
Ap =yAh, Az =0

derw__ . __ 2Lty 8ty
R dp =4p = R ’f_ch%v
2 2
Ap — 2LpVaynf — LpVayf
8R 2D
Dividing by y
Ap  LpViaf LVg
y 2Dy ' D2g
More generally
LVZ : :
Ah = f D2g Darcy—Weisbach equation

Exact solution of NS for laminar fully developed pipe
flow
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Application of relative inertial coordinates for a
moving but non-deforming control volume (CV)

The CV moves at a constant velocity V. with respect to
the absolute inertial coordinates. If v, represents the
velocity in the relative inertial coordinates that move
together with the CV, then:

Vo, =V -V,

Reynolds transport theorem for an arbitrary moving deforming
CV:
dBSYS

d
= dVv + V. -n dA
prra ijﬁp stﬂp_R n

For a non-deforming CV moving at constant velocity, RTT for
incompressible flow:

dB
o =pf%dv+pfﬂ\4q-ndA
Ccv CS

dt

1. Conservation of mass
Bye =M, and g=1:
dM

== V. -ndA
dt pCL—R—

For steady flow:

I\ﬁ-ndA=O
CS
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2. Conservation of momentum

By =M (Ve +Vcs ) and = By /OM =V +Ves

syst

d[M (Vg +V.cs )]

dt =2E=p]

Ccv

O(Va+Ves)
ot

AV + p [ (Vg +Ves Ve -NdA
CS

For steady flow with the use of continuity:
2 E=p](Va+Ves )V ndA
CS

0
=P j VeVg -ndA+ pV NdA
cs cs

2E =p][VaVe-ndA
CS
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Example (use relative inertial coordinates):

A jet strikes a vane which moves to the right at constant velocity v, on a
frictionless cart. Compute (a) the force E, required to restrain the cart and (b)
the power P delivered to the cart. Also find the cart velocity for which (c) the
force F, is a maximum and (d) the power P is a maximum.

V, A /—\

o
== V.= constant

F,

© €

Solution:

Assume relative inertial coordinates with non-deforming CV i.e. CV moves
at constant translational non-accelerating

VCS = qui + vcsj + Wcsk = Vci

then Vr =V =V ¢ . Also assume steady flow v # v (¢) with p = constant and
neglect gravity effect.

Continuity:
0= prSVR ) ﬂdA
—pVr1A1 + pVraA4; =0
Vr1d1 = Vpa Ay = (V] - VC) Aj

N ——
VR1=VR,1=Vj-V¢
Bernoulli without gravity:

o 1 o 1
/pl/ +§IOVR21=,pz/ +§IOVR22

VRl :VRZ
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A== A

Momentum:

YXE=p Vr Vg ndA
cs—

> F.=—F =p[_ ViV, -ndA
—F = pVr,1(=Vr141) + pVg, 2 (Vr245)
—E = p(V; = Vo) [=(V; = Ve)A;] + p(V; = V) cos 6 (V; = Ve )4
Fe = p(V; — V) 4;[1 — cos 6]
Power = V.F, = Vep(V; — V)" A;(1 — cos 6)

E

Xmax

= pVPA;(1 —cosh), V=0

dpP
Pmax = d_VC =0
P =Vep(V? —2VeV; + VE)A;(1 — cos6)

= p(V?Ve — 2VEV; + V2)A;(1 — cos 6)

dP
d—VC—p(] — 4VcV; + 3VZ)A;(1 —cos ) =0
3VE—4ViVe + V7 =0
+4I/}--I_—\/16V}-2—12V}-2 4V, + 2V,
Ve = 6 G
V, Ve 272 4
For V¢ =73 Pnax =?’p(T’) A;(1 — cosB) =2—7]/}-3ij(1 — cos 6)
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Example (use absolute inertial and relative inertial

coordinates)

P3.51  Aliquid jet of velocity V; and area A, strikes a single 180°
bucket on a turbine wheel rotating at angular velocity {1,

P3.51

as in Fig. P3.51. Derive an expression for the power P
delivered to this wheel at this instant as a function of
the system parameters. At what angular velocity js the
maximum power delivered? How would your analysis
differ if there were many, many buckets on the wheel,
50 that the jet was continually striking at least one
bucket?

Assume gravity force is negligible and the cross section
area of the jet does not change after striking the bucket.
Taking moving CV at speed V= QR 1 enclosing jet and
bucket:

Solution 1 (relative inertial coordinates)

Continuity: —Mir +Myr =0
My =My =My p = pJ‘\iR -ndA
CS

Bernoulli without gravity:
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o 1 o 1
,pl/ +§pvir?,R = ,pz/ +Epvoit,R
Vin,R :Vout,R
Inlet Ving = (V; — QR)1

Outlet Vourg = —(V; — 2R)1

Since _pvin,RAﬁ—i_pVout,RA’Z =0
A1 = A2 = Aj
Momentum:
Z I:X = _Fbucket = rT.'lRVout,R - r‘hRVin,R
I:bucket = _mR [_(Vj _QR) - (Vj _QR)]

= 2, (V, —OR)
=2pA;(V, -QR)?
M, = pA, (V; —OQR)
P = ORF, 4 = 20A0R(V, - QR)’
dP 2
-5 = 2PAR(V; — 2R)" = 2pA;0R2(V; — OR)R
= 2p4;R|(V; — R)" - 2R0(V; — OR)|
= 2pA;R(V; — QR)|V; — QR — 2R0)]
dP Vi
d_.Q:O — Vj—3.(2R=0 - §=-QR
ity O Zgpa A B
Fnax = ZpAJ?(V' ?) = 2P 9= o7 PAY

0.296
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If infinite number of buckets: My = PA\V,

all jet mass flow

F :
result in work.

bucket

=2pAV,(V, - OR)
P=2pAV,OR(V, ~QR)

f _VJ' _ 1 3

P _
do

Solution 2 (absolute inertial coordinates)

i

V=Vr+Vcs

V=V —Ves

le

Vin
Vour =—(V; —QR) i+ OR i = —(V; — 20R) i
Continuity: from solution 1
~Vinr + Voutr =0

express in the absolute inertial coordinates: Vg =V — Vs

—(V;i—0R)i+(V;+20R—-(AR)T=0
J J
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Momentum:
2 E. = —Fpyucker = m(Vout - Vin)
= p4;(V; — OR)[~(V; — 20R) — V]]

Fpucket = 2,[)‘élj(Vj _ ‘QR)Z

Same as Solution 1.
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Application of CV continuity equation for steady
iIncompressible flow, fixed CV, one inlet and outlet with
A = constant

pjv .ndA=p [ V.-ndA == pQ

out

Qin - Qout
(Vave A) (Vave A)

For A = constant (Vawe Jin = (Ve Dot
>E= pjv V-n)dA+p [V (V-n)dA

out

Pipe:
>'F, pjuv n)dA+p [ u(V-n)dA
out
= _p(ﬂAVaie) + p(ﬂAVa?/e )out
= PQVoe (Lo = Bin) change in shape u
Vane:
ZE =m (Vout - Vin); Vout| = Vinl
If 6=180:

D F, =m(Uy, —U;, ) =m(-2u, )

For arbitrary 6:

z E, = m(uyy: cos 0 — u;,) = mu;,(cosg — 1)
change in direction u
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Application of differential momentum equation:

1. NS valid both laminar and turbulent flow; however,
many order of magnitude difference in temporal and
spatial resolution, i.e. turbulent flow requires very
small time and spatial scales

Uo
2. Laminar flow Regit = TS 2000
Re > Regit  Instability
3. Turbulent flow Regansition > 10 or 20 Regrit

Random motion superimposed on mean coherent
structures.

Cascade: energy from large scale dissipates at
smallest scales due to viscosity.
Kolmogorov hypothesis for smallest scales

4. No exact solutions for turbulent flow: RANS, DES,
LES, DNS (all CFD)
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5. 80 exact solutions for simple laminar flows are
mostly linear V-w =0

D Q0o

g.

Couette flow = shear driven

Steady duct flow = Poiseuille flow
Unsteady duct flow

Unsteady moving walls
Asymptotic suction

Wind-driven flows

Similarity solutions. etc.

6. Also many exact solutions for low Re Stokes and
high Re BL approximations

7. Can also use CFD for non simple laminar flows

8. AFD or CFD requires well posed IBVP; therefore,
exact solutions are useful for setup of IBVP,

physics, and verification CFD since modeling errors

yield Usm = 0 and only errors are numerical errors
Usn, I.€., assume analytical solution = truth, called
analytical benchmark
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Energy Equation:

B = E = energy
B = e = dE/dm = energy per unit mass

Integral Form (fixed CV):

4E_ j 2(e,o)dv + _[e,oV .ndA =Q-W
e o ot cs
rateof change rateof outflux \
I Ein CV E acrossCS I Rate work
Rate of Rate of heat done by CV
change E added CV

N

1 :
e=Uu+ EVZ + gz = internal + KE + PE

Q = conduction + convection + radiation

W: Wshaft + Wp + WV
pump/turbine  Pressure viscous

dW, =(pndA)-V. - pressure force x velocity

W, = j p(V -n)dA
CS
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dW, =—zdA'V - viscous force x velocity

W, =—[z-V.dA
()

. 0
Q-W,-W, = ja(e”)d“i(e* p/ p) AV -ndA

Ccv

For our purposes, we are interested in steady flow one
inlet and outlet. Also W, =~ 0 in most cases; since, V=0
at solid surface; on inlet and outlet only t, ~ 0 since its
perpendicular to flow; or for V =0 and Tstreamline ~ O If
outside BL.

Q-W, = j (G+%V2+gz+ p/p)p\i-ﬂdA

inlet &outlet

Assume parallel flow with p/,+9z and U constant over
%K_J

\

inlet and outlet. = constant ie hydrostatic

pressure variation

Q-W=(i+p/p+gz) [ pV-ndA+L [ VEV-n)dA

inlet&outlet inlet &outlet

QW =(d+p/ p+gz), (i) 2 [V, *dA,

+(0 + p/p+ gZ)out (mout) +§ Ivoutg dA\)ut

out
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Define kinetic energy correction factor

2

3
a:lj' Volda o EIVZ(\LQ)dA:a\ﬁm
AA Vave 2A 2

Laminar flow: u= U{l—(%) j
ave:O.5 ﬁ = 4/3 a=2
Turbulent flow: u :Uo(l—%j

- (1+ m)‘o’(2+m)3
@ a0+ 3m)(2+3m)

m=1/7 a=1.058 as with 5, a~1 for
turbulent flow

) W, . V2 X V2
9_——,5:(u+ p/p+0z+a-22) ,—U+p/p+0z+a—22).
m m 2 2

Letin=1, out =2,V = Va, and divide by g
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Pr | & \,2 Pr | Q5,2
+—=V°+z+h =—=+—=V +2z,+h +h
pg 2g " HT T g g TR

Ws — Wt _Wp
gm gm gm

:ht_hp
1 )
hL ZE(UZ_Ul)_mgg

h. = thermal energy (other terms represent mechanical energy

m=pAV, = pAV,

Assuming no heat transfer mechanical energy converted
to thermal energy through viscosity and can not be
recovered; therefore, it is referred to as head loss > 0,
which can be shown from 2" law of thermodynamics.

1D energy equation can be considered as modified
Bernoulli equation for hp, ht, and hy.
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Application of 1D Energy equation fully developed pipe
flow without hy or ht.

Recall the horizontal pipe flow using continuity and

momentum (page 32): 7,, = g(_ Z_i), io _dp _ 2tw

2Ty,

Similarly, for non-horizontal pipe: — ;—x (p+vyz) = =

Using energy equation, L =dx and p = p + yz.

__ Db1—D2 _ _Lf_a
hy =224 (2 - 7)) = — |~ (0 +72)]

=L (4P _ L (2w ap i
h;, = pg( dx) = pg( - ) (If < 0 flow moves from left to right)

Where t,, = %fpVazve

2
ave

L
ho=hr =157

Where hf IS the friction loss

Darcy-Weisbach Equation (valid for laminar or Turbulent

4uV,
Also recall from page 33 that 7, = ——2¢
For laminar flow,
fo 87, B 32u
pvaie pRVa\/e
32IULVave .
== o Vave exact solution!

yD?
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For turbulent flow, Recrit~ 2000, Retrans ~ 3000
f=f (Re, k/D) Re = VaeD/v, k = roughness
h ocV?

ave

Pipe with minor losses,

h. = hst + Zhm where 29 o
K = loss coefficient

hm = “so called” minor losses, ¢.g. entrance/exit,
expansion/contraction, bends, elbows, tees, other
fitting, and valves.
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P3.149 A jet of alcohol strikes the vertical plate in Fig, P3.149.
A force F =425 N is required to hold the plate sta-
tionary. Assuming there are no losses in the nozzle, esti-
mate {a) the mass flow rate of alcohol and (h) the
absolute pressure al section |,

L
D_‘ =5cm

P3.149

(a) First suppose 2D problem: D1 and D, denotes width in
y instead of diameter and we take unit in z (span-wise)
direction

Z F,=—F=—mV, = ,79%989x Q.Olefo =425N

P A,
V,=522m/s, m=816kg/s

Continuity equation between points 1 and 2

VA =V,A =V, =V, % =2.09m/s
1
Bernoulli neglect g, p2=pa
1 1
P+ oV =P+ o oV h.=0, z=constant

2 2
o, = p2+% p(VZ-V2) > pl:101,000+@(5.222—2.092)

p, =110,020 Pa

p p
Ev; =P, +§V42

P, =P;s =P, =P, — V2:V3:V4

Note: P, +§V22 =P;+
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0=> pV-A> AV,=AV,+AV,
CS
A=A+A

D, =0=23"pVV A= PV VLA, + p(-V, VA,
cs

=P\ A-pVSA S A=A

(b) For the round jet implied in the problem statement
3 F, =—F =—mV, = 79%989 7 .02?V/2 = 425N
%/_/ 4

p

A
V,=414m/s, m=10.3kg/s
Continuity equation between points 1 and 2

2
D
V1A1 :VzAz :>V1 :Vz (Ezj

1

2 2
V= 41-4&) V,=6.63m/s

Bernoulli neglect g, p2=pa

1 1
o} +§le2 =p, +§sz2 h =0, z=constant

.79%x998

o, = p2+% p(VZ-V2) > p,=101,000+ (41.42 -6.63%)

p, = 760,000 Pa
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Example 7.9

Water is being discharged from a large tank open to the atmosphere through a vertical
tube, as shown in Fig. 7.5. The tube is 10 m long, 1 cm in diameter, and its inlet is 1m
below the level of the water in the tank. Find the velocity and the volumetric flowrate in the
pipe, assuming:

l[lm_-

a. Frictionless flow.
b. Laminar viscous flow, Figure 7.5 Flow from a water tank
through a vertical tube.
h=01_H 2
V 2
(@) ¢ =—+Z a,=1h =0,z =11,2,=0
Torricelli’s |y =\/29(z1 “7) =+/2*9.81*11 =14.7m/s
expression
for speed of
efflux f_rom -
reservoir Q,=AV, = Z(.Ol)2 *14.7*360054.16 m*/h
e VD _ 14.7><_?.01 1B 0f
1% 10
V2 SVLu 6 12
o,=2,h =——— v=10"m"/s
(b) 2 -2 4+7,+h, ? L szg

V2+3.2V,-107.8=0

Vo=8.9m/s
Q= 2.516 m®h

Re=89,000=8.9*10* >>2000
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V2 LV2
Z,=a,—~*~+2,+f ——= B
29 D 2¢g 02=1
v,
21—22=£(1+ fL/D)

=[2g(z ~2,)/(+ fL/ D)
, =216/ + f *1000)]y f = f(Re), Re_\Q

()

guess f = 0.015 (smooth pipe Moody dlagram)
V,=3.7m/s—>Re=3.7x10*, f =.024

V,=294m/s —Re=29x10", f =.025
V,=2.88m/s — Re =2.9x10"

2000v
VD _ D=
(d) Re = - 2000 V
(2-2)=a, v, vy,
? g 2000%1/?
g V2

(2.-7,) = V22 321/LV3

P 2g 20002vg

32LV; V2
D =0.00182 m

Low U and small D to actually have laminar flow
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Differential Form of Energy Equation:

~ | = (ep)+ V- (epv) v =

} v |

|
de 0 De (66 )
e

p
— — V.(pV V.Ve=p—=p|=— .V
p0t+eat+e ('D_)+'D_ ¢ 'DDt p 0t+_

=0

1 1
e=0+=-V°+0gz=0G+=V°—g-r

De DU DV
P28 (G-Wi)/v = q-vi- p( Y —g-\ij

Dt Dt Dt -—

qd=-V-q=V-(kVT) Fourier’s Law
du;
=-V-(V-oy) ==V (V-0y) —Uifa—,;
DV J

o(5e-9)

momentum
equation

First term for w
DV DV
~V-(V-0) =~ p(ﬁ—g) _P(K'__K'g>

Where

V- DY =V. (6V+V VV) = aV2+V2VV— VDV

= Dt — \ot ot = ' Dt
Therefore
DV )

V- (V-0;) = — (VE—V g
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And

Substitute equation for ¢ and w
ou

— DV i
q_WZ_v.(kVT)-I_’D(VZ%'(fg)-I_GUO_xj
D DV
=0 (3¢ + 57T 9)

Da
T

Second term on right hand side
ou; —( 5.) du;

O;::—— = (T: p L) — = T;; ——

" 9x, ” Yox; Y ox;

ou;
V- (kVTD)+0;; —
Y ax]

—pV-V

From contmuﬂy

Therefore

%i dx; — i dx; th p
And

D ou; D o\ Dp
Por = -V (kVT)+TUa _th(p)-I_E

Rearranging equatlon and substltutlng dissipation

9
function ® = 7;; p,

D p Dp
<u+—>=—V-(kVT)+—+CD
P Dt
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Summary GDE for compressible non-constant property
fluid flow

op
Continuity: - *V-(pY) =0

DV
Momentum: pPo.=Pg— VD + V. T wy=pey+avys, g=-gk

Dh Dp
Ener —  =—2 4V (kVT)+ D
gy P ot~ Dt (kVT)

Primary variables:  p,V, T

Auxiliary relations:  p=p (p,T)
(equations of state) h=h (p,T)

(p,T)
(p,T)

N e
I
AN

Restrictive Assumptions:
1) Continuum
2) Newtonian fluids
3) Thermodynamic equilibrium

4) g=- gk
5) heat conduction follows Fourier’s law
6) no internal heat sources

For incompressible constant property fluid flow
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diu=c, dT Cv, 4, k, p ~ constant

pCVE:kVZT +O

Dt
For static fluid or V small

T
OC 8_ =kVT heat conduction equation (also valid for solids)

p

Summary GDE for incompressible constant property fluid
flow (Cv ~ Cp)

V-V =0
DV .

Poe = PIK=VPHAVY <elliptic”

oC DT w40 where (D:Ti.%
" Dt ' OX.

Continuity and momentum uncoupled from energy;
therefore, solve separately and use solution post facto to

get T.
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For compressible flow, p solved from continuity equation,
T from energy equation, and p = (p,T) from equation of
state (eg, ideal gas law). For incompressible flow, p =
constant and T uncoupled from continuity and momentum
equations, the latter of which contains Vp such that
reference p is arbitrary and specified post facto (i.e. for
iIncompressible flow, there is no connection between p
and p). The connection is between Vp and V-V =0, i.e. a

solution for p requires V-V =0.
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DvV. 1_. _, .
NS T, VPTVY p=p+yz

V-(NS) (See derivation details on p.87)

. OuU.
(R_sz)v.\i:_EVZer%_l
P OX; OX

ou. ouU.
Vip=—p——
P 'Oaxj OX.

Poisson equation determines pressure up to additive
constant.

Approximate Models:

1) Stokes Flow

For low Re=%<< 1, V.W~0
| 4

. Linear, “elliptic”
\% \L =0 Most exact solutions NS; and for steady
oV 1 , L » flow superposition, elemental solutions and
— =——Vp+WV separation of variables
ot p

V-(NS)=V'p=0
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2) Boundary Layer Equations

For high Re >> 1 and attached boundary layers or
fully developed free shear flows (wakes, jets, mixing

layers), v<<U, §<< % p, =0, and for free shear flows
X
px = 0.
u +v =0
u +uu, +vu, =—p, +vu, non-linear, “parabolic”
p,=0=-p, =U,+UU,

Many exact solutions; similarity methods

3) Inviscid Flow

op
—+V-(pV)=0
~ TV (oY)
DV : : \ .
pﬁ =pg-Vp Euler Equation, nonlinear,"hyperbolic
Dh Dp

— =TV (kVT ,V, T unknowns and p,h,k=f(p,T
Por - pr TV KV Y g (>0
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4) Inviscid, Incompressible, Irrotational

VXV =0-V ="V
V.V=0-V%p =0 linear elliptic

[ Euler Equation = Bernoulli Equation:
P +§V2 + pgz = const

Many elegant solutions: Laplace equation using
superposition elementary solutions, separation of
variables, complex variables for 2D, and Boundary
Element methods.
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Couette Shear Flows: 1-D shear flow between surfaces of
like geometry (parallel plates or rotating cylinders).

Steady Flow Between Parallel Plates: Combined Couette
and Ppiseuille Flow.

A
| ; | - nEY T, »u
s'“-'-'m'if- . _.__bx . “'“‘*‘*b."'""“ﬁ;%x‘mﬁ‘d'
MW&T‘%‘%"; 77777 /.k 7 7 7 7 7 7
S&u\m “ \-D | T
V-V =0
u,+v,+w, =0
u =0
DV A ou
Pﬁz—vmﬂvz\i —+uu +vu +wu, =0
ot
O=-p,+uu,
oT
DT , —+uT, +VT, +wWT, =0
pCpF:kVT—i_(D at X y z

O = ,u[ZUf + 2V, +2W;
2 2 2
+(v, +Uu, )"+ (w, +V,)" + (U, +W,) ]

+ AU, +v, +W,)
o A
(note: inertia terms vanish identically and p is absent
from equations)
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Non-dimensionalize equations, but drop *

T-T, .-

u =u/U T Tt y =y/h
u =0
h2
u, =——-1p,=—B=cons
uJ
- ]
k(M -T)

B.C. y=1 u=1 T=1
y=-1 u=0 T=0

(1)
(2)
(3)

(1) is consistent with 1-D flow assumption. Simple
form of (2) and (3) allow for solution to be

obtained by double integration.

+1

= u:%(1+y)+%8(l—y2) y=y/h v

A

Parabolic flow

&= -2 11
71”2 /0

N

)

=1 o 1

NN i

Linear flow due to px Note: linear
dueto U superposition since
V-W =0
2
Solution depends on B "0 b,
B<0 P, is opposite to U

B<-05 backflow occurs near lower wall
IB|>>1 flow approaches parabolic profile
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Pressure gradient effect
A\

~

1 PrE Pr E.B .. PrgpB® 4
T=-@1+y)+ °(1— )——(y—y)+—°(1—y)
2 12
Pure T rises due to Dominant term
conduction viscous dissipation forB> o
+1 +1 +1
o = {0 ‘—!—-—_________h
v o I o ol frEezo o2 MNYas
e — [ L/
. = { .é;—-—-——-"/
) 0.5 1 1.5 2 o 4 8 12 16 20
r r
la} &)
FIGURE 3-3
T distribu or flow ween @
o e B LT g P 0122 @)
Note: usually PrE. is quite small
Substance PrE. dissipation
Air 0.001 very small
Br=PrkE
Water 0.02 ]
= Brinkman #

Crude oil 20 large
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Shear Stress

1) P,=0 i.e. pure Couette Flow
hZ

B=——p, =0
l,l,pr

Using solution shown previously
1 1 1
w=o(1+y) +5B(1-y") =51 +y")
Calculating wall shear stress

u 1 y
U %(”z)
() 1
Yy
(%)
_du _uu
eyl T 2h
uu
Cf Tw 2h _ 2
%pUZ %pUZ pUh
Since Re, = pUh/u
1
Cr=——
f Reh

Po = CfRe = 1. Better for non-accelerating flows
since p 1S not in equations and Po = pure constant
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2) U=0 I.e. pure Poiseuille Flow
< 1 x2 . . BU B
u ZEB(l_y ) uy*:_By uy:_ h2 y Vave:u
Where B=—1p, = 2
ere B=—D,
uJ

B 1 h2 . y 2 . 4
Dimensional form "~ 757, px@‘(%) ] Q=|udy=—hu_

— ” 3

azgzgum :Vve

2h 3 ™ ¢

Remember that for laminar pipe flow, V,,,, = %umax

BU
T =,uuy - :_/JT upper
BU
=+yT lower
BU 24 ~ ocu lam.
— == max = u -
L= H h H h ,uSA oc,ou2 turb.
C, = P =6fl= 0 or P=C, Re =6
1,0U2 puh  Re,
2

Remember that for laminar pipe flow, ¢; == and r, = #Ze=,

Re

I.e. Except for numerical constants same as for circular
pipe.
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Rate of heat transfer at the walls:
Kk U*
qW:kTy ::iﬁ(n_fn)i/j + = upper, - = lower

4h

Heat transfer coefficient:

_ Uw

g (Tl _TO)

_2hg Br
Nu=2"5=1+ A

K

For Br >> 2, both upper & lower walls must be cooled to

maintain T1 and To
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Conservation of Angular Momentum: moment form of
momentum equation (not new conservation law!)

B=H,= f rxvV.dm= gngular momentum of system about inertial

sys

coordinate system O (extensive property)

p = =X V' (intensive property)

dd, d
dt ‘EI(EXK)PdVJrf(EXZ)pZR.QdA

Rate of
change of

angular
momentum

=> M, = vector sum all external moments applied
on CV due to both Fg and Fs, including reaction forces

For uniform flow across discrete inlet/outlet;
[ ExV)pVrndd=3(rxV), 1o —X(rxV), 1y

M,= [z-dAxr + j(pgd‘v’)x[+MR

o
Vo Vv
surface forcemoment  body forcemoment

M ., = moment of reaction forces
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@ Absolute outlet
velocity

]1—-1- Vy = Vol — Rool

EXAMPLE 3.15

Figure 3.14 shows a lawn sprinkler arm viewed from above. The arm rotates about O at
constant angular velocity w. The volume flux entering the arm at @ is @, and the fluid is
cv incompressible. There is a retarding torque at @, due to bearing friction, of amount —T k.
/ . Find an expression for the rotation  in terms of the arm and flow properties.
Retarding .
torque To

Fig. 3.14 View from above of a
. single arm of a rotating lawn
sprinkler,

Inlet velocity

‘ru= ——k
Apipe

Take inertial frame 0 as fixed to earth such that CS
moving at Vs=-Ro 1

Vo=Vl —Rwi=y—Rw)l 1r,=Rj

Vo=,
Retarding torque due to Pipe

bearing friction

\Y/ T
= EO B pQ—OR2 —interestingly, even for To=0, wma=Vo/R
(limited by ratio such that large R small w; large Vo large o)
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Differential Equation of Conservation of Angular
Momentum:

Apply CV form for fixed CV:

Z M, = 5;\_% SEYANTE *\ (L) ¥ n ANy
e

‘2‘.",\*{:;_%&% <
__;_.}my,x_

'Z,..a_ sf'%n 5 t‘} o 'a_i‘:_,g_}_ A
~ I9"x VT Gha) = byl
-
&

@, = angular acceleration

| = moment of inertia

|6, —adyd—+b dy%— dxd—zy—d dxdzy

o, =(rxy -7 X) dxdy
Since I—E[dxdy +dydx} dedy[dx +dy]

12[dx +dy] =Ty — Ty

lim — imi _
dx>0.dy50 Ty Ty Slmllarly T =T
l.e 7z, =7,  stresstensor is symmetric (stresses

themselves cause no rotation)

y T =T
X yz zy
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Boundary Conditions for VViscous-Flow Problem

The GDE to be discussed next constitute an IBVP for
a system of 2" order nonlinear PDE, which require
IC and BC for their solution, depending on physical
problem and appropriate approximations.

Types of Boundaries:

1. Solid Surface
2. Interface
3. Inlet/exit/outer

Y el e

S Sl

W

e e
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1. Solid Surface

a. Liquid

¢ = mean free path << fluid motion; therefore,
maroscopic view is “no slip” condition, i.e. N0
relative motion or temperature difference between
liquid and solid.

V V T =

Exception is for contact line for which analysis is
similar to that for gas.

b. Gas

Specular reflection

N Conservation of
_ QM' & tangential momentum
Smooth wall uw=0=fluid velocity at

wall

' ' ' Diffuse reflection.
Lack of reflected
* | tangential momentum

Rough wall balanced by uw
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du

y7;
T, =M1 - =57
dy| %pa
u —§ﬁﬁ Ma:U/
" 2pau a
u /U =.75MaC,
High Re: Cs ~ 0.005
Say Ma ~ 20
Low Re: Cr ~ .6Re 12
u, 4Ma
Re’

low density limit

Ci= ™)
4+ 2
2,0U
— Y og01
U
Rex:UX/l)

Significant slip possible at low Re, high Ma:

“Hypersonic LE Problem”

Similar for T;
High Re: Tgas = Tw
T = Tw _ g7Mac
Low Re = f air
(Tr _TW)= driving AT
/V
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Where Cc =2c=2_
h v g IOCpU (Tr _Tw)

Reynolds Analogy

Ch = Stanton number, i.e. wall
heat transfer coefficient

FPatm !
*iiii
Vapor N Y
n=q , ¥)
Lguid/  P\g —
- ,,.l’ FIGURE 1-29
Conditions at an ideal free surface.

2. ldealized gas/liquid interface (free surface problems
since interface is unknown and part of the solution, but
effect gas on liquid idealized).

Kinematic FSBC: free surface is stream surface

F ={(x,y)—z =surface function

n=VF/|VF|=(,. ¢, -DI[ & +¢] +1]§
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Dynamic FSBC: stress continuous across free surface
(similarly for mass and heat flux)

Ti} n; = Tianj - pyfij
Fluid 1 stress Fluid 2 stress Surface

tension pres.

(vector whose components are stress in direction of coordinate axes on surface with normal n;)

r,=—po,+Re" (U +U )

Tij :[_pé‘ij +Re_l(Ui,j +Uj,i):|ﬂuid2 eg = for air if

P.9;
neglecting lair \

Atmospheric pressure

p, =We™ (K + Ky )

. O
KSN =N- s
~ 0S
[ Curvature F for two mutually perp. directions.
. O€, T )
KtN =N-— Note: € and €, normal ton = €,
= -

We = pU°L /o =Weber Number

\ Surface tension
(2) 7, =1yn +7,N, +10 = (P, — p;/)nl

3 T, =Tyl + TN, + TN = (P, — p}/)nZ

(4) 7, =754N + 75N, + 755N, = (P, — py)n3
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B)V-V=0=U, +V, +W, incompressible flow

1+3+1=5 conditions for 5 unknowns = (V, p, ()
The first 4 conditions nonlinear

-Also need conditions for turbulence variables

Many approximations, eg, inviscid approximation:

P.=1P, =
small slope: {x~ Gy ~ 0
small normal velocity gradient: Wx~Wy~W;=0

aQ(LJ’V):O W :_Ux_vy or Wz:O
Z

z

p=0 or P =00z P = piezometric pres.

3) Inlet/exit/outer

a) inlet: V, P, T specified eg. constant Temp.,
uniform stream:

b) outer: V, p, T specified V=UT,p=0,T=Ti

C) exit: depends on the problem, but often use U , =0,
(i.e. zero stream wise diffusion for external
flow and periodic for fully developed
internal flow).



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2020 78

T

FIGURE 1-30 o

Conditions at an actual fluid interface. Velocities and temperatures match, but their slopes do not
because of differing & and . Pressures also match except for the surface-tension effect of
Eq. {1-106). )

Interface Velocity Condition

Just as with solid surface, there can be no relative
velocity across interface (i.e. exact condition for
liquid/liguid and gas/gas or gas/liquid non-mixing fluids).

V,=V,
v,=V,, required by KFSBC
1 oF
\il'n:\iZ'n:_ﬁE

Tangential should also match, but usually due to
different approximations used in fluid 1 or 2, (eg fluid 1
liquid and fluid 2 gas do not). Often, in fact, motions in
gas are neglected and therefore V is not continuous.

Also liquid/liquid interfaces are not stable for large
Re and one must consider “turbulent interface”.
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| Table 7. Boundary Conditions
[~ | 1BTYP " Description U ¥ W P k v Y
A 10 Inlet UINF VINF WINF oL =0 ke”IXI07 =90 Vi
L g 1 Exit U8 =0 FV[eF =0 FWlog=0 OPJEL=0 kfor=0 dwfai=0 ovJaE=0
_g 12 Far-field #1 U apjec -0 owfer =0 O MoE=0 dofdr=0 8v/as =0
g |13 Far-field #2 DINF VINF WINF OF[OE =0 B/EE=0  Swfdf=0 av[oE =0
N g 14 Mbﬂd * L] * Ed * L] L]
X0 Absolute-frame no-slip 1] 0 0 3Pj3E =0 0 60/1!5[&:& ‘ 0
_ ¥
o n Relative-frame no-slip : y z = lJl .
. x ¥ APJ3E =0 w/namy 0
. g by m:)neable ship (calculate  Eq (78)  Eq(78)  Eq(78)  pjag=0 oHog=0 dufos=0 v, fag, =0
| 'g 28 mﬂe glip {no Ba(78  Ea ()  EQ(8)  apjar=0 ok/ag=0 dfdE =0 8y, fog =0
1 & [30  Eree surfuce Eq(34)  Ea(49)  Ea(D)  Be(3)  aog=0 d0/aE=0 4y =0
i 40 Zero gradient 8UJe5 =0  OFjog=0 oW[oE=0 OP[Of =0 OkOE=0 dwfdf =0 8y jok =0
a1 Translational periodicity, . . * * * * *
wi ghost cells
42 Translational periodicity, * . * . * * *
w/o ghost cells
43 Pole (I-eround) Eq. (30) Eq. (80) Eg.(8)  Eq(80)  Eq.(80) Eq. (80) Eq. (80)
44 Pole (j-around) Eq.(30)  Eq(80)  Eq(80)  Bq(80)  Eq(80)  Eq(80)  Eq (80)
45 Pole (k around) Eg. (80) Eg. (80} Eq(80)  Eq.(80)  Eq(80)  Eg(80) Eq. (80)
| 50 Cylindrical zero gradient * * * * . . .
' 1 Rotational periodicity, w/ . . . . . . '
| ghost cells
_ 'g 52 Rotational periodicity, wio * “ * M “ . .
. ghost cells
E 60 P‘D—Sllpfmﬁqﬂm L] = * " " * L
.. 61 X-2is gymmetry 0 a¥fag,=0 OW[af =0 OPfoL, =0 Ok/3; =0 DwfdL=0 @y, 3k =0
62 y-mi3 symmetry Ufog =0 0 OW[a5 =0 OPfaf =0 ok[a5=0 dwfE=0 &v oL =0
63 -2 symmetry 8UJ8E =0  AV/3 =0 0 0L, =0 OKBE=0 Bwfai=0 dvjeL=0
91 Multi-block w/ ghost cells * * s * * . .
%2 Multi-block wo ghost cells * . * * + . .
99 Blanked out points 0 0 0 0 0 0 0

* See text for detailed description



ME:5160 Chapters 3 & 4
Professor Fred Stern  Fall 2020 80

Vorticity Theorems

The incompressible flow momentum equations focus
attention on V and p and explain the flow pattern in terms
of Inertia, pressure, gravity, and viscous forces.
Alternatively, one can focus attention on ® and explain
the flow pattern in terms of the rate of change, deforming,
and diffusion of @ by way of the vorticity equation. As
will be shown, the existence of @ generally indicates the
viscous effects are important since fluid particles can only
be set into rotation by viscous forces. Thus, the
Importance of this topic is to demonstrate that under most
circumstances, an inviscid flow can also be considered
irrotational.

1. Vorticity Kinematics

@=VxV = (W, =V,)i +(u, —=w,) ]+ (v, —u,)K

Eipz = Eqp = Epg =1

oy (ay, oy, €13 = E3p1 = 513-2 =-1
4T | ox, &; = 0 otherwise

~
alternating tensor

= 2 X the angular velocity of the fluid element

(i, J, k cyclic)
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A quantity intimately tied with vorticity is the circulation:

o . /}\\%m

——d——
Nes

Stokes Theorem:

fla-dx=[vxa-dA

A

.‘.Fz[ﬁ\i-%:IVx\i-d_A\:IQ-QdA
A A

Which shows that if @ =0 (i.e., if the flow is
irrotational, then I = 0 also.

Vortex line = lines which are everywhere tangent to the
vorticity vector.

b

M : - L
| Ar E o

G e ke
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Next, we shall see that vorticity and vortex lines must
obey certain properties known as the Helmholtz vorticity
theorems, which have great physical significance.

The first is the result of its very definition:

®=VxV

Vo=V (VxV)=0 Vector identity

I.e. the vorticity is divergence-free, which means that
there can be no sources or sinks of vorticity within the
fluid itself.

Helmholtz Theorem #1: a vortex line cannot end in the
fluid. 1t must form a closed path (smoke ring), end at a
boundary, solid or free surface, or go to infinity.

Propeller vortex is
' known to drift up
A ey towards the free surface

The second follows from the first and using the
divergence theorem:

IV-QdV:IQ-QdA:O
\4 A
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Application to a vortex tube results in the following
IQ-QdA+IQ-QdA=O

Minus sign due to

outward normal > _Fl Fz

Or F]_: FZ

Helmholtz Theorem #2:

The circulation around a given vortex line (i.e., the
strength of the vortex tube) is constant along its length.

This result can be put in the form of a simple one-
dimensional incompressible continuity equation. Define
1 and o2 as the average vorticity across Aiand Az,
respectively

(DlAl = (DzAz

which relates the vorticity strength to the cross sectional
area changes of the tube.

2. Vortex dynamics

Consider the substantial derivative of the circulation
assuming incompressible flow and conservative body
forces



ME:5160 Chapters 3 & 4

Professor Fred Stern  Fall 2020 84
DF D
V - dx
Dt Dt

Lﬁ— dx+Uj\i DRd

From the N-S equations we have

bv_1 f _@H/Vzv Define f =-VF for
Dt p— p - the gravitational body
=—V(F +V)+VV2V force F=pgz.
f 4

—dx d—=d
Also, Ot X ot

O v (F + 1)) oxe [y Joxr -y

%/_/

_mdpitﬁ@ ;[]jd(\i-\i)

{ —dF ——+ dvz} mvz\i-dg
=0 since integration is around a closed
contour and F.p. & V are sinale valued!

%:vmvz\i-dX=—vEﬁVXg-dX

I

Vx(VxV)=V(V-V)-VV

W =0
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Implication: The circulation around a material loop of
particles changes only if the net viscous force on those
particles gives a nonzero integral.

If v=0 or =0 (i.e., inviscid or irrotational flow,
respectively) then

DI The circulation of a
Dt 0 material loop never

/ changes

Kelvins Circulation Theorem: for an ideal fluid (i.e.
Inviscid, incompressible, and irrotational) acted upon by
conservative forces (e.g., gravity) the circulation is
constant about any closed material contour moving with
the fluid, which leads to:

Helmholtz Theorem #3: No fluid particle can have
rotation if it did not originally rotate. Or, equivalently, in
the absence of rotational forces, a fluid that is initially
irrotational remains irrotational. In general, we can
conclude that vortices are preserved as time passes. Only
through the action of viscosity can they decay or
disappear.

Kelvins Circulation Theorem and Helmholtz
Theorem #3 are very important in the study of inviscid
flow. The important conclusion is reached that a fluid
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that is initially irrotational remains irrotational, which is
the justification for ideal-flow theory.

In a real viscous fluid, vorticity is generated by
viscous forces. Viscous forces are large near solid
surfaces as a result of the no-slip condition. On the
surface there is a direct relationship between the viscous
shear stress and the vorticity.

Consider a 1-D flow near a wall:

EY ' The viscous stresses are given by:
~ ) Tijnj where Tij :,Ugij
P Ty 7N, + 7451 = 7,

&_A/ TEXOTY) Tyl + TN, + TN =7,

S ’ Ty + TN, + 755N, =7,
Ty = HE, = y[—u+—j = ,u—u NOTE: the only component of

oy X oy o is @,. Actually, this is a

ov general result in that it can be
Ty = Hep =2/ EY =0 shown that surface IS

perpendicular to the limiting

OW oV t li

T = le = | —+— =0 streamline.
32 = Hézp ﬂ[ oy 52)
Which shows that
ou
T, = H =7 =0
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However from the definition vorticity we also see that

Ty :/“l&:_:ua)z

I.e., the wall vorticity is directly proportional to the wall
shear stress. This analysis can be extended for general 3D

flow. Rotation tensor

/
TNy = —HwyN; at 3 fixed solid wall
. . . o 0
True since at a wall with coordinate x», 526720 and
3
YV
from continuity Z-=0
2

Once vorticity is generated, its subsequent behavior is
governed by the vorticity equation.

oV
N-S E_+\L-V\i =-V( p/p)+VV2\L neglect f
Or %Jrv(%\i-\ij—\b@:—wp/p)+vv2\i

The vorticity equation is obtained by taking the curl of
this equation. (Note vx(ve)=0).
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o — =
Rate of changeof ® =
N V(30— sV V) - Ve @V

Therefore, the transport Eq. for o is

0w
—+(V-V)o= (CO°V)\L+VV2Q
at ~ 4 Rate of Rate of viscous
Do deforming vortex ~ diffusion of @
Dt lines
a—Q+ UE+V£+Wi a)£+a) 24_&)2 V+VV2
ot OX oz )~ “ox Yoy ‘ez

oo, Ow, 0O, 0w, ou ou ou
+U +V +W =0, —+0,—+0, —+WVo,
ot OX oy 0z “ox Yoy 0z

/

Stretching turﬁfing

aa) aa)y aa)y aa) aV 5V av 2
+u HV—HW—L =0, —+0, —+0, —+W o,

ot OX oy oz ox oy o

ow ow ow ow, oW ow ow
+ =0, —t+o, —+ 0, —+W’o,
ot OX oy oz ox oy oz

Note: (1) Equation does not involve p explicitly
(2) for 2-D flow (e V)v =0 since w is perp. to V
and there can be no deformation of w, ie

= sz
Dt
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In order to determine the pressure field in terms of the
vorticity, the divergence of the N-S equation is taken.

V-[%Jr\i-w:—V(p/p)ﬂ/Vz\i}

Vi(plp)==V-[V-VV] Poisson Eq. for p
1 2 2
==Y (V-V)+V-VV +0-

does not depend explicitly on v

Derivation of pressure Poisson equation:

Three vector identities to be used:
(1) V-VV:%v(v.v)—vx(va)
(2) V-(axb)zb-(an)—a-(be)
(3) Vx(Vxa)=-V'a+V(V-a)

Pressure Poisson equation in vector form:

% [%]z—v-(v-vv)

—_V. lv V-V)-Vx(VxV
29V v)-vx(xv)

:—%VZ(V-V)+V-(V><Q))
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<
<

|\>||—\ I\JIH I\)IH
<
N

~~ /2 —

V)+o-(VxV)-V-(Vxo)

<

)
V)+0-0-V-(Vx(VxV))
)

V-V +m-m—V-[—V2V+V(W)}

1

Z—EVZ(V-V)+V~V2V+O)'(D

Pressure Poisson equation in tensor form:

vz[—
L0 (e ) (e ]+ (ue) Sl 4 (vv). (v )

2 OX,0X;

1 0° o’u ou, ou
-~——(uus, |+usd, -—=+| &, —*e —ne
28xi8xi( )+ U OX, X, ( " ox, ] ( “im ox ')

1

:—EVZ(V-V)+V-V2V+0)-(0

8xj8xj

ou; ?
———[Zu j+u O (8,18 = 8y ) e

162(ujuj)Jru o, +[ au, au, )(e-e,)

2 oxo%  OX0X,

gljk Imn 6 GX

0 o’u, au, u,
—(uu;) [+u + &l —— |,
OX; 6x OX; OX; OX,,

b ox OX,0X, OX; OX,

ou. “u u, ou u, ou

uj—J +U, a +5jm5kn(3_k8 ~ =9, kma—ka L

OXi OX;0X; OX; OX, OX; OX,
—'%+u 0%y, o ou, , QU U, oy, ou;
O Toxox ) oxox,  OX, X, OX, OX,

ou, ou;

OX; OX,
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3. Kinematic Decomposition of flow fields

Previously, we discussed the decomposition of fluid
motion into translation, rotation, and deformation. This
was done locally for a fluid element. Now we shall see
that a global decomposition is possible.

Helmholtz’s Decomposition: any continuous and finite
vector field can be expressed as the sum of the gradient of
a scalar function ¢ plus the curl of a zero-divergence
vector A. The vector A vanishes identically if the original
vector field is irrotational.

V=VTave
w=VxV"”
Where 0=V xy*

The irrotational part of
the velocity field can be
expressed as the gradient

of a scalar
> V' =Vy
If VV=V-V’+V.V’=0
2
Then V¢=0 The GDE for ¢ is the Laplace Eq.
And V7 =VxA Since V-(VxA)=0

\% X\iw =w=VXxVxA Again, by vector identity
=-V*A+V(V-A)
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I.e VA= —-w
The solution of this equation is A=< dv
47" R
1 (Rxw
Ve=—— [E2=dV

Which 1s known as the Biot-Savart law.

The Biot-Savart law can be used to compute the velocity
field induced by a known vorticity field. It has many
useful applications, including in ideal flow theory (e.g.,
when applied to line vortices and vortex sheets it forms
the basis of computing the velocity field in vortex-lattice
and vortex-sheet lifting-surface methods).

The important conclusion from the Helmholtz
decomposition is that any incompressible flow can be
thought of as the vector sum of rotational and irrotational
components. Thus, a solution for irrotational part v’
represents at least part of an exact solution. Under certain
conditions, high Re flow about slender bodies with
attached thin boundary layer and wake, v is small over
much of the flow field such that v’ is a good
approximation to v. This is probably the strongest
justification for ideal-flow theory. (incompressible,
Inviscid, and irrotational flow).

Non-inertial Reference Frame
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Thus far we have assumed use of an inertial reference
frame (i.e. fixed with respect to the distant stars in
deriving the CV and differential form of the momentum
equation). However, in many cases non-inertial reference
frames are useful (e.g. rotational machinery, vehicle
dynamics, geophysical applications, etc).

Dt | 1.e Newton’s law
‘ applies to non-

inertial frame with

Si=R+r > addition of known
dR inertial force terms
Vi=V+ —? + O Xr
Dz+d23+dgx +20xV+ax(Qxr)
a: = s T
= Dt dt? dt — T - T ==
= 2F + Qg 3 term from fact that
Dt —

(x,y,z) rotating at (t).
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d’R )

m = acceleration (x,y,2)

dQ .

gt xr = angular acceleration (x,y,z)

ZQ X\L = Coriolis acceleration

Qx(2xr) = centripetal acceleration (=-Q°L, where L = normal

distance from r to axis of rotation ).

Since R and © assumed known, although more
complicated, we are simply adding known
Inhomogeneities to the momentum equation.
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CV form of Momentum equation for non-inertial
coordinates:

S E- [aupdv = [Vodv+ [VoV, ndA
Cv dtCV CS

where V is the velocity of the CV relative to the non-
Inertial coordinates (x,y,z2).

Differential form of momentum equation for non-inertial
coordinates:
oV
Pl TV = oty -V(p+yz)+ VYV
body  force

where
UG = R+20XV+AX(QXT)+QXT

All terms in a, seldom act in unison (e.g. geophysical
flows):
R~0 earth not accelerating relative to distant stars

Q~0 for earth

Qx(Qxr)~0 g nearly constant with latitude

- 20xV most important!
_ DbV -1 V _Y t= Yo
@ =>-+Ry' (22 x V) — v, L
R, = Rosshy # = Vo /L _ Vo if L is large, i.e., comparable to
Qv, QL the order of magnitude of the

earth radius, Ro<1, then Coriolis
term is larger than the inertia
terms and is important.
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Example of Non-inertial Coordinates:
Geophysical fluids dynamics

Atmosphere and oceans are naturally studied using non-
Inertial coordinate system rotating with the earth. Two
primary forces are Coriolis force and buoyancy force due
to density stratification p = p(T). Both are studied using
Boussinesq  approximations (p = constant, except

—p(T)gk term; and p, k, Cp = constant) and thin layer on

rotating surface assumption G}—V ~ %)

Differences between atmosphere and oceans: lateral
boundaries (continents) in oceans; currents in ocean (gulf
and Kuroshio stream) along western boundaries; clouds
and latent heat release in atmosphere due to moisture
condensation; Vocean = 0.1~1 or 2 m/s and Vatmosphere 10~20
m/s

H << L =0 (radius of earth = 6371 km)

Therefore, one can neglect curvature of earth and replace
spherical coordinates by local Cartesian tangent plane
coordinates.
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9 A
Q ) 9

Novdh yio\e = X = MJ&M«;VA

%: novdh v d

= wpav A

- T2 2T !A.\Yr- "My wiotg-t
& = A4 Ml Ny= O

J0  wordharn M«s‘f\h., -/L-a,r. It O

<0 Soullav Moeapphes SLzz LOLE

Coriolis force = 2QxVv
i

= QX

u

o x>

N

J
Qy
v

=

Osince w<<v

= ZQ[i(wco —vsin @)+ jusin g - kucos@}

= — fvi+ fu j—2QcosAu k f =2Qsin @

] = planetary
Person f>0 northern hemisphere vorticity
spins at f<0  southern hemisphere = 2* vertical
o \‘f - 10 at poles component €
f=0 at equator\ Person translates with inertial

period T. = 277[
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Equations of Motion

V.V =0

bu_ fV:—ia—pﬂ)Vzu

Dt 0, OX

ﬂ+ fu = —ia—pﬂ)vzv

Dt P, Oy

Dw 10 vertical component Q negligible due
N ~d A +0V’W to thin layer assumption, i.e.,

Dt p 0z p,

magnitude of 2Qcosgu<< other terms

p, p = perturbation from hydrostatic condition

Geostrophic Flow: quasi-steady, large-scale motions in
atmosphere or ocean far from boundaries

_ fvz_ia_p fu __ 1o
100 8X 100 ay
DV U’
o OKTJ fvV ~0(fU) U,L = horizontal scales

Rossby number = %

Atmosphere: U~ 10 m/s; f =10 Hz; L ~ 1000 km;
and Rp =0.1

Ocean: U~0.1m/s; f=10%Hz; L ~ 1000 km:
and Ro = 0.01
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Therefore, neglect — and since there are no boundaries,

neglect W*°V .

Z momentum = %?pg baroclinic (i.e. p = p(T))

and can be used to eliminate p in above equations
whereby (u,v) = f(T(z)), which is called thermal wind but
not considered here.

If we neglect p=p(T) effects, (u,v) = f(p) and can be
determined from measured p(Xx,y). Not valid near the
equator (+ 3°) where f is small.

(ui+vi)vp=—t [P Ry R Py
pfL oy ox oX oy

=0

I.e V is perpendicular to Vp - horizontal velocity is
along (and not across) lines of constant horizontal
pressure, which iIs reason isobars and stream lines
coincide on a weather map!
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Ekman Layer on Free Surface: effects of friction near
boundaries

Viscous layers:

Sudden acceleration flat plate: U, =vu,, u(y,0)=0
5_364\/1/—'[ U(O,t):U
- u(oo,t) =0
Oscillating flat plate: u =ou,
0=65Vv/w u(0,1) =U, cosmt
U(OO,t) = O

Flat plate boundary layer: u,+v, =0
uu +vu =ou
S=49Jvx/U  u(x,0)=0
u(x,)=U

For Ekman layer viscous effects due to wind shear t(x).
Assume horizontal uniformity (i.e px = py = 0), which is
justified for L ~ 100 km and H ~ 50 m. However, can be
Included easily if assume p = p(z) such that geostropic
solution is additive and combined solution recovers

former for large depths 2/c — —o.

—fv=wu,, fu=wv,,
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M =7 atz=0
v =0 atz=0 £=zl

7=.002p,,(v,,, —u(0))
(u,v)=0 at z =-o0

Multiply v-equation by i =+/-1 and add to u-equation:

V=u+iv
= complex velocity

dz\/_

dz?

if :
y Z=X+iYy

V = Ae(1+i)z/5 n Be—(1+i)z/6

o= \/? = Ekman layer thickness

B =0 for u(-o), v(-0) =0

d_V—Z' —
s atz=0

_wo(1-1)
2pV

—> A

l.e. u=T/—pe”5cos(—E+zj and
o 4

Jio
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V= T/—'Oe”‘?sin(—5+%)

Jfo )

F. Nansen (1902) observed drifting arctic ice drifted 20-
40° to the right of the wind, which he attributed to
Coriolis acceleration. His student Ekman (1905) derived
the solution.

Recall f <0 in southern hemisphere, so the drift is to the
left of t.
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Similar solution for impulsive wind:

u=ou, =7 z=0,u=0 z=-0,u(z,0)=0

27 |ut
_Z -

laminar solution:

U Vying =6 M/, T =20°C) =0.6 m/s after one min., 2.3 m/s
after one hour

turbulent vt solution:(more realistic)
Uo=0.2 m/s after 1 hr (3 % Vuwing)

For Ekman layer similar conditions 6 = 40° N ,

Laminar solution ug = 2.7 m/s at D = 45 cm, which are too
high/low; however, using turbulent vi upo =2 cm/s and D =
100 m, which is more realistic.



