The exam is closed book and closed notes.

The volume flow rate per unit width, \(q \), over a certain dam is a function of gravity \(g \) and the upstream depth \(H \) above dam crest. (a) Find the dimensionless parameters. (b) The flow rate per unit width is 5 \(\text{ft}^2/\text{s} \) and \(H = 15 \text{ in.} \) for a model test. Using similarity find the flow rate if \(H = 3 \text{ ft} \)? (1 \(\text{ft} = 12 \text{ in.} \))
Solution: Format (+3)

a)

\[q = f(g, h) \]
\[q \equiv L^2T^{-1}, g \equiv LT^{-2}, h \equiv L \]
\[k - r = 3 - 2 = 1 \]
\[\Pi_1 = g^a h^b q = (LT^{-2})^a (L)^b (L^2T^{-1}) = M^0L^0T^0 \]
\[L: a + b + 2 = 0 \]
\[T: -2a - 1 = 0 \]
\[\therefore a = -0.5, b = -1.5 \]
\[\Pi_1 = \frac{q}{g^{0.5}H^{1.5}} \] (4)

b)

\[\frac{q_m}{g_m^{0.5}H_m^{1.5}} = \frac{q}{g^{0.5}H^{1.5}} \]
\[q = q_m \left(\frac{g}{g_m} \right)^{0.5} \left(\frac{H}{H_m} \right)^{1.5} = 5 \frac{ft^2}{s} (1)^{0.5} \left(\frac{3 ft}{15/12 ft} \right)^{1.5} = 18.6 \frac{ft^2}{s} \] (3)