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Chapter 7: Boundary Layer Theory 
 
7.1. Introduction:   
 
       Boundary layer flows: External flows around streamlined bodies at 

high Re have viscous (shear and no-slip) effects confined close to 
the body surfaces and its wake, but are nearly inviscid far from the 
body. 

       Applications of BL theory: aerodynamics (airplanes, rockets,  
       projectiles), hydrodynamics (ships, submarines, torpedoes),  
       transportation (automobiles, trucks, cycles), wind engineering  
       (buildings, bridges, water towers), and ocean engineering (buoys,  
       breakwaters, cables).  
 
7.2 Flat-Plate Momentum Integral Analysis & Laminar approximate 
solution 
 
Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat 
plate fixed in a uniform stream of velocity ˆUi .   
 
 
 
 
 
 
 
 
 
 
Boundary-layer thickness arbitrarily defined by y = %99δ (where, %99δ is 
the value of y at u = 0.99U). Streamlines outside %99δ  will deflect an 
amount *δ (the displacement thickness). Thus the streamlines move 
outward from Hy =  at 0=x  to *δδ +=== HYy at 1xx = . 
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Conservation of mass: 

CS

V ndAρ •∫ =0= 0 0

H H
Udy udy

δ
ρ ρ

∗+
− +∫ ∫  

Assuming incompressible flow (constant density), this relation simplifies 
to 

( ) ( )∫ ∫ ∫ −+=−+==
Y Y Y

dyUuUYdyUuUudyUH
0 0 0  

Note: *δ+= HY , we get the definition of displacement thickness:     

                                     dy
U
uY

∫ 





 −= 0

* 1δ  

       *δ ( a function of x only) is an important measure of effect of BL on 
external flow. To see this more clearly, consider an alternate derivation 
based on an equivalent discharge/flow rate argument: 

 

∫∫ =
δδ

δ 0*

udyUdy
 

 
 

Flowrate between *δ and δ of inviscid flow=actual flowrate, i.e., 
inviscid flow rate about displacement body = equivalent viscous flow 
rate about actual body 

∫∫∫∫ 





 −=⇒=−

δδδδ

δ
0

*

000

1
*

dy
U
uudyUdyUdy    

w/o BL - displacement effect=actual discharge 

For 3D flow, in addition it must also be explicitly required that *δ is a 
stream surface of the inviscid flow continued from outside of the BL. 

δ* Lam=δ/3 

δ 

δ* Turb=δ/8 

Inviscid flow about δ* body 
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Conservation of x-momentum: 
( ) ( )

0 0

H Y

x
CS

F D uV ndA U Udy u udyρ ρ ρ= − = • = − +∑ ∫ ∫ ∫  

dyuHUDDrag Y
∫−== 0

22 ρρ = Fluid force on plate = - Plate 
force on CV (fluid) 

Again assuming constant density and using continuity: ∫=
Y

dy
U
uH

0  

dxdyuUdyuUD x
w

Y Y
∫∫ ∫ =−= 00

0

22 / τρ  

dy
U
u

U
u

U
D Y







 −== ∫ 102 θ

ρ
 

where, θ  is the momentum thickness (a function of x only), an 
important measure of the drag. 

dxC
xxxU

DC
x

fD ∫===
0

2
122 θ

ρ

( )
dx
dxC

dx
dC

U
C Df

w
f

θ

ρ

τ 2

2
1 2

==⇒=
 

  2
fC

dx
d

=
θ

                    dx
dUw
θρτ 2=  

  
 
 
 
 
 
 
 
 

 

Per unit span 

Special case 2D 
momentum integral 
equation for px = 0 
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Simple velocity profile approximations: 
 

)//2( 22 δδ yyUu −=  
 
u(0) = 0              no slip 
u(δ) = U             matching with outer flow 
uy(δ)=0  
 
Use velocity profile to get Cf(δ) and θ(δ) and then integrate momentum 
integral equation to get δ(Rex) 
 
δ* = δ/3  
θ = 2δ/15  
H= δ*/θ= 5/2 

)(2Re/46.1

Re/73.0/

Re/83.1/

/Re
Re/5.5/

30

15

);15/2(22
2/1

/2
/2

2/1

2/1

2/1*

2/1

2

2

LCC
x
x

Ux
x

U
dx

U
dxd

dx
d

dx
d

U
UC

U

fLD

x

x

x

x

f

w

==

=

=

=
=

=

=∴

===⇒

=

θ

δ

ν
δ

ρ
µδ

ρ
µδδ

δθ
ρ

δµ
δµτ

 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑈𝑈�
2
𝛿𝛿
−

2𝑦𝑦2

𝛿𝛿2
� �

𝑦𝑦=0
=

2𝑈𝑈
𝛿𝛿
𝜈𝜈 

 
 
 
 
 

10% error, cf. Blasius 
𝑅𝑅𝑒𝑒𝑥𝑥 = 𝑈𝑈𝑈𝑈/𝜈𝜈 
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7.3. Boundary layer approximations, equations and comments 
                
 
 
 
 
 
 
 
 
2D NS, ρ=constant, neglect g 
 
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈(𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦) 

𝑣𝑣𝑡𝑡 + 𝑢𝑢𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑦𝑦 = −
1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈(𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑦𝑦) 

 
Introduce non-dimensional variables that includes scales such that all 
variables are of O(1): 

ν
ρ

υ

/Re

Re

/
/

Re

/

2
0*

*

*

*

*

*

UL
U

ppp

U
v

Uuu
LtUt

L
yy

Lxx

=

−
=

=

=

=

=

=

 

 
 
 
 

𝑢𝑢 =  𝑣𝑣 =  0 

x 

y U, ρ,µ 

𝑅𝑅𝑒𝑒𝑥𝑥 = 𝑈𝑈𝑈𝑈/𝜈𝜈 

𝑣𝑣∗ =
𝜈𝜈
𝑈𝑈√𝑅𝑅𝑅𝑅 
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The NS equations become (drop *) 
 
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = −𝑝𝑝𝑥𝑥 +
1
𝑅𝑅𝑅𝑅

𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦 

1
𝑅𝑅𝑅𝑅

�𝑣𝑣𝑡𝑡 + 𝑢𝑢𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑦𝑦� = −𝑝𝑝𝑦𝑦 +
1
𝑅𝑅𝑒𝑒2

𝑣𝑣𝑥𝑥𝑥𝑥 +
1
𝑅𝑅𝑅𝑅

𝑣𝑣𝑦𝑦𝑦𝑦 

 
For large Re (BL assumptions) the underlined terms drop out and the BL 
equations are obtained.  
 
Therefore, y-momentum equation reduces to 
 

0

. . ( , )
( )

y

x t x

p
i e p p x t

p U UUρ

=

=
⇒ = − +

 

 
2D BL equations: 
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 
𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = (𝑈𝑈𝑡𝑡 + 𝑈𝑈𝑈𝑈𝑥𝑥) + 𝜈𝜈𝑢𝑢𝑦𝑦𝑦𝑦 
 
Note:  
 

(1) U(x,t), p(x,t) impressed on BL by the external flow. 

(2) 02

2
=

∂

∂

x
: i.e. longitudinal (or stream-wise) diffusion is 

neglected. 
(3) Due to (2), the equations are parabolic in x. Physically, this 

means all downstream influences are lost other than that 
contained in external flow. A marching solution is possible. 

 
 
 

From Euler/Bernoulli equation for 
external flow 
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(4) Boundary conditions 
 

 
 
 
 
 
 
 
 
          
           
           
          No slip: 𝑢𝑢(𝑥𝑥, 0, 𝑡𝑡) = 𝑣𝑣(𝑥𝑥, 0, 𝑡𝑡) = 0 
          Initial condition:  ( )0,, yxu  known  
          Inlet condition: ( )tyxu ,,0 given at 0x  
          Matching with outer flow: ( ) ( ), , ,u x t U x t∞ =  
           

(5) When applying the boundary layer equations one must keep in 
mind the restrictions imposed on them due to the basic BL 
assumptions 

          → not applicable for thick BL or separated flows (although  
         they can be used to estimate occurrence of separation). 

 
(6) Curvilinear coordinates 

 

 

y 

x 

X0 

inlet 

Solution by 
marching 

matching 

No slip 

δ 
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         Although BL equations have been written in Cartesian    
         Coordinates, they apply to curved surfaces provided δ << R and 
         x, y are curvilinear coordinates measured along and normal to  
         the surface, respectively. In such a system we would find under  
         the BL assumptions 

               

2

y
up
R

ρ
=  

         Assume u is a linear function of y:  u Uy δ=         
 

              

2 2

2

2

( ) (0)
3

dp U y
dy R

Up p
R

ρ
δ

ρ δδ

=

− ∝
 

         Or 
 

         2 ;
3

p
U R

δ
ρ
∆

∝  therefore, we require δ << R 

 
(7) Practical use of the BL theory 
         For a given body geometry: 

(a) Inviscid theory gives p(x) → integration gives L and D = 0 
(b) BL theory gives → δ*(x), τw(x), θ(x),etc. and predicts 

separation if any 
(c) If separation present then no further information → must 

use inviscid models, BL equation in inverse mode, or NS 
equation. 

(d) If separation is absent, integration of τw(x) → frictional 
resistance and body + δ* , inviscid theory gives → p(x) for 
drag + δ*, can go back to (2) for more accurate BL 
calculation including viscous – inviscid interaction 
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(8) Separation and shear stress 
         At the wall, 𝑢𝑢 = 𝑣𝑣 = 0 → 1

yy xu p
µ

=  

         1st derivative u gives τw → 
wyw uµτ =  

 
         τw = 0 separation 
 
         2nd derivative u depends on xp   

 

 
 
 
 
 
 
 
 

Inflection point 
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7.4. Laminar Boundary Layer (𝑹𝑹𝒆𝒆𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟓𝟓 × 𝟏𝟏𝟏𝟏𝟓𝟓 − 𝟑𝟑 × 𝟏𝟏𝟏𝟏𝟔𝟔) - 
Similarity solutions (2D, steady, incompressible): method of reducing 
PDE to ODE by appropriate similarity transformation; also, as a result of 
transformation at least one coordinate lacks origin such that the solution 
collapses to same form at all length or time scales 

𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 
𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = 𝑈𝑈𝑈𝑈𝑥𝑥 + 𝜈𝜈𝑢𝑢𝑦𝑦𝑦𝑦 

 
BCs: 𝑢𝑢(𝑥𝑥, 0) = 𝑣𝑣(𝑥𝑥, 0) = 0 

         ( ) ( )xUxu =∞,       
          + inlet condition 
 

For Similarity  
( )

( ) ( )







=

xg
yF

xU
yxu ,

  expect ( )xg related to ( )xδ  

Or in terms of stream function ψ : yu ψ=  xv ψ−=  

For similarity    ( ) ( ) ( )ηψ fxgxU=         ( )xgy=η      

 
'Ufu y ==ψ    xv ψ−= '( )x x xU gf Ug f Ug fη= − + −  

BC:  
( ) 0)0(0)0()(00, =′⇒=′⇒= ffxUxu  
( )

( )
0)0(

0)0()()()()(
0)0(0)()(

)0()()()0()()(00,

=⇒
=+⇒

=′××−
+⇒=

f
fxgxUxgxU

fxgxU
fxgxUfxgxUxv

xx

x

xx

 

( ) ( ) ( ) 1)()()(, =∞′⇒=∞′⇒=∞ fxUfxUxUxu  
Write boundary layer equations in terms of ψ  

yyyxyyxyxy UU νψψψψψ +=−  
 

𝑣𝑣 

𝑣𝑣 

 𝜈𝜈 
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Substitute 
gUfyy

''=ψ  
2''' gUfyyy =ψ  

ggUffU xxxy /''' ηψ −=  
Assemble them together: 
 

( ) ( )( )

( )2'''

'''''''

gfUUU

gUffUgfUggfU
g
gUffUUf

x

xxx
x

x

ν

ηη

+=

−+−







−

 

'''
2

''2''2' f
g
UUUffggUffUUfUU xxxx ν+=−−

 

( ) '''
2

''2' f
g
UUUffUg

g
UfUU xxx ν+=−  

 

( ) ( ) 01 2'
2

''''' =−++ fUgffUggf xx νν  

 
 
Where for similarity C1 and C2 are constant or function η only 

 

• i.e. for a chosen pair of C1 and C2 ( )xU , ( )xg  can be found        
(Potential flow is NOT known a priori) 

• Then solution of ( ) 01 2'
2

''
1

''' =−++ fCffCf  gives ( )ηf 

( )yxu ,  , ( )'' 0
w

w

Ufu
y g

µ
τ µ ∂

= =
∂

, δ, δ*,θ, H, Cf, CD 

 

C1 C2 

 𝜈𝜈 

 𝜈𝜈 

 

  

𝜈𝜈 

𝜈𝜈 𝜈𝜈 
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The Blasius Solution for Flat-Plate Flow 

          U=constant 0=xU  02 =C  

          Then xggUC
ν

=1  

         ( )
U
Cg

dx
d ν12 2

=               ( ) [ ] 21
12 UxCxg ν=  

     Let 11 =C , then ( )
U

xxg ν2
=              x

Uy
ν

η
2

=  

 
02/1 ''''' =+ fff  

( ) ( ) ,000 ' == ff ( ) 1' =∞f  
 

Solutions by series technique or numerical 
 

 
 

99.0=
U
u

 when 5.3=η     
xx Re

5
=

δ
   

ϑ
Ux

x =Re  

( )
U

xdfdy
U
u ϑηδ 211 0

'
0

* ∫∫
∞∞ −=






 −=            

xx Re
7208.1*

=
δ

  

 

( ) ηϑθ d
U

xffdy
U
u

U
u 211 '

0
'

0 ∫∫
∞∞ −=






 −=        

xx Re
664.0

=
θ

 

Blasius equations 
for Flat Plate 
Boundary Layer 

 
 

 
  

 

𝜈𝜈 
𝜈𝜈 

2𝜈𝜈𝜈𝜈 
2𝜈𝜈𝜈𝜈 

 

 

 

2𝜈𝜈𝜈𝜈 

2𝜈𝜈𝜈𝜈 

𝜈𝜈 

𝜈𝜈 
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So,  59.2
*

== H
θ
δ

 

( )
Ux

Uf
y
u

w
w ν

µµτ
2

0''

=
∂
∂

=            xU
C

x

w
f

θ

ρ

τ
===

Re
664.0

2
1 2  

L

L

fD L
dxC

LU

DC
Re
328.1

2
1 02

=== ∫
ρ

 ;      
ν

UL
L =Re ; 

 
               
𝑣𝑣
𝑈𝑈

= 𝜂𝜂𝑓𝑓′−𝑓𝑓
�2𝑅𝑅𝑒𝑒𝑥𝑥

≪ 1            for    1Re >>x  

 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

𝜈𝜈 

2𝜈𝜈𝜈𝜈 
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 CD ReL 
Oseen 3-226 (3rd 

edition,vicous 
flows) 

<1 

Blasius  100<Re<Retr~3
×106 

 
LE Higher 

order      
correction      

  

LLDC Re/3.2Re/328.1 +=  
 
 
 
 
Rex  small therefore local breakdown of BL approximation 

Similar breakdown occurs at Trailing edge. 
From triple – deck theory the correction is 
+2.661/ 8/7ReL  
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Falkner-Skan Wedge Flows 
( ) 01 2'

2
''

1
''' =−++ fCffCf                

( ) ( ) ,000 ' == ff     ( ) 1' =∞f              

   ( )xUggC
ν

=1      xUgC
ν

2

2 =      (Blasius Solution: C2=0, C1=1) 

 

Consider   ( ) xxx UgUggUg 22 2 +=  

                               xxx UgUgUgg 2222 −+=  

                               ( ) xx UgUgg 22 −=  

                                   212 CC νν −=  

Hence    ( ) ( )21
2 2 CCUg x −=ν ,       xUgC

ν

2

2 =  

     Choose C1=1 and C2 arbitrary=C,  
 
Integrate                   ( )xCUg −= 22 ν  

Combine                    xC
C

U
U x 1

2 −
=  

 

kx
C

CU +
−

= ln
2

ln  

 

Then                               ( ) ( )CCkxxU −= 2
 

( ) ( ) C
C

x
k

Cxg −
−−

= 2
12ν

 

 
 
 

( )ηff =  
( )xgy=η  

( )η'fUu =  

Similarity 
form of BL 
eq. 

 

νxUgC 2=  

  

  

 
 

 

 

 

𝜈𝜈 𝜈𝜈 

2𝜈𝜈 𝜈𝜈 

𝜈𝜈 

𝜈𝜈 

𝜈𝜈 

𝜈𝜈 

𝜈𝜈 
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Change constants 
( ) mkxxU =  

x
Umy

g
y

ϑ
η

2
1+

==  

          ( ) 01 2'''''' =−++ ffff β ,    1
2

+
=

m
mβ , β

β
−

=
2

m  

( ) ( ) 000 ' == ff                    ( ) 1' =∞f  
Solutions for 0.119884.0 ≤≤− β  
 
            Separation ( 0=wτ ) 
Solutions show many commonly observed characteristics of BL flow: 

• The parameter β  is a measure of the pressure gradient, dxdp . 
For 0>β , 0<dxdp and the pressure gradient is favorable. For 

0<β , the 0>dxdp  and the pressure gradient is adverse. 
• Negative β solutions drop away from Blasius profiles as separation 

approached 
• Positive β solutions squeeze closer to wall due to flow acceleration 

• Accelerated flow: maxτ near wall 

• Decelerated flow: maxτ moves toward 2δ  
 

 

 𝜈𝜈 
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7.5. Momentum Integral Equation 
 
Historically similarity and other AFD methods used for idealized flows 
and momentum integral methods for practical applications, including 
pressure gradients. 
 
Momentum integral equation, which is valid for both laminar and 
turbulent flow: 

( )( )dyUu
y
∫
∞

=
−+

0
continuityequation  momentum of form BL  

( )
dx
dU

U
H

dx
dC

U
f

w θθ
ρ
τ

++== 2
2
1

2  

 
 

∫

∫







 −=

=







 −=

δ

δ

δ

θ
δ

θ

0

*

*
0

1

;

;1

dy
U
u

H

dy
U
u

U
u

 

Momentum: 
y

p
x

vuuu yx ∂
∂

+







∂
∂

−=+
τ

ρρ
1

 

The pressure gradient is evaluated form the outer potential flow using 
Bernoulli equation 

21 constant
2

p Uρ+ =  

02
2
1

=+ xx UUp ρ  

xx UUp ρ=−  

For flat plate equation 0=
dx
dU
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(𝑢𝑢 − 𝑈𝑈) �𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦��������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑦𝑦 − 𝑈𝑈𝑢𝑢𝑥𝑥 − 𝑈𝑈𝑣𝑣𝑦𝑦 

𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 − 𝑈𝑈𝑈𝑈𝑥𝑥 −
1
𝜌𝜌
𝜏𝜏𝑦𝑦�����������������

0

+ 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑣𝑣𝑦𝑦 − 𝑈𝑈𝑢𝑢𝑥𝑥 + 𝑈𝑈𝑣𝑣𝑦𝑦�����������������
0

= 0 

−
1
𝜌𝜌
𝜏𝜏𝑦𝑦 = −2𝑢𝑢𝑢𝑢𝑥𝑥 − 𝑣𝑣𝑢𝑢𝑦𝑦 + 𝑈𝑈𝑈𝑈𝑥𝑥 − 𝑢𝑢𝑣𝑣𝑦𝑦 + 𝑈𝑈𝑢𝑢𝑥𝑥 + 𝑈𝑈𝑣𝑣𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢2) + (𝑈𝑈 − 𝑢𝑢)𝑈𝑈𝑥𝑥 +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑣𝑣 + 𝑣𝑣𝑣𝑣) 

( ) ( ) ( )∫ ∫∫
∞ ∞

∞
∞

∞ −+−+−
∂
∂

=−−=−
0 0

0
0

/)(1 vuvUdyuUUdyuUu
x

dy xwy ρτττ
ρ

 

( )

*2
00

2

2

1

δθθ

ρ
τ

xxx

x
w

UUUU

dyuUUdy
U
u

U
uU

x

++

=



 −+






 −

∂
∂

= ∫∫
∞∞

 

 

( )
dx
dU

Udx
dC f 12

2
*δθθ

++=  

( )
dx
dU

U
H

dx
dC f θθ

++= 2
2

, 
θ
δ *

=H  

( ) xxf
w U

U
HC

U
θθ

ρ
τ

++== 2
2
1

2
 

 
Historically two approaches for solving the momentum integral equation 
for specified potential flow U(x): 
 

1. Guessed Profiles 
2. Empirical Correlations 

 
Best approach is to use empirical correlations to get integral parameters 
(δ, δ*,θ, H, Cf, CD) after which use these to get velocity profile u/U 

0 0 

 𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣 
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Thwaites Method 

Multiply momentum integral equation by ν
θU

 

( )H
dx
dU

dx
dU

U
w ++= 2

2

ν
θθ

ν
θ

µ
θτ

 

 
The equation is dimensionless and, LHS and H can be correlated with 

pressure gradient parameter 
dx
dU

ν
θλ

2

= as shear and shape-factor 

correlations 
 

( )

( )

0.62

5
*

0

( 0.09)

/ (0.25 )

w

i
i

i

S
U

H H a

τ θ λ λ
µ

δ θ λ λ
=

= = +

= = = −∑
 

 
ai = (2, 4.14, -83.5, 854, -3337, 4576) 
 
Note 
 









=

ϑ
θθ

ν
θ 2

2
1

dx
dU

dx
dU

 

 
Substitute above into momentum integral equation 
 

( )H
dx
dUS ++








= 2

2
1)(

2

λ
ν
θλ  

( ) ( )[ ] ( )λλλ
λ

FHS
dx

Ud
U x =+−= 22

/
 

 
( ) 0.45 6F λ λ= −  based on AFD and EFD 

 

 

  

 

 

𝜈𝜈 

𝜈𝜈 𝜈𝜈 

𝜈𝜈 

𝜈𝜈 
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Define ν
θ 2

=z so that 
dx
dUz=λ  

dx
dUz

dx
dzU 645.0645.0 −=−= λ  

45.06 =+
dx
dUz

dx
dzU  

i.e. ( ) 45.01 6
5 =zU

dx
d

U
 

CdxUzU
x

+= ∫
0

56 45.0             

 ∫+=
x

dxU
U 0

5
6

2
0

2 45.0 νθθ  

0)0(0 ==xθ  and U(x) known from potential flow solution 
 
Complete solution: 
 

( )
dx
dU

ν
θθλλ

2

==  

( )λ
µ

θτ
S

U
w =  

( )λθδ H=*  
 
Accuracy: mild px ± 5% and strong adverse px (τw near 0) ± 15% 
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i. Pohlhausen Velocity Profile: 

( ) 432 ηηηηη dcbaf
U
u

+++==  with 
δ

η y
=  

a, b, c, d determined from boundary conditions 

1) 0=y  u = 0, xyy UUu
ν

−=  

2) δ=y  Uu = , 0=yu , 0=yyu  
No slip is automatically satisfied. 
 

( )

( ) ( )3

43

1
6

22

ηηη

ηηηη

−=

+−=

G

F
 ( ) ( )ηη GF

U
u

Λ+= , 1212 ≤Λ≤−  

U
p

dx
dU

x µ
δ

ν
δ 22

−==Λ   

pressure gradient parameter related to  
 

( ) Λ








 Λ
+

Λ
−=Λ=

9072945315
37 2

λλ  

 
Profiles are fairly realistic, except near separation.  In guessed profile 
methods u/U directly used to solve momentum integral equation 
numerically, but accuracy not as good as empirical correlation methods; 
therefore, use Thwaites method to get λ, etc., and then use λ to get Λ and 
plot u/U. 
 
 
 
 
 
 

(experiment: separationΛ  = -5) 

separation 
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ii. Howarth linearly decelerating flow (example of exact 
solution of steady state 2D boundary layer)  

 

 
 
Howarth proposed a linearly decelerating external velocity distribution  







 −=

L
xUxU 1)( 0  as a theoretical model for laminar boundary layer study. 

Use Thwaites’s method to compute:  
a) Xsep 

b) 





 = 1.0

L
xC f  

Note Ux = -U0/L 
 
Solution 












−






 −=






 −







 −

=
−

∫ 11075.01
1

45.0 6

00

5
5
06

6
0

2

L
x

U
Ldx

L
xU

L
xU

x ννθ
 

 
can be evaluated for given L, ReL  
 

(Note: 
Lx

x
=→∞=
=→=

θ
θ    ,00

) 

 












−






 −−==

−

11075.0
62

L
x

dx
dU

ν
θλ  
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123.009.0 =⇒−=
L

X sep
sepλ  

 
 3% higher than exact solution =0.1199 
 







 = 1.0

L
xC f i.e. just before separation 

 

( )

0.0661
10.099 Re
2

2(0.099)
Re

f

f

S C

C

θ

θ

λ

λ

= −

= =

=

 

 
Compute Reθ in terms if ReL 
 

( )[ ]

( ) 2/12
1

2
1

2
1

0
2

2
0

6

0

2

Re77.0Re
257.0
099.02

Re257.0ReRe

Re

257.0
Re
0661.00661.0

0661.011.01075.0

−−

−

==

==

=

==

=−−=

LLf

LL

L

L

C

L

L

U
L

L

U
L

U
L

θ

θ

νθ

ϑνθ

θ

 

 
 
 
 
 
 

To complete 
solution must 
specify ReL 
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Consider the complex potential 

( ) θierazazF 222
22

==  

( )[ ] θϕ 2cos
2

Re 2razF ==  

( )[ ] θψ 2sin
2

Im 2razF ==  

Orthogonal rectangular hyperbolas 
 
ϕ : asymptotes y = ± x 
 
ψ : asymptotes x=0, y=0 

θ
θ

ϕϕϕ

θ

θθ

2sin
2cos

ˆ1ˆ

arv
arv

e
r

eV

r

rr

−=
=

+=∇=

0
2

≤≤ θπ
 (flow direction as shown) 

 
( ) ( )

( ) ( ) jvvivv
jivjivV

rr

r
ˆcossinˆsincos

ˆcosˆsinˆsinˆcos

θθθθ

θθθθ

θθ

θ

++−

=+−++=
 

Potential flow slips along surface: (consider 90=θ ) 
 

1) determine a such that 0Uvr = at r=L, 90=θ  

   00)902cos( UaLUaLvr −=⇒=×= , i.e. 
L

U
a 0−=  

2) let ( ) rvxU = at x=L-r: 
( )

)1()()()(:

)()902cos(

0
0

L
xUxL

L
UxLaxUOr

xUxLavr

−=−=−−=

=×−=⇒
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7.6. Turbulent Boundary Layer 
 

1. Introduction: Transition to Turbulence   
Chapter 6 described the transition process as a succession of Tollmien-
Schlichting waves, development of Λ - structures, vortex decay and 
formation of turbulent spots as preliminary stages to fully turbulent 
boundary-layer flow. 

The phenomena observed during the transition process are similar for 
the flat plate boundary layer and for the plane channel flow, as shown in 
the following figure based on measurements by M. Nishioka et al. 
(1975). Periodic initial perturbations were generated in the BL using an 
oscillating cord.  

For typical commercial surfaces transition occurs at 5
, 105Re ×≈trx . 

However, one can delay the transition to 6
, 103Re ×≈trx  with care in 

polishing the wall.  

 
2. Reynolds Average of 2D boundary layer equations   

    
;;      ;     ; pppwwwvvvuuu ′+=′+=′+=′+=  

 
Substituting u, v and w into continuity equation and taking the time 
average we obtain, 
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0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

       0
'''

=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

 

Similarly for the momentum equations and using continuity (neglecting 
g), 

ij
DV p
Dt

ρ τ= −∇ + ∇ ⋅  

Where  

''
ji

i

j

j

i
ij uu

x
u

x
u ρµτ −











∂

∂
+

∂
∂

=  

 
 
Assume  

a. ( ) xx <<δ which means uv << ,    yx ∂
∂

<<
∂
∂

 

b. mean flow structure is two-dimensional: 0=w ,  0=
∂
∂
z  

Note the mean lateral turbulence is actually not zero, 02' ≠w  , but its z 
derivative is assumed to vanish. 
Then, we get the following BL equations for incompressible steady 
flow: 

 

                                        0=
∂
∂

+
∂
∂

y
v

x
u

                             Continuity 

                 ydx
dUU

y
uv

x
uu e

e ∂
∂

+≈
∂
∂

+
∂
∂ τ

ρ
1

       x-momentum 

                                    y
v

y
p

∂
∂

−≈
∂
∂ 2'

ρ                       y-momentum  

Laminar Turbulent 
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Where eU is the free-stream velocity and: 

''vu
y
u ρµτ −

∂
∂

=  

Note:  
• The equations are solved for the time averages u and v  
• The shear stress now consists of two parts: 1. first part is due to 

the molecular exchange and is computed from the time-averaged 
field as in the laminar case; 2. The second part appears 
additionally and is due to turbulent motions.  

• The additional term is new unknown for which a relation with 
the average field of the velocity must be constructed via a 
turbulence model. 

 
Integrate y- momentum equation across the boundary layer 

( ) 2'vxpp e ρ−≈  
So, unlike laminar BL, there is a slight variation of pressure across the 

turbulent BL due to velocity fluctuations normal to the wall, which is no 
more than 4% of the stream-wise velocity and thus can be neglected. 
The Bernoulli relation is assumed to hold in the inviscid free-stream: 

/ /e e edp dx U dU dxρ≈ −  
Assume the free stream conditions, ( )xUe  is known, the boundary 
conditions: 

No slip:                           ( ) ( ) 00,0, == xvxu  

Free stream matching:    ( ) ( )xUxu e=δ,  
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3. Momentum Integral Equations valid for BL solutions   
 

The momentum integral equation has the identical form as the 
laminar-flow relation: 

( )
2

2 2
f

e

we

e

C
Udx

dU
U

H
dx
d

==++
ρ
τθθ

 

 
For laminar flow:  
( θ,, HC f ) are correlated in terms of simple parameter  

2
edU

dx
θλ
υ

=  

 
For Turbulent flow:  
( θ,, HC f ) cannot be correlated in terms of a single parameter. 
Additional parameters and relationships are required that model the 
influence of the turbulent fluctuations. There are many possibilities all of 
which require a certain amount of empirical data. As an example we will 
review the π−β method. 

 
4. Flat plate boundary layer (zero pressure gradient)   
 
a. Smooth flat plate  

 
Ret = 5×105∼ 3×106 for a flat plate boundary layer 
        Recrit ∼ 100,000 

  
dx
d

2
cf θ

=      

 
as was done for the approximate laminar flat plate boundary-
layer analysis, solve by expressing cf = cf (δ) and θ = θ(δ) and 
integrate, i.e. assume log-law valid across entire turbulent 
boundary-layer 
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Byuln1
u
u *

* +
νκ

=    

 
at y = δ, u = U 
 

Buln1
u
U *

* +
ν

δ
κ

=  

     
2/1

f

2
cRe 








δ  

or 5
2
cReln44.2

c
2 2/1

f
2/1

f
+


















=








δ  

           
 6/1

f Re02.c −
δ≅  power-law fit 

Next, evaluate 
 

  ∫ 





 −=

θ δ

0
dy

U
u1

U
u

dx
d

dx
d  

 
can use log-law or more simply a power law fit 

7/1y
U
u









δ
=  

( )δθ=δ=θ
72
7  

⇒  
dx
dU

72
7

dx
dUU

2
1c 222

fw
δ

ρ=
θ

ρ=ρ=τ  

dx
d72.9Re 6/1 δ

=−
δ  

neglect laminar sub layer and 
velocity defect region 

cf (δ) 

Note: cannot be used to 
obtain  cf (δ) since τw → ∞ 
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or 1/70.16Rexx
δ −=  

7/6x∝δ  almost linear 
 

1/7

0.027
Ref

x

c =  

𝜏𝜏𝑤𝑤,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.0135𝜇𝜇1/7𝜌𝜌6/7𝑈𝑈13/7

𝑥𝑥1/7   
τw,turb decreases slowly with x, increases with ρ and U2 and insensitive to 
µ 

𝐶𝐶𝐷𝐷 = 𝐶𝐶𝑓𝑓 = 0.031
𝑅𝑅𝑒𝑒𝐿𝐿

1/7 = 7
6
𝑐𝑐𝑓𝑓(𝐿𝐿)  

𝛿𝛿∗ = 1
8
𝛿𝛿  

𝐻𝐻 = 𝛿𝛿∗

𝜃𝜃
= 1.3  

These formulas are for a fully turbulent flow over a smooth flat 
plate from the leading edge; in general, give better results for 
sufficiently large Reynolds number ReL > 107. 

 
Comparison of dimensionless laminar and turbulent flat-plate velocity profiles (Ref: White, 

F. M., Fluid Mechanics, 7th Ed., McGraw-Hill) 

i.e., much faster 
growth rate than 
laminar 
boundary layer  

𝑢𝑢
𝑈𝑈
≈ �

𝑦𝑦
𝛿𝛿
�
1
7
 

𝑢𝑢
𝑈𝑈
≈ 2 �

𝑦𝑦
𝛿𝛿
� − �

𝑦𝑦
𝛿𝛿
�
2
 

(See Table 4-1 on 
page 13 of this 
lecture note) 
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Alternate forms by using the same velocity profile u/U = (y/δ)1/7 
assumption but using an experimentally determined shear stress  
formula τw = 0.0225ρU2(ν/Uδ)1/4 are: 
 

         1/50.37 Rexx
δ −=      1/5

0.058
Ref

x

c =        1/5

0.074
Ref

L

C =       

shear stress:    
2

1/5

0.029
Rew

x

Uρτ =   

 
These formulas are valid only in the range of the experimental 
data, which covers ReL = 5 × 105 ∼ 107 for smooth flat plates.  
 
Other empirical formulas are by using the logarithmic velocity-
profile instead of the 1/7-power law: 
 
   𝛿𝛿

𝐿𝐿
= 𝑐𝑐𝑓𝑓(0.98 log𝑅𝑅𝑅𝑅𝐿𝐿 − 0.732)  

 
   𝑐𝑐𝑓𝑓 = (2 log𝑅𝑅𝑅𝑅𝑥𝑥 − 0.65)−2.3 
 
   𝐶𝐶𝑓𝑓 = 0.455

(log10 𝑅𝑅𝑒𝑒𝐿𝐿)2.58     

 
These formulas are also called as the Prandtl-Schlichting skin-
friction formula and valid in the whole range of ReL ≤ 109. 
 
For these experimental/empirical formulas, the boundary layer is 
usually “tripped” by some roughness or leading edge disturbance, to 
make the boundary layer turbulent from the leading edge. 
 
No definitive values for turbulent conditions since depend on 
empirical data and turbulence modeling. 
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Finally, composite formulas that take into account both the initial 
laminar boundary layer and subsequent turbulent boundary layer, i.e. 
in the transition region (5 × 105 < ReL < 8 × 107) where the laminar 
drag at the leading edge is an appreciable fraction of the total drag:  
 

𝐶𝐶𝑓𝑓 =
0.031

𝑅𝑅𝑒𝑒𝐿𝐿
1
7
−

1440
𝑅𝑅𝑒𝑒𝐿𝐿

 

 
𝐶𝐶𝑓𝑓 =

0.074

𝑅𝑅𝑒𝑒𝐿𝐿
1
5
−

1700
𝑅𝑅𝑒𝑒𝐿𝐿

 

 

𝐶𝐶𝑓𝑓 =
0.455

(log10 𝑅𝑅𝑒𝑒𝐿𝐿)2.58 −
1700
𝑅𝑅𝑒𝑒𝐿𝐿

 

 
with transitions at Ret = 5 × 105 for all cases.  
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Local friction coefficient 𝑐𝑐𝑓𝑓 (top) and friction drag coefficient 
𝐶𝐶𝑓𝑓(bottom) for a flat plate parallel to the upstream flow. 
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b. Influence of roughness 
The influence of roughness can be analyzed in an exactly analogous 
manner as done for pipe flow i.e.  

*1 ln ( )

1( ) ln(1 0.3 )

yuu B B

B

ε
κ υ

ε ε
κ

+ +

+ +

= + + ∆

∆ = − +
 

i.e. rough wall velocity profile shifts downward by a constant amount  

)( +∆ εB  which, increases with ϑεε /*u=+
 

 
A complete rough-wall analysis can be done using the composite log-
law in a similar manner as done for a smooth wall i.e. determine Cf(δ) 
and θ(δ) from       and equate using momentum integral equation 

)(2)( δθδ
dx
dC f =  

Then eliminate δ to get )/,( xxC f ε  

However, analysis is complicated: solution is Fig. 7.6. For fully rough-
flow a curve fit to the Cf and CD equations is given by,  
 

1 

1 
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Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on 
smooth and rough flat plates.  
 

5.2

5.2

)log62.189.1(

)log58.187.2(

−

−

+=

+=

ε

ε
LC

xC

D

f
 

 
Again, shown on Fig. 7.6. along with transition region curves developed 
by Schlichting which depend on Ret =     5×105  
                                                                  3×106  
 

Fully rough flow 
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5. Boundary layer with pressure gradient   
 

vu
y
u

y
p

x
vuuu

vu

yx

yx

′′−
∂
∂

=

∂
∂

+
∂
∂

−=+

=+

ρµτ

τ
ρ

ρ 1)/(

0

 

 
The pressure gradient term has a large influence on the solution. In 

particular, adverse pressure gradient (i.e. increasing pressure) can cause 
flow separation. Recall that the y momentum equation subject to the 
boundary layer assumptions reduced to 

 
py= 0 i.e. p = pe = constant across BL. 
 

That is, pressure (which drives BL equations) is given by external 
inviscid flow solution which in many cases is also irrotational. Consider 
a typical inviscid flow solution (chapter 8) 
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Even without solving the BL equations we can deduce information about 
the shape of the velocity profiles just by evaluating the BL equations at 
the wall (y = 0) 

2

2

e  - U

e

e e

pu
y x

p dUwhere
x dx

µ

ρ

∂∂
=

∂ ∂
∂

=
∂

 

 
which, shows that the curvature of the velocity profile at the wall is 
related to the pressure gradient. 
 
Effect of Pressure Gradient on Velocity Profiles 
Point of inflection: a point where a graph changes between concave 
upward and concave downward. 
The point of inflection is basically the location where second derivative 

of u  is zero, i.e. 02

2

=
∂
∂
y
u

 

 
(a) favorable gradient: px<0, Ux>0, uyy<0 
 

 
No point of inflection i.e. curvature is negative all across the BL and BL 
is very resistant to separation.  Note uyy(δ)<0 in order for u to merge 
smoothly with U. 
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(b) zero gradient: px = Ux = uyy = 0 

 
 
 
 
 
 
 
(c) weak adverse gradient:  px>0, Ux<0, uyy>0 

 

 
PI in flow, still no separation 
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(d) critical adverse gradient: px>0, Ux<0, uyy>0, uy = 0 
 

 
PI in flow, incipient separation 
 
(e) excessive adverse gradient: px>0, Ux<0, uyy>0, uy < 0 
 
 

 
 
PI in flow, backflow near wall i.e. separated flow region 
 
i.e. main flow breaks away or separates from the wall: large increase in 
drag and loss of performance: 
 Hseparation = 3.5 laminar          
               = 2.4 turbulent          

τw < 0 
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6. π-β Method 
 

 

𝜆𝜆 =
√2
𝑐𝑐𝑓𝑓

= 𝑎𝑎(Π)
𝐻𝐻

𝐻𝐻 − 1   
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7. 3-D Integral methods 
 

Momentum integral methods perform well (i.e. compare well with 
experimental data) for a large class of both laminar and turbulent 2D 
flows. However, for 3D flows they do not, primarily due to the inability 
of correlating the cross flow velocity components. 
 

 
 

The cross flow is driven by 
z
p

∂
∂ , which is imposed on BL from the 

outer potential flow U(x,z). 
 

3-D boundary layer equations 
 

equations closure   
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Differential methods have been developed for this reason as well as for 
extensions to more complex and non-thin boundary layer flows. 
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7.7 Separation 
What causes separation? 
  The increasing downstream pressure slows down the wall flow and 

can make it go backward-flow separation. 
   0>dxdp   adverse pressure gradient, flow separation may occur. 
   0<dxdp   favorable gradient, flow separation can never occur 
 
Previous analysis of BL was valid before separation. 
Separation Condition 

0
0

=







∂
∂

=
=y

w y
uµτ  

 

 
Note: 1. Due to backflow close to the wall, a strong thickening of the  
              BL takes place and BL mass is transported away into the  
              outer flow 
         2. At the point of separation, the streamlines leave the wall at a  
             certain angle.  
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Separation of Boundary Layer 

 
Notes:  
 1. D to E, pressure drop, pressure is transformed into kinetic energy. 
 2. From E to F, kinetic energy is transformed into pressure. 
 3. A fluid particle directly at the wall in the boundary layer is also  
     acted upon by the same pressure distribution as in the outer flow  
     (inviscid). 
 4.  Due to the strong friction forces in the BL, a BL particle loses so  
    much of its kinetic energy that is cannot manage to get over the  
    “pressure gradient” from E to F. 

 5. The following figure shows the time sequence of this process: 
a. reversed motion begun at the trailing edge 
b. boundary layer has been thickened, and start of the reversed  
    motion has moved forward considerably. 
c. and d. a large vortex formed from the backflow and then soon  
    separates from the body. 
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Examples of BL Separations (two-dimensional) 
Features: The entire boundary layer flow breaks away at the point of 

zero wall shear stress and, having no way to diverge left or right, has to 
go up and over the resulting separation bubble or wake. 

 
1. Plane wall(s) 

 
(a). Plane stagnation-point flow: no separation on the streamlines of  
      symmetry (no wall friction present), and no separation at the wall  
      (favorable pressure gradient) 
(b).Flat wall with right angle to the wall: flow separate, why? 
 
2. Diffuser flow: 

 

Thin wall 
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3. Turbulent Boundary Layer 

 
  

 
 Influence of a strong pressure gradient on a turbulent flow  
 (a) a strong negative pressure gradient may re-laminarize a flow 
 (b) a strong positive pressure gradient causes a strong boundary  
       layer top thicken.  (Photograph by R.E. Falco)   

 
Examples of BL Separations (three-dimensional) 
Features: unlike 2D separations, 3D separations allow many more  

options.  
There are four different special points in separation: 
(1). A nodal Point, where an infinite number of surface streamlines  
      merged tangentially to the separation line 
(2). A saddle point, where only two surface streamlines intersect and  
       all others divert to either side 
(3). A focus, or spiral node, which forms near a saddle point and  
      around which an infinite number of surface streamlines swirl 
(4). A three-dimensional singular point, not on the wall, generally  
       serving as the center for a horseshoe vortex. 
 
 
 
 
 
 
 

(a) 

(b) 
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1. Boundary layer separations induced by free surface (animation) 

 
                                              CFDSHIP-IOWA 
 
 
2.  Separation regions in corner flow 
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3. 3D separations on a round-nosed body at angle of attack 
 
 
 
 
 
 
 
 
 
 
 
Video Library (animations from “Multi-media Fluid Mechanics”,  
          Homsy, G. M., etc.) 

            
       Conditions Producing Separation                      Separations on airfoil (different attack angles) 

  
                           Leading edge separation                                  Separations in diffuser 
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     Effect of body shape on separation                          Laminar and Turbulent separation 

                   
Flow over cylinders: effect of Re                                     Flow over spheres: effect of Re 
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           Flow over edges and blunt bodies                              Flow over a truck 
 

 
  Effect of separation on sports balls 


	Note: cannot be used to obtain  cf (() since (w ( (

