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Chapters 3 & 4:  Integral Relations for a Control Volume 

and Differential Relations for Fluid Flow 
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Reynolds Transport Theorem (RTT) 

 

Need relationship between  sysB
dt

d
 and changes in 

 
CVCV

ddmcvB  . 

 
 

1 = time rate of change of B in CV =  
CV

d
dt

d

dt

cvdB
  

 

2 = net outflux of B from CV across CS = R

CS

V n dA   

As with Q and �̇�, ∆�̇� flux though A per unit time is:  

𝑑𝑄 = 𝑉𝑅 . 𝑛 𝑑𝐴 

𝑑�̇� = 𝜌𝑉𝑅 . 𝑛 𝑑𝐴 

𝑑∆�̇� = 𝛽𝜌𝑉𝑅 . 𝑛 𝑑𝐴 
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Therefore: 

 

dAnVd
dt

d

dt

dB
R

CSCV

SYS     

 

General form RTT for moving deforming control volume 

Special Cases: 

 

1)  Non-deforming CV 

 

  dAnVd
tdt

dB
R

CSCV

SYS 



    

 

2)  Fixed CV 

 

  dAnVd
tdt

dB

CSCV

SYS 



    

 

 Greens Theorem:  
CV CS

b d b n dA      

 

    












  dV

tdt

dB

CV

SYS   

 

Since CV fixed and arbitrary 
0

lim
d

gives governing 

differential equation. 
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3)  Uniform flow across discrete CS (steady or unsteady) 

 

 
CS

R

CS

R dAnVdAnV    (- inlet, + outlet) 

or for fixed CV, 𝑉𝑅 = 𝑉,   𝑉𝑆 = 0 

 

4) Steady Flow:  0




t
 

 

 

Continuity Equation: 

 

B = M = mass of system 

β = 1 

 

0
dt

dM
 by definition, system = fixed amount of mass 

 

Integral Form: 

 

dAnVd
dt

d

dt

dM

CS

R

CV

  0  

 

dAnVd
dt

d

CS

R

CV

    

 
Rate of decrease of mass in CV = net rate of mass outflow across CS 
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Note simplifications for 1) non-deforming and fixed CV   

(≠ (t), 𝑉𝑆 = 0), 2) uniform flow across discrete CS 

(∫=∑), 3) steady flow ( 0




t
), and 4) incompressible fluid 

(ρ = constant ⇒  dAnVd
dt

d

CS

R

CV

   : “conservation of 

volume”) 

 

1) Non-deforming and fixed CV 

0
CV CS

d V n dA
t





  

   

2) and uniform flow over discrete inlet/outlet 

0
CV

d V nA
t





  


  

3) and steady flow 

0V nA    

or 

    0
in out

VA VA      

 

   
in out

Q m m m      

4) and incompressible flow 

0in outQ Q     

 

if non-uniform flow over discrete inlet/outlet 

 
1

i i
CS av avCS

CS CS

Q V n dA V A V V n dA
A
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Differential Form: 
𝑑𝑀

𝑑𝑡
= 0 = ∫ [

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉)] 𝑑∀

𝐶𝑉

 

𝛽 = 1 

  0



V

t



       

0






VV

t
 

0 V
Dt

D



 

0

1 1

d d
M dM d d

D D

Dt Dt


  








       




 



 0

11

1


























  



unitper
changeofrate

Dt

D

Dt

D

z

w

y

v

x

u

V

unitper

changeofrate

Dt

D









  

Called the continuity equation since the implication is that 

ρ and V are continuous functions of x. 

  

Incompressible Fluid:  ρ =  constant 

0

0


















z

w

y

v

x

u

V
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P3.15 Water, assumed incompressible, flows steadily 

through the round pipe in Fig. P3.15. The entrance 

velocity is constant, 0u U , and the exit velocity 

approximates turbulent flow,  
1 7

max 1u u r R  . Determine 

the ratio U0/umax for this flow. 

 
Steady flow, non-deforming, fixed CV, one inlet uniform 

flow and one outlet non-uniform flow 

−𝑚𝑖𝑛̇ + 𝑚𝑜𝑢𝑡̇ = 0;   𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡;   ̇ − 𝑄𝑖𝑛 + 𝑄𝑜𝑢𝑡 = 0 

 
1 72

0 max
0

0 1 2
R

U R u r R rdr      

2 2

0 max

49
0

60
U R u R


    

0

max

49

60

U

u
  

   
1 7

15 7 8 7

max max
0

2 2

0

1 1
2 1 2 1 1

1 1
2 1

7 7

R

R r
u rdr u r R r R

R
R R

 
 

 
  
      

               



2

max

7 7
2 0

15 8
u R

  
    

  

2

max

49

60
u R  
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank 

as shown. At time t=0, the water depth in the tank is 

30cm. Estimate the time required to fill the remainder of 

the tank. 

 
 

 

Unsteady flow, deforming CV, one inlet one outlet 

uniform flow 

1 20
CV

d
d Q Q

dt
      

2 2

1 20
4 4

CV

d d d
d V V

dt

 
      

   
2

4

D
t h t


   

h (0)=0.3m 
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2 2

2 10
4 4

D dh d
V V

dt

 
    

 
2

1 2 0.0153
dh d

V V
dt D

 
   
 

 

0.7
46

0.0153 0.0153

dh
dt s    

 

Steady flow, fixed CV with one inlet and two exits with 

uniform flow 

Note:   
A

Q V n dA
dt


      

3L

s
 

1 2 30 Q Q Q     

𝑄3 =
∀

𝑑𝑡
= 𝑄1 − 𝑄2 =

𝜋𝑑2

4
(𝑉1 − 𝑉2) 

𝑑𝑡 =
∀

𝑄3
=

𝑑ℎ
𝜋𝐷2

4
𝜋𝑑2

4
(𝑉1 − 𝑉2)

 

 

 

2

1 2

D
dh

d

V V

 
 
 


  

 



ME:5160  Chapters 3 & 4 

Professor Fred Stern     Fall 2020  11 

 

P4.17 A reasonable approximation for the two-

dimensional incompressible laminar boundary layer on 

the flat surface in Fig.P4.17 is 

2

2

2y y
u U

 

 
  

 
 for y  , 

where 1 2Cx  , C const  

(a) Assuming a no-slip condition at the wall, find an 

expression for the velocity component  ,v x y  for y  . 

(b) Find the maximum value of v  at the station 1x m , for 

the particular case of flow, when 3U m s  and 1.1cm  . 

 

0
u v

x y

 
 

   

 2 2 32 2
v u

U y y
y x x


    

     
    

 2 2 3

0
2

y

xv U y y dy      

(a) 

2 3

2 3
2

2 3
x

y y
v U

 

 
  

 
 1 2Cx   

1 2

2 2
x

C
x

x


    

(b) Since 0yv   at y   

 max

2 1 1

2 2 3

U
v v y

x




 
    

 

3 0.011
0.0055

6 6

U
m s

x
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Momentum Equation: 

 

B = MV = momentum, β = V 

 

Integral Form: 
( )

3
1 2

R

CV CS

d MV d
V d V V n dA F

dt dt
     

 

F  =  vector sum of all forces acting on CV 

 = FB + Fs 

FB =  Body forces, which act on entire CV of fluid due to 

external force field such as gravity or electrostatic or 

magnetic forces.  Force per unit volume. 

Fs =  Surface forces, which act on entire CS due to normal 

(pressure and viscous stress) and tangential (viscous 

stresses) stresses.  Force per unit area. 

 

When CS cuts through solids Fs may also include FR = 

reaction forces, e.g., reaction force required to hold nozzle 

or bend when CS cuts through bolts holding nozzle/bend 

in place. 

 

 1 = rate of change of momentum in CV 

       2 = rate of outflux of momentum across CS 

 3 = vector sum of all body forces acting on entire CV 

and  surface forces acting on entire CS. 
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Many interesting applications of CV form of momentum 

equation: vanes, nozzles, bends, rockets, forces on bodies, 

water hammer, etc. 

 

Differential Form: 

 

   
CV

V V V d F
t

 
 

    
  

Where  
V

V V
t t t


 

  
 

  
 

and ˆˆ ˆV V VV ui V vjV wkV         is a tensor 

( ) ( ) ( ) ( ) ( )V V VV uV vV wV
x y z

    
  

     
  

 

VVVV   )(  

 

 

 
CV

V
V V V V d F

t t


 

      
              

  

 

  
= 0 , continuity 
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Since 
V DV

V V
t Dt


  


 

  Fd
Dt

VD

CV

  

 f
Dt

VD


 per elemental fluid volume 

sb
ffa   

 

b
f  = body force per unit volume 

s
f  = surface force per unit volume 

 

Body forces are due to external fields such as gravity or 

magnetic fields.  Here we only consider a gravitational 

field; that is, 
dxdydzgFdF

gravbody    

 

and  
ˆg gk    for    

i.e. 
ˆ

body
f gk   

  

z 

g 
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Surface Forces are due to the stresses that act on the sides 

of the control surfaces 

ijijij
p    

 

























zzzyzx

yzyyyx

xzxyxx

p

p

p







 

 

 

 

As shown before, for p alone it is not the stresses 

themselves that cause a net force but their gradients. 

 

Symmetry condition from requirement that for elemental 

fluid volume, stresses themselves cause no rotation. 

 

s pf f f 
 

 

Recall pf p   based on 1st order TS.  f  is more 

complex since 
ij
  is a 2nd order tensor, but similarly as for 

p, the force is due to stress gradients and are derived 

based on 1st order TS. 

 

 

Viscous stress Normal pressure 

Symmetric ij ji   

 

2nd order tensor 
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^ ^ ^

^ ^ ^

^ ^ ^

x xx xy xz

y yx yy yz

z zx zy zz

i j k

i j k

i j k

   

   

   

  

  

  

   

 

 

 

 

 

 

 

 

and similarly for z 

 

𝐹𝑠 = [
𝜕

𝜕𝑥
(𝜎𝑥𝑥) +

𝜕

𝜕𝑦
(𝜎𝑦𝑥) +

𝜕

𝜕𝑧
(𝜎𝑧𝑥)] 𝑑𝑥𝑑𝑦𝑑𝑧 𝑖̂ 

+[
𝜕

𝜕𝑥
(𝜎𝑥𝑦) +

𝜕

𝜕𝑦
(𝜎𝑦𝑦) +

𝜕

𝜕𝑧
(𝜎𝑧𝑦)] 𝑑𝑥𝑑𝑦𝑑𝑧 𝑗̂ 

+[
𝜕

𝜕𝑥
(𝜎𝑥𝑧) +

𝜕

𝜕𝑦
(𝜎𝑦𝑧) +

𝜕

𝜕𝑧
(𝜎𝑧𝑧)] 𝑑𝑥𝑑𝑦𝑑𝑧 �̂� 

 

( ) ( ) ( )s x y zF dxdydz
x y z
  

   
   

   
 

 

  

z 

Resultant 

stress  

on each face 

x 

y 

dydzdx
x

xx

xx 














  

yx

yx dy dxdz
y




 
 

 
 

yx dxdz  

xx dydz  
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Divided by the volume: 

( ) ( ) ( )s x y zf
x y z
  

  
  
    

s ij ij

j

f
x

 


 
  

 

Putting together the above results, 

ˆ
ij

DV
a gk

Dt
        

 

 

 

Next, we need to relate the stresses σij to the fluid motion, 

i.e. the velocity field.  To this end, we examine the 

relative motion between two neighboring fluid particles. 

 

 

 

 

@ B: VdrVdVV    1st order Taylor Series 

jij

zyx

zyx

zyx

dxe

dz

dy

dx

www

vvv

uuu

VdrdV 


































 

 

 

 

body force 

due to 

gravity 

Inertial force 
surface force = p + viscous terms 

(due to stress gradients) 

B 

relative motion 

deformation rate 

tensor = 
ij

e  

A (u,v,w) = V 

dr  
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1 1

2 2

j ji i i
ij ij ij

j j i j i

u uu u u
e

x x x x x

symmetric part anit symmetric part

ij ji ij ji

 

   

      
                   


 

 

1 1
0 ( ) ( )

2 2

1 1
( ) 0 ( )

2 2

1 1
( ) ( ) 0

2 2

y x z x

ij x y z y

x z y z

u v u w

v u v w rigid body rotation
of fluid element

w u w v









 
 
 
 

  
 
    
 
 
 
 

  
 
  

  

 

where = rotation about x axis 

 = rotation about y axis 

ς= rotation about z axis 

 

Note that the components of ij are related to the vorticity 

vector define by: 

 
ˆˆ ˆ( ) ( ) ( )

2 22

y z z x x yV w v i u w j v u k

 

      
 

 

= 2  angular velocity of fluid element 
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1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

ij

x y x z x

x y y z y

x z y z z

rate of strain tensor

u u v u w

v u v v w

w u w v w

 

 
  

 
   
 
 
  
  

 

 

x y zu v w V   = elongation (or volumetric dilatation)  

of fluid element 
1 D

Dt





 

)(
2

1
xy

vu   = distortion wrt (x,y) plane 

)(
2

1
xz

wu   = distortion wrt (x,z) plane 

)(
2

1
yz

wv   = distortion wrt (y,z) plane 

Thus, general motion consists of: 

 

1) pure translation described by V  

2) rigid-body rotation described by ω 

3) volumetric dilatation described by V  

4) distortion in shape described by ij  i j 
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It is now necessary to make certain postulates concerning 

the relationship between the fluid stress tensor (σij) and 

rate-of-deformation tensor (eij).  These postulates are 

based on physical reasoning and experimental 

observations and have been verified experimentally even 

for extreme conditions. For a Newtonian fluid: 

 

1) When the fluid is at rest the stress is hydrostatic and 

the pressure is the thermodynamic pressure 

 

2) Since there is no shearing action in rigid body 

rotation, it causes no shear stress. 

 

3) ij is linearly related to ij and only depends on ij. 

 

 

4) There is no preferred direction in the fluid, so that 

the fluid properties are point functions (condition of 

isotropy). 
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Using statements 1-3 

 

ijijmnijij
kp    

 

kijmn = 4th order tensor with 81 components such that each 

stress is linearly related to all nine components of εij. 

 

However, statement (4) requires that the fluid has no 

directional preference, i.e. σij is independent of rotation of 

coordinate system, which means kijmn is an isotropic 

tensor = even order tensor made up of products of δij. 

 

ijmn ij mn im jn in jmk          

 
scalars),,(   

 

Lastly, the symmetry condition σij = σji requires: 

 

kijmn = kjimn  γ = μ = viscosity 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝛿𝑖𝑚𝛿𝑗𝑛𝜀𝑖𝑗 + 𝜇𝛿𝑖𝑛𝛿𝑗𝑚𝜀𝑖𝑗 + 𝜆𝛿𝑖𝑗𝛿𝑚𝑛𝜀𝑖𝑗  

 

2ij ij ij mm ijp

V
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λ and μ can be further related if one considers mean 

normal stress vs. thermodynamic p. 

 

3 (2 3 )ii p V        
1 2

3 3
iip V

p mean
normal stress

  
 

     
 



 

 

2

3
p p V 

 
     

 
 

 

Incompressible flow: pp    and absolute pressure is 

indeterminant since there is no equation of state for p.  

Equations of motion determine p . 

 

Compressible flow:  pp   and λ = bulk viscosity must be 

determined; however, it is a very difficult measurement 

requiring large 
1 1D D

V
Dt Dt






   


, e.g., within shock 

waves. 

 

Stokes Hypothesis also supported kinetic theory 

monotonic gas. 

pp 

 
3

2
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2
2

3
ij ij ijp V   

 
      

   

Generalization 
dy

du
    for 3D flow. 

























i

j

j

i

ij

x

u

x

u
  ji   relates shear stress to strain rate 

 

2 1
2 2

3 3

i i
ii

i i

u u
p V p V

x x

normal viscous stress

   
    

             
      

 

Where the normal viscous stress is the difference between 

the extension rate in the xi direction and average 

expansion at a point.  Only differences from the average = 
























z

w

y

v

x

u

3

1
 generate normal viscous stresses.  For 

incompressible fluids, average = 0 i.e. 0V  . 

 

Non-Newtonian fluids: 

ijij
   for small strain rates 



 , which works well for 

air, water, etc. Newtonian fluids 

 
n

ij ij ij
t

non linear history effect

  


 



  Non-Newtonian 

      Viscoeslastic  materials 
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Non-Newtonian fluids include: 

 

(1) Polymer molecules with large molecular 

weights and form long chains coiled together 

in spongy ball shapes that deform under shear. 

  

(2) Emulsions and slurries containing suspended 

particles such as blood and water/clay 

 

 

Navier Stokes Equations: 

 

ˆ
ij

DV
a gk

Dt
        

 
2ˆ 2
3

ij ij

j

DV
gk p V

Dt x
    

  
        

 

 

Recall μ = μ(T)  μ increases with T for gases, decreases 

with T for liquids, but if it is assumed that μ = constant: 

 
2ˆ 2
3

ij

j j

DV
gk p V

Dt x x
    

 
     

   

 
2

2 22
ji i

ij i

j j j i j j

uu u
u V

x x x x x x
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𝜌
𝐷𝑉

𝐷𝑡

2 2ˆ
3 j

g k p V V
x

 
 

       
  

 

For incompressible flow 0V   

 
2ˆ

ˆ ˆ

DV
gk p V

Dt
p where p p z

piezometric pressure

  



    

  
 

For μ = 0 

 

ˆDV
g k p

Dt
      Euler Equation 

 

NS equations for ρ, μ constant 

 

2ˆ
DV

p V
Dt

      

 

2ˆ
V

V V p V
t

 
 

       
 

21
ˆ

V
V V p V

t




 
        

    





  kinematic viscosity 

 
Non-linear 2nd order PDE, as is the case for ρ, μ  not constant 

 

Combine with V  for 4 equations for 4 unknowns V , p 

and can be, albeit difficult, solved subject to initial and 

boundary conditions for V , p at t = t0 and on all 

boundaries i.e. “well posed” IBVP. 
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Application of CV Momentum Equation: 

 

 ∑𝐹⏟
𝑛𝑒𝑡 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝐶𝑉

=
𝑑

𝑑𝑡
∫ 𝑉𝜌 𝑑∀
𝐶𝑉⏟        

𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒
𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 𝐶𝑉

+ ∫ 𝑉𝜌𝑉𝑅 . 𝑛 𝑑𝐴𝐶𝑆⏟        
𝑛𝑒𝑡 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑜𝑢𝑡𝑓𝑙𝑢𝑥

 

 

 SB FFF   ( SF  includes reaction forces) 

 

Note: 

 

1. Vector equation 

  

2. n = outward unit normal: RV n  < 0 inlet, > 0 outlet 

 

3. 1D Momentum flux, fixed CV 

 

   i ii iout in

CS

V V n dA m V m V      

 

Where iV , i are assumed uniform over fixed discrete 

inlets and outlets 

  

i i ni im V A
 

 

∑𝐹 =
𝑑

𝑑𝑡
∫ 𝑉𝜌 𝑑∀
𝐶𝑉

+ ∑(�̇�𝑖  𝑉𝑖)𝑜𝑢𝑡⏟        
𝑜𝑢𝑡𝑙𝑒𝑡 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑓𝑙𝑢𝑥

− ∑(�̇�𝑖  𝑉𝑖)𝑖𝑛⏟      
𝑖𝑛𝑙𝑒𝑡 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑓𝑙𝑢𝑥
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4. Momentum flux correlation factors 

∫𝑢𝜌𝑉. 𝑛 𝑑𝐴 = 𝜌∫𝑢2 𝑑𝐴
⏟      

𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑜𝑤 𝑤𝑖𝑡ℎ
𝑛𝑜𝑛−𝑢𝑛𝑖𝑓𝑜𝑟𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑓𝑖𝑙𝑒

= 𝜌𝛽𝐴𝑉𝑎𝑣
2 = �̇�𝛽𝑉𝑎𝑣 

Where  

2

1

avCS

u
dA

A V


 
  

 
    

  
1

av

CS

Q
V u dA

AA
   

Laminar pipe flow: 

 

 

1
2

2

0 02
1 1

r r
u U U

R R

   
      

  
 

 

 0.53avV U  𝛽 =
4

3
= 1.33 

Turbulent pipe flow: 

 

 
m

R

r
Uu 








 1

0
  

1 1
9 5

m   

 

        
0

2

1 (2 )
avV U

m m


  :  for  
7

1m , Vav =.82U0 

 
   

)22)(21(2

21
22

mm

mm




 :  for  m=1/7, β = 1.02 
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5. Constant p causes no force;  Therefore, 

 

 Use  pgage = patm-pabsolute 

 
0p

CS CV

F pn dA p d        for p = constant 

 

6.  For jets open to atmosphere: p = pa, i.e. pgage = 0. 

  

7.  Choose CV carefully with CS normal to flow (if 

possible) and indicating coordinate system and F  

on CV similar as free body diagram used in 

dynamics. 

 

8.   Many applications, usually with continuity and 

energy equations. Careful practice is needed for 

mastery. 

a. Steady and unsteady developing and fully 

developed pipe flow 

b. Emptying or filling tanks 

c. Forces on transitions 

d. Forces on fixed and moving vanes 

e. Hydraulic jump 

f. Boundary Layer and bluff body drag 

g. Rocket or jet propulsion 

h. Nozzle 

i. Propeller 

j. Water-hammer 
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First relate umax to U0 using continuity equation 

 

 
  



R m

avoutavinavoutinoutin

drr
R

ruRU

A

Q
VVVQQQQQ

0

max

2

0

,,

21

     ;      0



 

 

  0 max2

0

1
1 2

R
m

av
rU u r dr V

RR



    

 max

2

(1 )(2 )
avV u

m m


      

m = 1/2 Vav = .53umax  umax = Vav/.53   

m = 1/7 Vav = .82umax  umax = Vav/.82 
 

≈ 
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Second, calculate F using momentum equation: 

 

 F = wall drag force = Rdxw  2  (force fluid on wall) 

 -F = force wall on fluid 

 

    
R

x
URUdrruuFRppF

0
0

2

022

2

21
)()2(   

 

 
  2 2 2 2

1 2 0 2

0

2

2

R

F p p R U R u r dr

AV
av

    



    
 

 

 𝐹 = (𝑝1 − 𝑝2)𝜋𝑅
2 + 𝜌𝑈0

2𝜋𝑅2 − 𝛽2𝜌𝐴𝑉𝑎𝑣
2⏟            

𝜌𝑈0
2𝜋𝑅2(1−𝛽2)

 

 

𝛽 =
1

𝐴
∫ (

𝑢

𝑉𝑎𝑣
)
2
𝑑𝐴

⏟          
𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑙 𝑓𝑙𝑢𝑥
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

  

= 4/3 laminar flow 

=  1.02 turbulent flow 

22

0

2

21

3

1
)( RURppF

lam
   

 
22

0

2

21
02.)( RURppF

turb
   

 

 

= U0
2 from  

continuity 

Complete analysis 

using CFD! 
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Reconsider the problem for fully developed flow: 

 

 Continuity: 

 

 
0in out

in out

m m

m m m

  

    or  Q = constant 

 

 Momentum: 

  

   2

1 2

2 2

( )

( ) ( )

( )

0

x

in out

ave in ave out

ave out in

F p p R F u V n dA u V n dA

AV AV

QV

  

   

  

      

  

 



  

 

(𝑝1 − 𝑝2)𝜋𝑅
2 − 𝜏𝑤2𝜋𝑅dx = 0 

 

Δ𝑝𝜋𝑅2 − 𝜏𝑤2𝜋𝑅dx = 0 

  Since Δ𝑝 = 𝑝1 − 𝑝2 = −𝑑𝑝 = −(𝑝2 − 𝑝1) 
 

 









dx

dpR
w

2
  or for smaller CV r < R, 










dx

dpr

2
  

 
  (valid for laminar or turbulent flow, but assume laminar) 
 

  









dx

dpr

dr

du

dy

du

2
   y = R-r  (wall coord.) 

  









dx

dpr

dr

du

2
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  c
dx

dpr
u 










4

2

 

 

  0)(  Rru     









dx

dpR
c

4

2

 

 

  












dx

dprR
ru

4
)(

22

 (If  𝑑𝑝
𝑑𝑥
< 0 flow moves from left to right) 

 

  









dx

dpR
u

4

2

max
  










2

2

max
1)(

R

r
uru  

 

  









dx

dpR
drrruQ

R






8
2)(

4

0

 

 

  

2

max

28
ave

Q R dp u
V

A dx

 
    

 
 

 

  2

8 4

2 2

ave ave
w

V VR dp R

dx R R

 


  
      

   
 

 

  2

8 32 64 64

Re

w

ave ave ave

f
V RV V D

  

  
   

 

 

  
Re aveV D
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Piezometric head 

h = z +
p

𝛾
 

For a horizontal pipe 

∆𝑝 = 𝛾∆ℎ , ∆𝑧 = 0  

 
2 𝑑𝑥 𝜏𝑤

𝑅
= −𝑑𝑝 = ∆𝑝 =

2 𝐿 𝜏𝑤

𝑅
 ,   𝑓 =

8𝜏𝑤

𝜌𝑉𝑎𝑣
2  

 

∆𝑝 =
2𝐿𝜌𝑉𝑎𝑣

2 𝑓

8𝑅
=
𝐿𝜌𝑉𝑎𝑣

2 𝑓

2𝐷
  

Dividing by 𝛾 

∆𝑝

𝛾
=
𝐿𝜌𝑉𝑎𝑣

2 𝑓

2𝐷𝛾
= 𝑓

𝐿

𝐷

𝑉𝑎𝑣
2

2𝑔
  

More generally 

 

∆ℎ = 𝑓
𝐿

𝐷

𝑉𝑎𝑣
2

2𝑔
  Darcy–Weisbach equation 

 

Exact solution of NS for laminar fully developed pipe

 flow 
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Application of relative inertial coordinates for a 

moving but non-deforming control volume (CV) 

 

The CV moves at a constant velocity CSV  with respect to 

the absolute inertial coordinates. If RV  represents the 

velocity in the relative inertial coordinates that move 

together with the CV, then: 

 

                                     R CSV V V   

                     
Reynolds transport theorem for an arbitrary moving deforming 

CV:  

                     
SYS

R

CV CS

dB d
d V n dA

dt dt
        

 

For a non-deforming CV moving at constant velocity, RTT for 

incompressible flow: 

                     
syst

R

CV CS

dB
d V ndA

dt t


  


  

 
    

 

 

1. Conservation of mass 

   systB M , and 1  : 

                                R

CS

dM
V ndA

dt
 

                                         

 

For steady flow:  

 

                                    0R

CS

V ndA 
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2. Conservation of momentum  
 

    CSsyst RB M V V   and syst R CSdB dM V V      
 

 

                   

   
 

[ ]CS CSR R

CSR R

CV CS

d M V V V V
F d V V V ndA

dt t
 

  
    


  

 

 

 

For steady flow with the use of continuity: 
 

 

                               

 CSR R

CS

CSR R R

CS CS

F V V V ndA

V V ndA V V ndA



 

  

   

 

 
0

        

 

 

R R

CS

F V V ndA  
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Example (use relative inertial coordinates): 
 

     A jet strikes a vane which moves to the right at constant velocity 𝑉𝐶  on a 

frictionless cart.  Compute (a) the force 𝐹𝑥 required to restrain the cart and (b) 

the power 𝑃 delivered to the cart.  Also find the cart velocity for which (c) the 

force 𝐹𝑥 is a maximum and (d) the power 𝑃 is a maximum. 

 
Solution: 

 

Assume relative inertial coordinates with non-deforming CV i.e. CV moves 

at constant translational non-accelerating  

                                              𝑉𝐶𝑆 = 𝑢𝐶𝑆𝑖̂ + 𝑣𝐶𝑆𝑗̂ + 𝑤𝐶𝑆�̂� = 𝑉𝐶𝑖̂ 

then R CSV V V   . Also assume steady flow 𝑉 ≠ 𝑉(𝑡) with 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 

neglect gravity effect. 

 

Continuity: 

                                                    0 = 𝜌 ∫ 𝑉𝑅 ⋅ 𝑛𝑑𝐴𝐶𝑆
 

−𝜌𝑉𝑅1𝐴1 + 𝜌𝑉𝑅2𝐴2 = 0 
𝑉𝑅1𝐴1 = 𝑉𝑅2𝐴2 = (𝑉𝑗 − 𝑉𝐶)⏟      

𝑉𝑅1=𝑉𝑅𝑥1=𝑉𝑗−𝑉𝐶

𝐴𝑗 

Bernoulli without gravity: 

                                          1p
0 2

1 2

1

2
RV p 

0 2

2

1

2
RV  

                                                        1 2R RV V  
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                                                      1 2 jA A A        

Momentum: 

∑𝐹 = 𝜌∫ 𝑉𝑅  𝑉𝑅 ⋅ 𝑛𝑑𝐴
𝐶𝑆

 

x x Rx R
CS

F F V V ndA      

 
−𝐹𝑥 = 𝜌𝑉𝑅𝑥1(−𝑉𝑅1𝐴1) + 𝜌𝑉𝑅𝑥2(𝑉𝑅2𝐴2) 

 

−𝐹𝑥 = 𝜌(𝑉𝑗 − 𝑉𝐶)[−(𝑉𝑗 − 𝑉𝐶)𝐴𝑗] + 𝜌(𝑉𝑗 − 𝑉𝐶) cos 𝜃 (𝑉𝑗 − 𝑉𝐶)𝐴𝑗 

 

𝐹𝑥 = 𝜌(𝑉𝑗 − 𝑉𝐶)
2
𝐴𝑗[1 − cos 𝜃] 

 

𝑃𝑜𝑤𝑒𝑟 = 𝑉𝐶𝐹𝑥 = 𝑉𝐶𝜌(𝑉𝑗 − 𝑉𝐶)
2
𝐴𝑗(1 − cos 𝜃) 

 
𝐹𝑥𝑚𝑎𝑥 = 𝜌𝑉𝑗

2𝐴𝑗(1 − cos 𝜃), 𝑉𝐶 = 0 

 

𝑃𝑚𝑎𝑥 ⇒
𝑑𝑃

𝑑𝑉𝐶
= 0 

𝑃 = 𝑉𝐶𝜌(𝑉𝑗
2 − 2𝑉𝐶𝑉𝑗 + 𝑉𝐶

2)𝐴𝑗(1 − cos 𝜃) 

= 𝜌(𝑉𝑗
2𝑉𝐶 − 2𝑉𝐶

2𝑉𝑗 + 𝑉𝐶
3)𝐴𝑗(1 − cos 𝜃) 

 
𝑑𝑃

𝑑𝑉𝐶
= 𝜌(𝑉𝑗

2 − 4𝑉𝐶𝑉𝑗 + 3𝑉𝐶
2)𝐴𝑗(1 − cos 𝜃) = 0 

3𝑉𝐶
2 − 4𝑉𝑗𝑉𝐶 + 𝑉𝑗

2 = 0 

𝑉𝐶 =

+4𝑉𝑗 ±√16𝑉𝑗
2 − 12𝑉𝑗

2

6
=
4𝑉𝑗 ± 2𝑉𝑗

6
 

For 
3

j

C

V
V  :  𝑃𝑚𝑎𝑥 =

𝑉𝑗

3
𝜌 (

2𝑉𝑗

3
)
2

𝐴𝑗(1 − cos 𝜃) =
4

27
𝑉𝑗
3𝜌𝐴𝑗(1 − cos 𝜃) 
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Example (use absolute inertial and relative inertial 

coordinates) 

 
Assume gravity force is negligible and the cross section 

area of the jet does not change after striking the bucket. 

Taking moving CV at speed Vs= ΩR î enclosing jet and 

bucket: 

 

Solution 1 (relative inertial coordinates) 

 

Continuity:  , , 0in R out Rm m    

  , , RR in R out R

CS

m m m V n dA     

Bernoulli without gravity: 

ΩR 

CV 

Vout,R 

Vin,R 



ME:5160  Chapters 3 & 4 

Professor Fred Stern     Fall 2020  39 

 

                   1p
0 2

, 2

1

2
in RV p 

0 2

,

1

2
out RV  

                             , ,in R out RV V  

Inlet             𝑉𝑖𝑛,𝑅 = (𝑉𝑗 − 𝛺𝑅)𝑖̂ 

Outlet 𝑉𝑜𝑢𝑡,𝑅 = −(𝑉𝑗 − 𝛺𝑅)𝑖̂ 
 

  Since        , 1 , 2 0in R out RV A V A     

                            1 2 jA A A       
 

Momentum: 

 , ,X bucket R out R R in RF F m V m V     

 
2

( ) ( )

2 ( )

2 ( )

bucket R j j

R j

j j

F m V R V R

m V R

A V R

       

 

 

 

  ( )R j jm A V R   

 
22 ( )bucket j jP RF A R V R      

𝑑𝑃

𝑑𝛺
= 2𝜌𝐴𝑗𝑅(𝑉𝑗 − 𝛺𝑅)

2
− 2𝜌𝐴𝑗𝛺𝑅2(𝑉𝑗 − 𝛺𝑅)𝑅 

= 2𝜌𝐴𝑗𝑅 [(𝑉𝑗 − 𝛺𝑅)
2
− 2𝑅𝛺(𝑉𝑗 − 𝛺𝑅)] 

= 2𝜌𝐴𝑗𝑅(𝑉𝑗 − 𝛺𝑅)[𝑉𝑗 − 𝛺𝑅 − 2𝑅𝛺] 
𝑑𝑃

𝑑𝛺
= 0  →   𝑉𝑗 − 3𝛺𝑅 = 0  →   

𝑉𝑗

3
= 𝛺𝑅 

𝑃𝑚𝑎𝑥 = 2𝜌𝐴𝑗
𝑉𝑗

3
(𝑉𝑗 −

𝑉𝑗

3
)
2

= 2𝜌𝐴𝑗
𝑉𝑗

3

4𝑉𝑗
2

9
=

8

27⏟
0.296

𝜌𝐴𝑗𝑉𝑗
3 
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If infinite number of buckets:  R j jm A V  

  

  

3

max

2 ( )

2 ( )

1
0

2 2

bucket j j j

j j j

j

j j

F A V V R

P A V R V R

VdP
for R P A V

d







 

  

   


 

 

Solution 2 (absolute inertial coordinates) 

 

𝑉𝑅 = 𝑉 − 𝑉𝐶𝑆   →    𝑉 = 𝑉𝑅 + 𝑉𝐶𝑆 

 

𝑉𝑖𝑛 = 𝑉𝑗  𝑖̂ 

 

𝑉𝑜𝑢𝑡 = −(𝑉𝑗 − 𝛺𝑅) 𝑖̂ + 𝛺𝑅 𝑖̂ = −(𝑉𝑗 − 2𝛺𝑅) 𝑖̂ 

 

Continuity: from solution 1 

 

−𝑉𝑖𝑛,𝑅 + 𝑉𝑜𝑢𝑡,𝑅 = 0 

 

express in the absolute inertial coordinates: 𝑉𝑅 = 𝑉 − 𝑉𝐶𝑆 

 

−(𝑉𝑗 − 𝛺𝑅) 𝑖̂ + (𝑉𝑗 + 2𝛺𝑅 − 𝛺𝑅) 𝑖̂ = 0 

 

 

all jet mass flow 

result in work. 
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Momentum: 

 

∑𝐹𝑥 = −𝐹𝑏𝑢𝑐𝑘𝑒𝑡 = �̇�(𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛) 

 

= 𝜌𝐴𝑗(𝑉𝑗 − 𝛺𝑅)[−(𝑉𝑗 − 2𝛺𝑅) − 𝑉𝑗] 

 

𝐹𝑏𝑢𝑐𝑘𝑒𝑡 = 2𝜌𝐴𝑗(𝑉𝑗 − 𝛺𝑅)
2
 

  

Same as Solution 1. 
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Application of CV continuity equation for steady 

incompressible flow, fixed CV, one inlet and outlet with 

A = constant 

 

in out

V ndA V ndA m Q         

in outQ Q  

   ave avein out
V A V A  

For A = constant     ave avein out
V V  

   
in out

F V V n dA V V n dA        

Pipe: 

   x

in out

F u V n dA u V n dA        

   2 2

ave avein out
AV AV       

 ave out inQV       change in shape u 

Vane: 

∑𝐹 = �̇� (𝑉𝑜𝑢𝑡 − 𝑉𝑖𝑛) ;   |𝑉𝑜𝑢𝑡| = |𝑉𝑖𝑛| 
 

If θ=180: 

   2x out in inF m u u m u     
 

For arbitrary θ: 

∑𝐹𝑥 = �̇�(𝑢𝑜𝑢𝑡 cos 𝜃 − 𝑢𝑖𝑛) = �̇�𝑢𝑖𝑛(cos 𝜃 − 1) 

change in direction u 
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Application of differential momentum equation: 

 

1. NS valid both laminar and turbulent flow; however, 

many order of magnitude difference in temporal and 

spatial resolution, i.e. turbulent flow requires very 

small time and spatial scales 

  

2. Laminar flow Recrit = 
U


  2000 

Re > Recrit    instability 

 

3. Turbulent flow Retransition > 10 or 20 Recrit 

 

Random motion superimposed on mean coherent 

structures. 

 

Cascade: energy from large scale dissipates at 

smallest scales due to viscosity. 

Kolmogorov hypothesis for smallest scales 

 

4. No exact solutions for turbulent flow: RANS, DES, 

LES, DNS (all CFD) 
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5. 80 exact solutions for simple laminar flows are 

mostly linear 0V V   

 

a.  Couette flow = shear driven 

b.  Steady duct flow =  Poiseuille flow 

c.  Unsteady duct flow 

d.  Unsteady moving walls 

e.  Asymptotic suction 

f.  Wind-driven flows 

g.  Similarity solutions. etc. 

 

6. Also many exact solutions for low Re Stokes and 

high Re BL approximations 

 

7. Can also use CFD for non simple laminar flows 

  

8. AFD or CFD requires well posed IBVP; therefore, 

exact solutions are useful for setup of IBVP, 

physics, and verification CFD since modeling errors 

yield USM = 0 and only errors are numerical errors 

USN, i.e., assume analytical solution = truth, called 

analytical benchmark 
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Energy Equation: 

 

B = E = energy 

β = e = dE/dm = energy per unit mass 

 

  

Integral Form (fixed CV): 

 

( )
CV CS

dE
e d e V n dA Q W

dt t

rateof change rateof outflux
E in CV E acrossCS

 


     
   

 

 

 

 gzvue 2

2

1^

 internal + KE + PE 

 

Q  = conduction + convection + radiation 

 

 
/

shaft pW W W W

pressure viscouspump turbine

  
 

 

  pdW p ndA V    - pressure force  velocity 

 

  p

CS

W p V n dA   

 

Rate of 

change E 

Rate of heat 

added CV 

Rate work 

done by CV 
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vdW dA V      - viscous force  velocity 

 

v

CS

W V dA    

 

 ( ) /s

CV CS

Q W W e d e p V ndA
t

   


     
   

 

For our purposes, we are interested in steady flow one 

inlet and outlet.  Also �̇�𝑣 ≈ 0 in most cases; since, V = 0 

at solid surface; on inlet and outlet only τn ~ 0 since its 

perpendicular to flow; or for V 0 and τstreamline ~ 0 if 

outside BL. 

2

&

1
ˆ /

2
S

inlet outlet

Q W u V gz p V n dA 
 

      
 

  

 

Assume parallel flow with /p gz   and û constant over 

inlet and outlet. 

 

  2

& &

ˆ / ( )
2

S

inlet outlet inlet outlet

Q W u p gz V ndA V V n dA


          

 

  3ˆ / ( )
2

S in in inin

in

Q W u p gz m V dA


        

  3ˆ / ( )
2

out out outout

out

u p gz m V dA


      

= constant ie hydrostatic 

pressure variation 
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Define kinetic energy correction factor 

 
3

2
21
( )

2 2

ave

aveA A

VV
dA V V n dA m

A V


 

 
    

 
   

 

Laminar flow: 

















2

0
1

R

r
Uu  

 

  Vave=0.5  β = 4/3  α=2 

 

Turbulent flow: 
m

R

r
Uu 








 1

0
 

 

  
   

3 3
1 2

4(1 3 )(2 3 )

m m

m m


 


 
 

 

m=1/7  α=1.058  as with β, α~1 for  

turbulent flow 

 

 

 

2 2

ˆ ˆ( / ) ( / )
2 2

s ave ave
out in

W V VQ
u p gz u p gz

m m
             

 

Let in = 1, out = 2, V = Vave, and divide by g 
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2 21 1 2 2
1 1 2 2

2 2
p t L

p p
V z h V z h h

g g g g

 

 
       

 

 

ps t
t p

WW W
h h

gm gm gm
     

 

 2 1

1
( )L

Q
h u u

g mg
    

 
 hL = thermal energy (other terms represent mechanical energy 

 

1 1 2 2m AV AV    

 

Assuming no heat transfer mechanical energy converted 

to thermal energy through viscosity and can not be 

recovered; therefore, it is referred to as head loss > 0, 

which can be shown from 2nd law of thermodynamics. 

 

1D energy equation can be considered as modified 

Bernoulli equation for hp, ht, and hL. 
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Application of 1D Energy equation fully developed pipe 

flow without hp or ht. 

 

Recall the horizontal pipe flow using continuity and 

momentum (page 32): 𝜏𝑤 =
𝑅

2
(−

𝑑𝑝

𝑑𝑥
), i.e. −

𝑑𝑝

𝑑𝑥
=
2𝜏𝑤

𝑅
 

 

Similarly, for non-horizontal pipe: −
𝑑

𝑑𝑥
(𝑝 + 𝛾𝑧) =

2𝜏𝑤

𝑅
 

 

Using energy equation, 𝐿 = 𝑑𝑥 and �̂� = 𝑝 + 𝛾𝑧: 

 

ℎ𝐿 =
𝑝1−𝑝2

𝜌𝑔
+ (𝑧1 − 𝑧2) =

𝐿

𝜌𝑔
[−

𝑑

𝑑𝑥
(𝑝 + 𝛾𝑧)]    

 

ℎ𝐿 =
𝐿

𝜌𝑔
(−

𝑑𝑝

𝑑𝑥
) =

𝐿

𝜌𝑔
(
2𝜏𝑤

𝑅
)   (If  

𝑑𝑝

𝑑𝑥
< 0 flow moves from left to right) 

 

Where 𝜏𝑤 =
1

8
𝑓𝜌𝑉𝑎𝑣𝑒

2  

 

ℎ𝐿 = ℎ𝑓 = 𝑓
𝐿

𝐷

𝑉𝑎𝑣𝑒
2

2𝑔
    

Where ℎ𝑓 is the friction loss 

Also recall from page 33 that 𝜏𝑤 =
4𝜇𝑉𝑎𝑣𝑒

𝑅
 

For laminar flow, 

2

8 32w

ave ave

f
V RV

 

 
 

 

 

2

32 ave
L

LV
h

D




     Vave   exact solution! 

Darcy-Weisbach Equation (valid for laminar or Turbulent 

flow) 
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For turbulent flow,  Recrit ~ 2000, Retrans ~ 3000 

 

 f=f (Re, k/D)  Re = VaveD/ν, k = roughness 

 

 
2

L aveh V   

 

Pipe with minor losses, 

 

 hL = hf + Σhm   where 

2

2
m

V
h K

g

K loss coefficient




 

 

hm = “so called” minor losses, e.g. entrance/exit, 

expansion/contraction, bends, elbows, tees, other 

fitting, and valves. 
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(a) First suppose 2D problem: D1 and D2 denotes width in 

y instead of diameter and we take unit in z (span-wise) 

direction  

 

  
2

2 2

2

.79 989 0.02 1 425xF F mV V N

A
           

  2 5.22 / , 81.6 /V m s m kg s   

 

Continuity equation between points 1 and 2 

 

  
2

1 1 2 2 1 2

1

2.09 /
D

V A V A V V m s
D

     

Bernoulli neglect g, p2=pa 
2 2

1 1 2 2

1 1

2 2
p V p V       hL=0, z=constant 

 2 2

1 2 2 1

1

2
p p V V      

2 2

1

.79 998
101,000 (5.22 2.09 )

2
p


    

1 110,020p Pa  

 

Note: 
2 2 2

2 2 3 3 4 4
2 2 2

p V p V p V
  

      

  2 3 4 2 3 4ap p p p V V V       
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  2 2 3 3 4 40
CS

V A A V A V A V      

  
432

AAA   

 

  3 3 3 4 4 40 ( )y

CS

F VV A V V A V V A          

   
2 2

3 3 4 4V A V A      
43

AA   

 

(b) For the round jet implied in the problem statement 

 
2 2

2 2

2

.79 989 .02 425
4

xF F mV V N

A




        

 2 41.4 / , 10.3 /V m s m kg s


   

Continuity equation between points 1 and 2 
2

2
1 1 2 2 1 2

1

D
V A V A V V

D

 
    

 
 

 

2

1

2
41.4

5
V

 
  

 
  1 6.63 /V m s  

 

Bernoulli neglect g, p2=pa 

 
2 2

1 1 2 2

1 1

2 2
p V p V       hL=0, z=constant 

 

 2 2

1 2 2 1

1

2
p p V V      

2 2

1

.79 998
101,000 (41.4 6.63 )

2
p


    

Pap 000,760
1
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(a) 
2

2
1 2

2

V
z z

g
     0,11,0,1

212
 zzh

L
  

 2 1 22 ( )V g z z   11*81.9*2  sm /7.14  

 

 
2 3

2 2 2 (.01) *14.7*3600 4.16 /
4

Q A V m h


    

 
5

6

14.7 0.01
Re 1.5 10

10

VD

 


     

 

(b) 
2

2
1 2 2

2
L

V
z z h

g
     

6 2

2 2

32
2, , 10 /L

VL
h m s

D g


 



    

 
2

2 23.2 107.8 0V V    

      V2 = 8.9 m/s 

      Q= 2.516 m3/h 

 

Re=89,000=8.9*104 >>2000 

 

 

 

Torricelli’s 

expression 

for speed of 

efflux from 

reservoir 
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(c) 

2 2

2 2
1 2 2

2 2

V VL
z z f

g D g
  

  α2=1 

  
2

2
1 2 1 /

2

V
z z fL D

g
    

  
1

2
2 1 22 ( ) /(1 / )V g z z fL D    

  
1

2
2 216 /(1 *1000)V f    (Re), Re

VD
f f


   

  guess f = 0.015 (smooth pipe Moody diagram) 

  

4

2

4

2

4

2

3.7 / Re 3.7 10 , .024

2.94 / Re 2.9 10 , .025

2.88 / Re 2.9 10

V m s x f

V m s x f

V m s x

   

   

  
 

 

(d) Re 2000
VD


     

2000
D

V




 

 

2

2 2
1 2 2 2 2

2

2

32
( )

20002

V LV
z z

g
g

V





  

 

 

2 3

2 2
1 2 2 2

32
( )

2 2000

V LV
z z

g g





  

 

 

3 2

2 2

2

32
11 0

2000

LV V

g g
     2 1.1 /V m s  

 
       mD 00182.0  

Low U and small D to actually have laminar flow 
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Differential Form of Energy Equation: 

( ) ( )
CV

dE
e e V d Q W

dt t
 

 
 

     
  

  

 

𝜌
𝜕𝑒

𝜕𝑡
+ 𝑒

𝜕𝜌

𝜕𝑡
+ 𝑒∇. (𝜌𝑉)

⏟          
=0

+ 𝜌𝑉. ∇𝑒 = 𝜌
𝐷𝑒

𝐷𝑡
= 𝜌 (

𝜕𝑒

𝜕𝑡
+ 𝑉. ∇𝑒)

 

2 21 1
ˆ ˆ

2 2
e u V gz u V g r        

ˆ
( ) /

De Du DV
Q W q w V g V

Dt Dt Dt
 

 
         

 
 

 
( )q q k T      Fourier’s Law 

�̇� = −∇ ⋅ (𝑉 ⋅ 𝜎𝑖𝑗) = −𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗)⏟    

𝜌(
𝐷𝑉
𝐷𝑡−𝑔)

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

− 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

 

First term for �̇�

 −𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗) = −𝑉 ⋅ 𝜌 (
𝐷𝑉

𝐷𝑡
− 𝑔) = −𝜌 (𝑉 ⋅

𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) 

Where  

𝑉 ⋅
𝐷𝑉

𝐷𝑡
= 𝑉 ⋅ (

𝜕𝑉

𝜕𝑡
+ 𝑉 ⋅ ∇𝑉) =

𝜕𝑉2

𝜕𝑡
+ 𝑉2∇𝑉 = 𝑉

𝐷𝑉

𝐷𝑡
 

Therefore 

−𝑉 ⋅ (∇ ⋅ 𝜎𝑖𝑗) = −𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) 
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And 

�̇� = −𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) − 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

 

Substitute equation for �̇� and �̇� 

�̇� − �̇� = −∇ ⋅ (𝑘∇T) + 𝜌 (𝑉
𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔) + 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜌 (
𝐷�̂�

𝐷𝑡
+ 𝑉

𝐷𝑉

𝐷𝑡
− 𝑉 ⋅ 𝑔)  

 

𝜌
𝐷�̂�

𝐷𝑡
= −∇ ⋅ (𝑘∇T)+𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

 

Second term on right hand side 

 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= (𝜏𝑖𝑗 − 𝑝𝛿𝑖𝑗)
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝑝∇ ⋅ V  

From continuity  
𝐷𝜌

𝐷𝑡
+ 𝜌∇. 𝑉 = 0 → ∇. 𝑉 = −

1

𝜌

𝐷𝜌

𝐷𝑡
 

−𝑝∇. 𝑉 =
𝑝

𝜌

𝐷𝜌

𝐷𝑡
= −𝜌

𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

Therefore  

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌
𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

And 

𝜌
𝐷�̂�

𝐷𝑡
= −∇ ⋅ (𝑘∇T) + 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌
𝐷

𝐷𝑡
(
𝑝

𝜌
) +

𝐷𝑝

𝐷𝑡
 

Rearranging equation and substituting dissipation 

function Φ = 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
≥ 0 

𝜌
𝐷

𝐷𝑡
(𝑢 +

𝑝

𝜌
) = −∇ ⋅ (𝑘∇T) +

𝐷𝑝

𝐷𝑡
+ Φ 
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 Summary GDE for compressible non-constant property 

fluid flow 

 

Continuity: ( ) 0V
t





 

  

 

 

Momentum: 𝜌
𝐷𝑉

𝐷𝑡
= 𝜌𝑔 − ∇𝑝 + ∇. 𝜏𝑖𝑗 𝜏𝑖𝑗 = 𝜇𝜖𝑖𝑗 + 𝜆∇. 𝑉𝛿𝑖𝑗;  𝑔 = −𝑔�̂� 

 

 

Energy  )( Tk
Dt

Dp

Dt

Dh
  

 

Primary variables: p, V, T 

 

Auxiliary relations:  ρ = ρ (p,T)  μ = μ (p,T) 

(equations of state)   h = h (p,T)  k = k (p,T) 

 

Restrictive Assumptions: 

1) Continuum 

2) Newtonian fluids 

3) Thermodynamic equilibrium 

4) 𝑔 = −𝑔�̂� 

5) heat conduction follows Fourier’s law 

6) no internal heat sources 

 

For incompressible constant property fluid flow 
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ˆ
vdu c dT   cv, μ, k , ρ ~ constant 

 

 Tk
Dt

DT
c

v

2  

 

For static fluid or V small 

 

Tk
t

T
c

p

2



  heat conduction equation (also valid for solids) 

 

Summary GDE for incompressible constant property fluid 

flow (cv ~ cp) 

 

0V    

 

2ˆDV
gk p V

Dt
         “elliptic” 

 

 Tk
Dt

DT
c

p

2   where 
j

i

ij

x

u




   

 

 

Continuity and momentum uncoupled from energy; 

therefore, solve separately and use solution post facto to 

get T. 
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For compressible flow, ρ solved from continuity equation, 

T from energy equation, and p = (ρ,T) from equation of 

state (eg, ideal gas law).  For incompressible flow, ρ = 

constant and T uncoupled from continuity and momentum 

equations, the latter of which contains p  such that 

reference p is arbitrary and specified post facto (i.e. for 

incompressible flow, there is no connection between p 

and ρ).  The connection is between p  and 0V  , i.e. a 

solution for p requires 0V  . 
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NS  
21

ˆ
DV

p V
Dt




       p̂ p z   

)(NS   (See derivation details on p.87) 

 

2 21 ji

j i

uuD
V p

Dt x x




 
       

    

 

For 0V  : 

 

 
i

j

j

i

x

u

x

u
p








 2  

 

Poisson equation determines pressure up to additive 

constant. 

 

Approximate Models: 

 

1) Stokes Flow 

  

 For low Re 1, ~ 0
UL

V V


    

 

 0V   
21V

p V
t





    


 

 
0)( 2  pNS  

Linear, “elliptic” 

Most exact solutions NS; and for steady 

flow superposition, elemental solutions and 

separation of variables 
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2)  Boundary Layer Equations 

 

 For high Re >> 1 and attached boundary layers or 

fully developed free shear flows (wakes, jets, mixing 

layers), v<<U, 
yx 







, 0

y
p , and for free shear flows  

px = 0.   

 
 0

yx
vu  

 

 ˆ
t x y x yyu uu vu p u      non-linear, “parabolic” 

 

 ˆ0y x t xp p U UU     

 

 Many exact solutions; similarity methods 

 

3)  Inviscid Flow 

 

  0

, ," "

( ) , , , , ( , )

V
t

DV
g p Euler Equation nonlinear hyperbolic

Dt

Dh Dp
k T p V T unknowns and h k f p T

Dt Dt
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4)  Inviscid, Incompressible, Irrotational 

 

∇ × 𝑉 = 0 → 𝑉 = ∇𝜑 

∇. 𝑉 = 0 → ∇2𝜑 = 0   𝑙𝑖𝑛𝑒𝑎𝑟 elliptic 
 

  Euler Equation   Bernoulli Equation: 

 

2

2
p V gz const


    

 

 Many elegant solutions:  Laplace equation using 

superposition elementary solutions, separation of 

variables, complex variables for 2D, and Boundary 

Element methods. 
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Couette Shear Flows:  1-D shear flow between surfaces of 

like geometry (parallel plates or rotating cylinders). 

 

Steady Flow Between Parallel Plates: Combined  Couette 

and Poiseuille Flow. 

 
0

0

0

x y z

x

V

u v w

u

 

  


 

2ˆ
DV

p V
Dt

       0



zyx

wuvuuu
t

u
 

ˆ0 x yyp u    

 Tk
Dt

DT
c

p

2   
0x y z

T
uT vT wT

t


   

  

20
yyy

ukT   

 

 

 

 

 

(note:  inertia terms vanish identically and ρ is absent 

from equations) 

2 2 2

2 2 2

2

2 2 2

( ) ( ) ( )

( )

x y z

x y y z z x

x y z

y

u v w

v u w v u w

u v w

u
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Non-dimensionalize equations, but drop * 

 

Uuu /*    
01

0*

TT

TT
T




  

* /y y h  

 

0
x

u         (1) 
2

ˆ .yy x

h
u p B cons

U
         (2) 

 2

01

2

Pr

)(
yyy

u
TTk

U
T

Ec









     (3) 

B.C. y = 1 u = 1 T = 1 

  y = -1 u = 0 T = 0 

(1) is consistent with 1-D flow assumption.  Simple 

form of (2) and (3) allow for solution to be 

obtained by double integration. 

 
21 1

(1 ) (1 )
2 2

u y B y      y=y/h 

 

 

 

Solution depends on 
2

ˆ
x

h
B p

U
  : 

 B < 0    ˆ
xp  is opposite to U 

 B < -0.5  backflow occurs near lower wall 

 |B| >> 1   flow approaches parabolic profile 

Linear flow 

due to U 

Parabolic flow 

due to px Note:  linear 

superposition since 

0V V   
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Pressure gradient effect

2
2 3 4Pr Pr Pr1

(1 ) (1 ) ( ) (1 )
2 8 6 12

c c cE E B E B
T y y y y y         

 

 

 

 
 

Note: usually PrEc is quite small 

 
Substance  PrEc  dissipation 

Air   0.001 very small 

Water  0.02      
#

Pr

Brinkman

EBr
c




 

Crude oil  20  large      

 

 

 

  

Pure 

conduction

n 

T rises due to 

viscous dissipation 

Dominant term 

for B ∞ 
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Shear Stress 

1)  ˆ 0xp   i.e. pure Couette Flow 

𝐵 = −
ℎ2

𝜇𝑈
�̂�𝑥 = 0 

Using solution shown previously 

𝑢∗ =
1

2
(1 + 𝑦∗) +

1

2
𝐵(1 − 𝑦∗2) =

1

2
(1 + 𝑦∗) 

Calculating wall shear stress 
𝑢

𝑈
=
1

2
(1 +

𝑦

ℎ
) 

𝜕 (
𝑢
𝑈
)

𝜕 (
𝑦
ℎ
)
=
1

2
 

𝜏𝑤 = 𝜇
𝑑𝑢

𝑑𝑦
]
𝑦=−1

  =
𝜇𝑈

2ℎ
 

𝐶𝑓 =
𝜏𝑤
1
2
𝜌𝑈2

=

𝜇𝑈
2ℎ
1
2
𝜌𝑈2

=
𝜇

𝜌𝑈ℎ
 

Since 𝑅𝑒ℎ = 𝜌𝑈ℎ/𝜇 

𝐶𝑓 =
1

𝑅𝑒ℎ
 

 

P0 = CfRe = 1:  Better for non-accelerating flows 

since ρ is not in equations and P0 = pure constant 
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2)  U = 0 i.e.  pure Poiseuille Flow 

 

* *21
(1 )

2
u B y   *

* *

y
u By    y

h

BU
u

y 2
   uV

ave
  

 

Where  
max2

ˆ
x

uh
B p

U U


   

Dimensional form  
2 2

max

1
ˆ 1

2
x

h y
u p

h

u



 
   

   max

3

4
hudyuQ

h

h




 

 

ave
Vu

h

Q
u 

max
3

2

2  
Remember that for laminar pipe flow, 𝑉𝑎𝑣𝑒 =

1

2
𝑢𝑚𝑎𝑥 

 

h
u

h

u

h

BU

lower
h

BU

upper
h

BU
u

w

hyyw

3
2

max 












    

 

6Re
Re

66

2

1 0

2


hf

h

w

f
CPor

hu
U

C







 

Remember that for laminar pipe flow, 𝐶𝑓 =
16

𝑅𝑒𝐷
 and 𝜏𝑤 =

𝜇8𝑉𝑎𝑣𝑒

𝐷
, 

i.e. Except for numerical constants same as for circular 

pipe. 

2

.

.

u lam

u turb
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Rate of heat transfer at the walls: 

h

U
TT

h

k
Tkq

hyyw

4
)(

2

2

01



  + = upper, - = lower 

 

Heat transfer coefficient: 

 

 1 0

wq
T T

 
  

 

2
1

2 Br
k

h
Nu 


 

 

For Br >> 2, both upper & lower walls must be cooled to 

maintain T1 and T0 
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Conservation of Angular Momentum: moment form of 

momentum equation (not new conservation law!) 

 

0

sys

B H r V dm     angular momentum of system about inertial 

coordinate system 0 (extensive property) 

 

𝛽 =
𝑑𝐵

𝑑𝑀
= 𝑟 × 𝑉   (intensive property) 

 
𝑑𝐻0
𝑑𝑡⏟

Rate of
change of
angular

momentum

=
𝑑

𝑑𝑡
∫(𝑟 × 𝑉)𝜌 𝑑∀

𝐶𝑉

+ ∫(𝑟 × 𝑉)𝜌 𝑉𝑅 . 𝑛 𝑑𝐴

𝐶𝑆
 

 

             0M   vector sum all external moments applied 

on CV due to both FB and FS, including reaction forces 

 

For uniform flow across discrete inlet/outlet: 

 

∫ (𝑟 × 𝑉)𝜌 𝑉𝑅 . 𝑛 𝑑𝐴𝐶𝑆
= ∑(𝑟 × 𝑉)

𝑜𝑢𝑡
�̇�𝑜𝑢𝑡 − ∑(𝑟 × 𝑉)𝑖𝑛�̇�𝑖𝑛  

 
  R

CVCS

MrdgrdAM

momentforcebodymomentforcesurface

  


0  

 
RM   moment of reaction forces 
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Take inertial frame 0 as fixed to earth such that CS 

moving at Vs= -Rω 𝑖̂ 
𝑉 = 𝑉𝑅 + 𝑉𝑆 

𝑉2 = 𝑉0𝑖̂ − 𝑅𝜔𝑖̂ = (𝑉0 − 𝑅𝜔)𝑖̂     𝑟2 = 𝑅 𝑗̂ 

𝑉1 = 𝑉0�̂�       𝑟1 = 0 𝑗̂ 
 

0
pipe

Q
V

A
  

 

 

∑𝑀𝑧 = 0 = −𝑇0�̂� = (𝑟2 × 𝑉2)�̇�𝑜𝑢𝑡 − (𝑟1 × 𝑉1)�̇�𝑖𝑛 

 

out inm m Q    0
ˆ ˆ( )( )oT k R V R k Q      

 

0 0

2

V T

R QR



    interestingly, even for T0=0, ωmax=V0/R    

(limited by ratio such that large R small ; large V0 large ) 

Retarding torque due to 

bearing friction 
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Differential Equation of Conservation of Angular 

Momentum: 

 

Apply CV form for fixed CV: 

 

z = angular acceleration 

I  = moment of inertia 

2 2 2 2
z

dx dx dy dy
I a dy b dy c dx d dx      

 z xy yxI dxdy     

Since 
3 3 2 2

12 12
I dxdy dydx dxdy dx dy

 
           

2 2

12
z xy yxdx dy


        

0, 0
lim

dx dy  yxxy
  , similarly 

zxxz
  , 

zyyz
   

i.e  
jiij

   stress tensor is symmetric (stresses 

themselves cause no rotation) 
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Boundary Conditions for Viscous-Flow Problem 

 

The GDE to be discussed next constitute an IBVP for 

a system of 2nd order nonlinear PDE, which require 

IC and BC for their solution, depending on physical 

problem and appropriate approximations. 

 

 Types of Boundaries: 

 

1. Solid Surface 

2. Interface 

3. Inlet/exit/outer 
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1. Solid Surface 

 

a. Liquid 

 

ℓ = mean free path << fluid motion; therefore, 

maroscopic view is “no slip” condition, i.e. no 

relative motion or temperature difference between 

liquid and solid. 

 

liquid solidV V   
solidliquid

TT   

 

Exception is for contact line for which analysis is 

similar to that for gas. 

 

b. Gas 

 

Smooth wall    

 

 

Rough wall    

 

w

w

dy

du
lu   

Specular reflection 

Conservation  of 

tangential momentum 

uw=0=fluid velocity at 

wall 

Diffuse reflection.  

Lack of reflected 

tangential momentum 

balanced by uw 
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w

w

dy

du
    

a
l





3
2

   low density limit 

 








w

w

a
u

2

3
   

a
UMa   21

2

w
fC

U




  

 

fw
CMaUu 75./   

 

High Re:  Cf  ~ 0.005 

    Say Ma ~ 20 

 

Low Re:   Cf  ~ .6Rex
-1/2  Rex=Ux/υ 

     

2

1

Re

4.

x

w
Ma

U

u
  

 

Significant slip possible at low Re, high Ma:  

“Hypersonic LE Problem” 

 

Similar for T: 

 

High Re:  Tgas = Tw 

 

Low Re    
.87

gas w

f

r w

T T
MaC

T T




   air 

 
= driving ∆T 

01.0
U

u
w

 

Ref. T 
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Where  


22 
hf

CC

 
)(

wrp

w

TTUC

q


 

 
 

2.  Idealized gas/liquid interface (free surface problems 

since interface is unknown and part of the solution, but 

effect gas on liquid idealized). 

 

Kinematic FSBC: free surface is stream surface 

 

 1
2 2 2

( , )

/ ( , , 1) / 1x y x y

F x y z surface function

n F F



   

  

        

 

 

     

 

 

 

 

 

Ch = Stanton number, i.e. wall 

heat transfer coefficient 

Reynolds Analogy 

0

1
0

DF F
V F

Dt t

F
V n

F t


   




  

 



ME:5160  Chapters 3 & 4 

Professor Fred Stern     Fall 2020  76 

 

Dynamic FSBC: stress continuous across free surface 

(similarly for mass and heat flux) 

 
*

ij j ij j ijn n p     

 

 
 

(vector whose components are stress in direction of coordinate axes on surface with normal nj) 

 

)(Re
,,

1

ijjiijij
UUp    

 

1

, , 2

* Re ( )ij ij i j j i fluid
p U U        eg 

ija
p   for air if 

neglecting μair 

 

 1

SN tNp We K K
   

ˆ
ˆ

ˆ
ˆ

S
SN

t
tN

e
K n

s

e
K n

t


 




 


 

 
NumberWeberLUWe   /2  

 

11 1 12 2 13 3 1(2) ( )x an n n p p n         

21 1 22 2 23 3 2(3) ( )y an n n p p n         

31 1 32 2 33 3 3(4) ( )z an n n p p n         

 

Fluid 1 stress Fluid 2 stress Surface 

tension pres. 

Atmospheric pressure 

Surface tension 

Note: ˆ
Se  and t̂e  normal to n = ˆ

ne  

Curvature F for two mutually perp. directions. 
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(5) 0 x y zV U V W incompressible flow      

 
Many approximations, eg, inviscid approximation: 

 

 0ap p   

 small slope: ζx ~ ζy ~ 0 

 small normal velocity gradient:  Wx ~ Wy ~ Wz = 0 

 

 0),( 



VU

z
  

yxz
VUW    or  0

z
W  

 

 p = 0 or  p̂ gz  p̂ = piezometric pres. 

 

3)  Inlet/exit/outer 

 

 a) inlet: V, p, T  specified 

 b) outer: V, p, T specified 

  

c) exit: depends on the problem, but often use 0
XX

U , 

(i.e. zero stream wise diffusion for external 

flow and periodic for fully developed 

internal flow). 

1+3+1=5 conditions for 5 unknowns = (V, p, ζ)  

The first 4 conditions nonlinear 

 

-Also need conditions for turbulence variables 

eg. constant Temp., 

uniform stream: 

V = U î , p = 0 , T = Ti,o 
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Interface Velocity Condition 

 

 Just as with solid surface, there can be no relative 

velocity across interface (i.e. exact condition for 

liquid/liquid and gas/gas or gas/liquid non-mixing fluids). 

 

1 2V V  

1 2n nV V  required by KFSBC 

1 2

1 F
V n V n

F t


    

 
 

 

Tangential should also match, but usually due to 

different approximations used in fluid 1 or 2, (eg fluid 1 

liquid and fluid 2 gas do not).  Often, in fact, motions in 

gas are neglected and therefore V is not continuous. 

  

Also liquid/liquid interfaces are not stable for large 

Re and one must consider “turbulent interface”. 
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Vorticity Theorems 

 

 The incompressible flow momentum equations focus 

attention on V and p and explain the flow pattern in terms 

of inertia, pressure, gravity, and viscous forces.  

Alternatively, one can focus attention on ω and explain 

the flow pattern in terms of the rate of change, deforming, 

and diffusion of ω by way of the vorticity equation.  As 

will be shown, the existence of ω generally indicates the 

viscous effects are important since fluid particles can only 

be set into rotation by viscous forces.  Thus, the 

importance of this topic is to demonstrate that under most 

circumstances, an inviscid flow can also be considered 

irrotational.   

 

1.  Vorticity Kinematics 

 

 
ˆˆ ˆ( ) ( ) ( )y z z x x yV w v i u w j v u k         

 

 
j jk

i ijk

k j k

u uu

x x x
 

  
       

  

123 321 231

213 321 132

1

1

0ijk

alternating tensor

otherwise

  

  



  

   

  

 = 2  the angular velocity of the fluid element 

 

 (i, j, k cyclic)
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A quantity intimately tied with vorticity is the circulation: 

 

  

V dx     

 

 

Stokes Theorem: 

 

 
A

a dx a dA      

 

 
A A

V dx V dA ndA           

 

 Which shows that if ω =0 (i.e., if the flow is 

irrotational, then Γ = 0 also. 

 

Vortex line = lines which are everywhere tangent to the 

vorticity vector. 
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Next, we shall see that vorticity and vortex lines must 

obey certain properties known as the Helmholtz vorticity 

theorems, which have great physical significance.   

 

The first is the result of its very definition: 

 

( ) 0

V

V





 

     
 

 

i.e. the vorticity is divergence-free, which means that 

there can be no sources or sinks of vorticity within the 

fluid itself. 

 

Helmholtz Theorem #1:  a vortex line cannot end in the 

fluid.  It must form a closed path (smoke ring), end at a 

boundary, solid or free surface, or go to infinity. 

          

   
 

 

The second follows from the first and using the 

divergence theorem: 

 
0

A

d n dA 


       

Vector identity 

Propeller vortex is 

known to drift up 

towards the free surface 
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Application to a vortex tube results in the following 

1 2

1 2

0
A A

n dA n dA    

 

   

Or  Γ1= Γ2 

 

Helmholtz Theorem #2: 

 

The circulation around a given vortex line (i.e., the 

strength of the vortex tube) is constant along its length. 

 

This result can be put in the form of a simple one-

dimensional incompressible continuity equation.  Define 

ω1 and ω2 as the average vorticity across A1 and A2, 

respectively 

ω1A1 = ω2A2 

 

which relates the vorticity strength to the cross sectional 

area changes of the tube. 

 

2.  Vortex dynamics 

 

 Consider the substantial derivative of the circulation 

assuming incompressible flow and conservative body 

forces 

 

Minus sign due to 

outward normal 
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D D
V dx

Dt Dt

DV D
dx V dx

Dt Dt


 

   



 
 

 

From the N-S equations we have 

 

21DV p
f V

Dt


 


     

  2p
F V


      

 

Also, 
D Dx

dx d dV
Dt Dt

   

 

  2/

1
( )

2

D
F p d x V d x V dV

Dt
dp

d V VdF

 




             

 

  



 

2 21

2

dp
dF dV V d x



 
       

 
   

 

 

2D
V dx dx

Dt
  


         

 

        2

0

V V V



    


 

Define Ff   for 

the gravitational body 

force F=ρgz. 

=0 since integration is around a closed 

contour and F,p, & V are single valued! 
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Implication:  The circulation around a material loop of 

particles changes only if the net viscous force on those 

particles gives a nonzero integral. 

 

If 0   or 0  (i.e., inviscid or irrotational flow, 

respectively) then  

 

0


Dt

D
     

 

  

Kelvins Circulation Theorem:  for an ideal fluid (i.e. 

inviscid, incompressible, and irrotational) acted upon by 

conservative forces (e.g., gravity) the circulation is 

constant about any closed material contour moving with 

the fluid, which leads to: 

 

Helmholtz Theorem #3:  No fluid particle can have 

rotation if it did not originally rotate.  Or, equivalently, in 

the absence of rotational forces, a fluid that is initially 

irrotational remains irrotational.  In general, we can 

conclude that vortices are preserved as time passes.  Only 

through the action of viscosity can they decay or 

disappear.   

 Kelvins Circulation Theorem and Helmholtz 

Theorem #3 are very important in the study of inviscid 

flow.  The important conclusion is reached that a fluid 

The circulation of a 

material loop never 

changes 
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that is initially irrotational remains irrotational, which is 

the justification for ideal-flow theory. 

 In a real viscous fluid, vorticity is generated by 

viscous forces.  Viscous forces are large near solid 

surfaces as a result of the no-slip condition.  On the 

surface there is a direct relationship between the viscous 

shear stress and the vorticity.  

 

Consider a 1-D flow near a wall: 

  

 

 

 

 

 

 

 

12 12

22 22

32 32

2 0

0

u v u

y x y

v

y

w v

y z

   

  

  

   
    

   


  



  
    

  

 

 

Which shows that  

dy

u
x


           0

zy
  

The viscous stresses are given by:  

ij jn  where ij ij   

 

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

x

y

z

n n n

n n n

n n n

   

   

   

  

  

  
 

NOTE: the only component of 

ω is ωz.  Actually, this is a 

general result in that it can be 

shown that ωsurface is 

perpendicular to the limiting 

streamline. 
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However from the definition vorticity we also see that 

 

x z

u

y
  


  

  

 

i.e., the wall vorticity is directly proportional to the wall 

shear stress.  This analysis can be extended for general 3D 

flow. 

 

ij j ij jn n    at a fixed solid wall 

 

True since at a wall with coordinate x2, 
1 3

0
x x

 
 

 
 and 

from continuity 
2

0
v

x





 

Once vorticity is generated, its subsequent behavior is 

governed by the vorticity equation. 

 

N-S    2/
V

V V p V
t

 


     


   neglect f  

 

Or    21
/

2

V
V V V p V

t
  

  
        

  
 

 

The vorticity equation is obtained by taking the curl of 

this equation.  (Note   0   ). 

Rotation tensor 



ME:5160  Chapters 3 & 4 

Professor Fred Stern     Fall 2020  88 

 

  2V
t


  


   

  

     ( ) ( ) ( ) ( )V V V V            

 
Therefore, the transport Eq. for ω is 

  2( )

D

Dt

V V
t




   


     

   

2

x y zu v w V
t x y z x y z


     

         
          

         
 

 

2x x x x
x y z x

Stretching
turning

u u u
u v w

t x y z x y z

   
    

      
       

        

2y y y y

x y z y

v v v
u v w

t x y z x y z

   
    

      
       

        

2z z z z
x y z z

w w w
u v w

t x y z x y z

   
    

      
       

        

 

Note:   (1) Equation does not involve p explicitly 

  (2) for 2-D flow ( ) 0V    since ω is perp. to V  

   and there can be no deformation of ω, ie  

   
2D

Dt


    

 

Rate of change of ω     =    

Rate of viscous 

diffusion of ω 
Rate of 

deforming vortex 

lines 



ME:5160  Chapters 3 & 4 

Professor Fred Stern     Fall 2020  89 

 

In order to determine the pressure field in terms of the 

vorticity, the divergence of the N-S equation is taken. 

 

  2/
V

V V p V
t

 
 

         
 

 

 2 ( / )p V V       Poisson Eq. for p 

 

 2 21

2
V V V V             

does not depend explicitly on ν 

 

Derivation of pressure Poisson equation: 

 

Three vector identities to be used: 

 (1)    
1

2
      V V V V V V  

 (2)             a b b a a b  

 (3)    2     a a a  

 

Pressure Poisson equation in vector form: 

  2 p



 
    

 
V V  

     
1

2

 
       

 
V V V V  

     21

2
     V V V ω
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       21

2
         V V ω V V ω  

      21

2
         V V ω ω V V

 

   2 21

2
          V V ω ω V V V  

   

   2 21

2
       V V V V ω ω  

Pressure Poisson equation in tensor form: 

  2 2 21

2

p



 
         

 
V V V V ω ω  

      
 

   
221

2

k k

j j k k i i

i i j j

u e
u e u e u e

x x x x


         
    

V V
 

  
221

2

k k n
j k jk i ik ijk i lmn l

i i j j j m

u u u
u u u e e

x x x x x x
   

     
                

 

 
 

 
2 2

1

2

j j i k n
i ijk lmn i l

i i j j j m

u u u u u
u e e

x x x x x x
 

    
            

 

  
2

1

2

i k n
j j i ijk lmn il

i i j j j m

u u u
u u u

x x x x x x
  
      

                
 

  
2

1
2

2

j i k n
j i jm kn jn km

i i j j j m

u u u u
u u

x x x x x x
   

    
     

      
 

 
2

j i k n k n
j i jm kn jn km

i i j j j m j m

u u u u u u
u u

x x x x x x x x
   

      
     

        
 

 
2 2

j j j ji k k k
j i

i i i i j j j j j k

u u u uu u u u
u u

x x x x x x x x x x

       
                 

 

 
jk

j k

uu

x x
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3. Kinematic Decomposition of flow fields 

 

Previously, we discussed the decomposition of fluid 

motion into translation, rotation, and deformation.  This 

was done locally for a fluid element.  Now we shall see 

that a global decomposition is possible. 

 

Helmholtz’s Decomposition:  any continuous and finite 

vector field can be expressed as the sum of the gradient of 

a scalar function   plus the curl of a zero-divergence 

vector A.  The vector A vanishes identically if the original 

vector field is irrotational.   

V V V
 

   

Where    
0

V

V





 


  

 

 

 

  V


  

 

If  0V V V
 

     

Then 
2 0    The GDE for  is the Laplace Eq. 

And  V A

   Since      0 A  

 

2 ( )

V A

A A


  

   
 

The irrotational part of 

the velocity field can be 

expressed as the gradient 

of a scalar 

Again, by vector identity 
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i.e   A2  

The solution of this equation is   d
R

A


4

1
 

Thus 3

1

4

R
V d

R

 




    

Which is known as the Biot-Savart law. 

 

The Biot-Savart law can be used to compute the velocity 

field induced by a known vorticity field.  It has many 

useful applications, including in ideal flow theory (e.g., 

when applied to line vortices and vortex sheets it forms 

the basis of computing the velocity field in vortex-lattice 

and vortex-sheet lifting-surface methods). 

 

The important conclusion from the Helmholtz 

decomposition is that any incompressible flow can be 

thought of as the vector sum of rotational and irrotational 

components.  Thus, a solution for irrotational part V
  

represents at least part of an exact solution.  Under certain 

conditions, high Re flow about slender bodies with 

attached thin boundary layer and wake, V
  is small over 

much of the flow field such that V
  is a good 

approximation to V .  This is probably the strongest 

justification for ideal-flow theory. (incompressible, 

inviscid, and irrotational flow). 

Non-inertial Reference Frame 
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Thus far we have assumed use of an inertial reference 

frame (i.e. fixed with respect to the distant stars in 

deriving the CV and differential form of the momentum 

equation).  However, in many cases non-inertial reference 

frames are useful (e.g. rotational machinery, vehicle 

dynamics, geophysical applications, etc). 

 

 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙 

∑𝐹 = 𝑚𝑎𝑖 = 𝑚(
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙) 

∑𝐹 −𝑚𝑎𝑟𝑒𝑙 = 𝑚
𝐷𝑉

𝐷𝑡
 

 

𝑆𝑖 = 𝑅 + 𝑟  

𝑉𝑖 = 𝑉 +
𝑑𝑅

𝑑𝑡
+ Ω × 𝑟 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+
𝑑2𝑅

𝑑𝑡2
+
𝑑Ω

𝑑𝑡
× 𝑟 + 2Ω × V + Ω × (Ω × 𝑟) 

=
𝐷𝑉

𝐷𝑡
+ 𝑎𝑟𝑒𝑙  

i.e Newton’s law 

applies to non-

inertial frame with 

addition of known 

inertial force terms  

3rd term from fact that 

(x,y,z) rotating at Ω(t). 
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2

2

dt

Rd
  = acceleration (x,y,z) 

 

r
dt

d



  = angular acceleration (x,y,z) 

 

2 V   = Coriolis acceleration 

 

)( r  = centripetal acceleration (=-Ω2L, where L = normal  

      distance from r to axis of rotation Ω). 

 

Since R and Ω assumed known, although more 

complicated, we are simply adding known 

inhomogeneities to the momentum equation. 
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CV form of Momentum equation for non-inertial 

coordinates: 

rel R

CV CV CS

d
F a d V d V V n dA

dt
           

where RV  is the velocity of the CV relative to the non-

inertial coordinates (x,y,z). 

 

Differential form of momentum equation for non-inertial 

coordinates: 

           
  2

rel

body force

V
V V a p z V

t
   

 
             

where                                                                  

𝑎𝑟𝑒𝑙 = �̈� + 2Ω × V + Ω × (Ω × 𝑟) + Ω̇ × 𝑟 
 

All terms in rela  seldom act in unison (e.g. geophysical 

flows): 


R  ~ 0  earth not accelerating relative to distant stars 

 


  ~ 0  for earth 

 

 r  ~ 0   g nearly constant with latitude 

 
2 V     most important! 

𝑎𝑖 =
𝐷𝑉

𝐷𝑡
+ 𝑅0

−1(2Ω × V)    
0

0

,
tVV

V t
V L

   

2

0 0
0

0

#
V L V

R Rossby
V L

  
 

 if L is large, i.e., comparable to 

the order of magnitude of the 

earth radius, R0<1, then Coriolis 

term is larger than the inertia 

terms and is important.  
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Example of Non-inertial Coordinates: 

Geophysical fluids dynamics 

 

Atmosphere and oceans are naturally studied using non-

inertial coordinate system rotating with the earth.  Two 

primary forces are Coriolis force and buoyancy force due 

to density stratification ρ = ρ(T).  Both are studied using 

Boussinesq  approximations (ρ = constant, except 

  ˆT gk  term; and μ, k, Cp = constant) and thin layer on 

rotating surface assumption 








L

H

U

W
~ . 

 

Differences between atmosphere and oceans: lateral 

boundaries (continents) in oceans; currents in ocean (gulf  

and Kuroshio stream) along western boundaries; clouds 

and latent heat release in atmosphere due to moisture 

condensation; Vocean = 0.1~1 or 2 m/s and Vatmosphere
 10~20 

m/s 

 

H << L = 0 (radius of earth = 6371 km) 

Therefore, one can neglect curvature of earth and replace 

spherical coordinates by local Cartesian tangent plane 

coordinates. 
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Coriolis force = 2 V  

     =

wvu

kji

zyx


^^^

 

 

     =  






  cossinsincos2

^^^

ukujvwi  

 

     = 
^^^

cos2 kujfuifv    sin2f  

 

  f > 0 northern hemisphere 

  f < 0 southern hemisphere 

  f =   at poles 

  f = 0 at equator 

 

 

0 since w << v 

= planetary 

vorticity 

= 2 * vertical 

component Ω 

Person 

spins at 

Ω 

Person translates with inertial 

period 
f

T
i

2
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Equations of Motion 

0V   
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p, ρ = perturbation from hydrostatic condition 

 

Geostrophic Flow:  quasi-steady, large-scale motions in 

atmosphere  or ocean far from boundaries 

x

p
fv






0

1


   

y

p
fu






0

1


 

 

2

~ 0
DV U

Dt L

 
 
 

 ~ 0 ( )f V fU  U,L = horizontal scales 

 

Rossby number = 
fL

U
 

Atmosphere:  U ~ 10 m/s; f = 10-4 Hz; L ~ 1000 km;  

    and R0 = 0.1 

Ocean:   U ~ 0.1 m/s; f = 10-4 Hz; L ~ 1000 km;  

    and R0 = 0.01 

vertical component Ω negligible due 

to thin layer assumption, i.e.,  

magnitude of 2 cos u << other terms 
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Therefore, neglect 
DV

Dt
 and since there are no boundaries,  

neglect 
2V . 

 

Z momentum   
p

g
z




 


 baroclinic (i.e. p = p(T)) 

and can be used to eliminate p in above equations 

whereby (u,v) = f(T(z)), which is called thermal wind but 

not considered here. 

If we neglect ρ=ρ(T) effects, (u,v) = f(p) and can be 

determined from measured p(x,y).  Not valid near the 

equator (+ 3o) where f is small. 

 

 
0

1ˆ ˆ ˆ ˆ ˆ ˆp p p p
u i v j p i j i j

f y x x y

      
         

      
 

 

= 0 

 

i.e V is perpendicular to p   horizontal velocity is 

along (and not across) lines of constant horizontal 

pressure, which is reason isobars and stream lines 

coincide on a weather map! 
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Ekman Layer on Free Surface: effects of friction near  

       boundaries 

 

 Viscous layers: 

 

 Sudden acceleration flat plate: t yyu u  

        3.64 t   
 

 Oscillating flat plate: 
yyt

uu   

      6.5 /    
 

 Flat plate boundary layer:  

 

    4.9 /x U   
 

 

 

For Ekman layer viscous effects due to wind shear τ(x).  

Assume horizontal uniformity (i.e px = py = 0), which is 

justified for L ~ 100 km and H ~ 50 m.  However, can be 

included easily if assume p = p(z) such that geostropic 

solution is additive and combined solution recovers 

former for large depths 


z . 
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z

u   at z = 0 

 

  0
z

v   at z = 0 

 

  0),( vu   at z =-∞ 

 

Multiply v-equation by 1i  and add to u-equation: 

 
2

2

d V i f
V

dz 
  

V u i v

complex velocity

 

    z x i y   

 

 
(1 ) / (1 ) /i z i zV Ae Be      

 

 
2

f


    Ekman layer thickness 

 

 B = 0 for u(-∞), v(-∞) = 0 

 

 
dV

dz
   at z = 0  
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2

i
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 i.e.  
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F. Nansen (1902) observed drifting arctic ice drifted 20-

400 to the right of the wind, which he attributed to 

Coriolis acceleration.  His student Ekman (1905) derived 

the solution. 

 

Recall f < 0 in southern hemisphere, so the drift is to the 

left of τ. 
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Similar solution for impulsive wind: 

 
0)0,(,0,0,  zuzuzuuu

zzzt
  

 







 t
u

2
0
   

laminar solution: 
0

0 ( 6 / , 20 )windu V m s T C   0.6 m/s after one min., 2.3 m/s  

      after one hour  

 

turbulent t solution:(more realistic) 

u0=0.2 m/s after 1 hr (3 % vwind) 

 

 

 

For Ekman layer similar conditions θ = 400 N , 

 

Laminar solution u0 = 2.7 m/s at D = 45 cm, which are too 

high/low; however, using turbulent νt, u0 = 2 cm/s and D = 

100 m, which is more realistic. 


