For the Venturi meter shown in Figure, the deflection of mercury in the differential gage is 14.3 in. Determine the flow rate \(Q \) of water through the meter. Assume no energy loss between \(A \) and \(B \). (Note: 1 ft = 12 in, \(\gamma = 64.2 \) lb/ft\(^3\) for water, \(\text{SG} = 13.6 \) for mercury, and \(g = 32.2 \) ft/s\(^2\))

Bernoulli’s Equation:

\[
\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2
\]
Solution: Format (+3)

Manometer

\[p_A + \left(z + \frac{14.3}{12} \right) \gamma - \frac{14.3}{12} (SG \cdot \gamma) - \left(z + \frac{30}{12} \right) \gamma = p_B \]

\[\therefore \Delta p = p_A - p_B = \left(\frac{30}{12} + \left(\frac{14.3}{12} - 1 \right) \cdot (13.6) \right) (64.2) = 1124.46 \text{ lb/ft}^2 \quad (+1) \]

Continuity equation

\[A_A V_A = A_B V_B \]

\[V_A = \left(\frac{A_B}{A_A} \right) V_B = \left(\frac{6}{12} \right)^2 V_B = 0.25V_B \quad (+1) \]

Bernoulli equation

\[\frac{p_A}{\gamma} + \frac{V_A^2}{2g} + z_A = \frac{p_B}{\gamma} + \frac{V_B^2}{2g} + z_B \]

\[\frac{p_A}{64.2} + \frac{(0.25V_B)^2}{(2)(32.2)} + z_A = \frac{p_B}{64.2} + \frac{V_B^2}{(2)(32.2)} + \left(z_A + \frac{30}{12} \right) \]

\[\therefore V_B = \sqrt{\frac{(2)(32.2) \left(\frac{p_A - p_B}{64.2} - \frac{30}{12} \right)}{1 - 0.25^2}} = 32.12 \text{ ft/s} \quad (+4) \]

\[\therefore Q = A_B V_B = \left(\frac{\pi (6/12)^2}{4} \right) (32.12) = 6.31 \text{ ft}^3 / \text{s} \quad (+1) \]