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Chapter 7: Boundary Layer Theory

7.1. Introduction:

Boundary layer flows: External flows around streamlined bodies at
high Re have viscous (shear and no-slip) effects confined close to
the body surfaces and its wake, but are nearly inviscid far from the
body.

Applications of BL theory: aerodynamics (airplanes, rockets,
projectiles), hydrodynamics (ships, submarines, torpedoes),
transportation (automobiles, trucks, cycles), wind engineering
(buildings, bridges, water towers), and ocean engineering (buoys,
breakwaters, cables).

7.2 Flat-Plate Momentum Integral Analysis & Laminar approximate
solution

Consider flow of a viscous fluid at high Re past a flat plate, i.e., flat
plate fixed in a uniform stream of velocity U .
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Boundary-layer thickness arbitrarily defined by y = &4y, (Where, g, IS
the value of y at u = 0.99U). Streamlines outside 4, Will deflect an

amount &~ (the displacement thickness). Thus the streamlines move
outward fromy=H at x=0to y=Y=6=H +6 at x=X,.
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Conservation of mass:

J. pVendA=0= _.[OH IOUdy + IOH " IOUdy

Cs
Assuming incompressible flow (constant density), this relation simplifies
to

Y Y Y
UH = [ udy = [ (U+u-U)dy=UY +| (u-U)dy
Note: Y = H + 0 , we get the definition of displacement thickness:
* u
S = jg (l——jdy
U
5*( a function of x only) is an important measure of effect of BL on
external flow. To see this more clearly, consider an alternate derivation

based on an equivalent discharge/flow rate argument:

A

6* Lam=4/3

0* Turb=0/8

o o
_[ Udy = j udy
* 0
@(_J
Inviscid flow about 6* body

Flowrate between &~ and & of inviscid flow=actual flowrate, i.e.,
inviscid flow rate about displacement body = equivalent viscous flow
rate about actual body

o 1) 1) 0
jUdy—jUdy = judy =4 = I(l—ijdy
0 0 0 0 U

w/o BL - displacement effect=actual discharge

For 3D flow, in addition it must also be explicitly required that sisa
stream surface of the inviscid flow continued from outside of the BL.
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Conservation of x-momentum:
H Y
> F,=-D :éfspu\iogdA:—_[o pU (Udy)+.|'0 pu(udy)

Y
Drag =D = pU 2H - IO puzdy = Fluid force on plate = - Plate
force on CV (fluid)

Again assuming constant density and using continuity: H = _[0 Udy

Y
D = pU 2y u/Udy - juzdy = [y TwaX

L—H j (1—Ujdy

pU*
where, @ is the momentum thickness (a function of x only), an
Important measure of the drag.

C, = pﬂzx ZXQ L _[C dx Per unit span
Cf:]_TW :Cf:i( CD) Zd—e
= pU? dx dx Special case 2D
2 momentum integral
do C; ,do equation for px=10
-2 7, =pU"—
X 2 dx

u
u areas:

Immll -0

0 Coordinate normal to the wall
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Simple velocity profile approximations:

u=UQ2y/5-y%15%)

u(@ =20 no slip
u(@d)=U matching with outer flow

Use velocity profile to get C+(0) and 6(8) and then integrate momentum
integral equation to get 5(Rex)

0* =0/3
0 =28/15
H=6*/6=5/2
r, =2uU /o6
= 2IT0 599 59 (5115,
1/2U dx dx

- s = 1oHdx

5/x=55/Re?
Re, = Ux/v

5 /x=1.83/Re’? >~ 10% error, cf. Blasius
0/x=0.73/ReY?

C, =1.46/Rel’* =2C, (L)

ou 2 2y? 20
—=y(s- =2y
oy~ \s e2)| 775
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7.3. Boundary layer approximations, equations and comments

_ 5 Upp

y
[
////\

2D NS, p=constant, neglect g

Uy +v, =0
op
1q+uw&wmy=—55;+wnm+uw)
10p
Ve +uvy +vv, = —;@ + V(Uxx + Vyy)

Introduce non-dimensional variables that includes scales such that all
variables are of O(1):

X =x/L
y*=%\/Re
t"=tU/L
u =u/U
v =—Re
* p_po
P
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The NS equations become (drop *)

Uy +v, =0
1
U + UU,y + vuy = —Dx +Euxx + uyy
1 1 1
R—e(vt + UV, + vvy) = —py + R—ezvxx + R—evyy

For large Re (BL assumptions) the underlined terms drop out and the BL
equations are obtained.

Therefore, y-momentum equation reduces to

p, =0

le. p= p(x,t)
= p, =—p(U,+UU, ) From Euler/Bernoulli equation for
external flow

2D BL equations:
uy +v, =0
ur + uuy +vuy, = (U + UU,) +vuy,

Note:

(1) U(x,t), p(x,t) impressed on BL by the external flow.

2
0
(2) 8—2 =0:je. longitudinal (or stream-wise) diffusion is
X
neglected.

(3) Due to (2), the equations are parabolic in x. Physically, this
means all downstream influences are lost other than that
contained in external flow. A marching solution is possible.
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(4) Boundary conditions

matching
inlet
/&/‘ 5
:> Solution by
L, marching
T y
X
- S

Xo \

No slip

No slip: u(x,0,t) = v(x,0,t) =0

Initial condition: u(x, y,0) known

Inlet condition: U(XO, y,t)given at X,
Matching with outer flow: u(x,0,t)=U(x,t)

(5) When applying the boundary layer equations one must keep in
mind the restrictions imposed on them due to the basic BL
assumptions
— not applicable for thick BL or separated flows (although
they can be used to estimate occurrence of separation).

(6) Curvilinear coordinates
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(7)

Although BL equations have been written in Cartesian
Coordinates, they apply to curved surfaces provided & << R and
X, y are curvilinear coordinates measured along and normal to
the surface, respectively. In such a system we would find under
the BL assumptions

_pu
R
Assume u is a linear function of y: U= UY/5

By

dp _ pU%y?
dy R&S?

p(6)— p(0) o
Or

pu°s
3R

Ap 0, .
* 5 therefore, we require 6 <<R

oU? 3R

Practical use of the BL theory

For a given body geometry:

(@) Inviscid theory gives p(x) — integration gives L and D =0

(b) BL theory gives — 6" (x), tw(x), O(x),etc. and predicts
separation if any

(c) If separation present then no further information — must
use inviscid models, BL equation in inverse mode, or NS
equation.

(d) If separation is absent, integration of zy(x) — frictional
resistance and body + §”, inviscid theory gives — p(x) for
drag + &, can go back to (2) for more accurate BL
calculation including viscous — inviscid interaction
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(8) Separation and shear stress
Atthewall u=v=0— uw=%px

1 derivative u gives tw — Ty, = fly W

7w = 0 separation

2" derivative u depends on p,

dp
- 0
A dx
]
i_ U
-
|
l
| U
Backflow
. . PI -
Inflection point
T G ] . -
(c) Weak adverse (d) Critical adverse  (e) Excessive adverse
gradient: gradient: gradient:
au _ Zero slope Backflow
dx at the wall: at the wall:
;I'p >0 Separation Separated
X

flow region
No separation,
PI in the flow
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7.4. Laminar Boundary Layer (Re;;qns = 5 X 10° — 3 x 109) -
Similarity solutions (2D, steady, incompressible): method of reducing
PDE to ODE by appropriate similarity transformation; also, as a result of
transformation at least one coordinate lacks origin such that the solution
collapses to same form at all length or time scales
uy+v, =0
uu, +vu, = UUy +vu,,,

BCs: u(x,0) = v(x,0) =0
u(x,0)=U(x)

+ inlet condition

u(x,y) _ F[ y

For Similarity U(X) mj expect g(x)re|ated to 5(X)

Or in terms of stream function ¥ : U=V¥, V=—l/,
For similarity ¥ =U (X)g (X)f (77) n= Y/g(x)
U=y, =Ul v =—y, - _(Ugf+Ug,f-Ugnf)

BC:
u(x,0)=0=U(x)f'(0)=0= f'(0)=0
v(x,0)=0=U,(x)g(x) f (0) +U (x)g,(x) f (0)
—~U(X)g,(x)x0x f'(0)=0
= (U, (090 +U (g, (x))f (0) =0
= f(0)=0
u(x,0)=U(x)=U(x) f'(cc) =U (x) = f'(c0) =1
Write boundary layer equations in terms of ¥/
l//yWyx _l//nyy = UUx +VWyyy
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Substitute
v, =Ut'/g

" 2
W =Uf /g
ny :Uxf|_Uf ng/g

Assemble them together:

(Uf'{uxf'—%]—(ung +Ug, f —%'XU“ /a)

=UU, +v(U f'"/gz)

U
'S
Uu, f? —%(Ug)x ff' =UU, +v%f"'

Uu f?-UU ff -U?g /g ff =UU, +v—1f

£+ (Ug) ff "+ 15U | (1— £7)=0

C1 C2

Where for similarity C; and C; are constant or function nj only

e i.e. for a chosen pair of C;and C,~> U (X) g(X) can be found
(Potential flow is NOT known a priori)

e Then solution of f +C, ff ” +C2(1_ flz): O gives f(ﬂ)%

;
u(x,y) . -l _HITO) 5 %0, H, Cr, Co
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The Blasius Solution for Flat-Plate Flow
U=constant=> U X 0 > Cz =0

U
Then C = ~ Y99

d 2C
&( 2) 1v :> g 2C1VX/U]]/

2 U
Let C, =1 then g(x)=\/% :> = y\/z—vx

=) | raameo IR
f(0)= f'(O) 0, f( ): Boundary Layer

Solutions by series technique or numerical

S by s W i ]
Al Twh{g., 41 P /
AL ] )
- e
Wb aoie W Uy

o 5 Ux
—=0.99 e__° _Ux
U when 7=3.5 > Re, = -

o 1.7208

* 00 2VX _

o :Io( jdy fo 11 )d GITE x JRe,
o ulu o o ¢ 0.664

o-Gli-GJgo-El-r e ) R
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5*
)
ou Ut "(0) Co—_ Tw  _ 0.664 @
T, = U = N f - .
w 1 R X
[2vx/ 2 e
ay w U D pU X
D 1 - f - " R —__
0 , e = ,
!
v _nf-f
=L «1 for Re, >>1
U J2Re,
2
TABLE 4-1
Numerical solution of the Blasius flat-plate
relation, Eq. (4-45) fas
n fln) fi(n) ()
‘4
0.0 0.0 0.0 0.46960 1L .
0.1 0.00235 0.04696 0.46936 e !
0.2 0.00939 0.09391 0.46931 7 i
03 0.02113 0.14081 0.46861 04656 S !
04 0.03755 0.18761 0.46725 ' 7 B
0.5 0.05864 0.23423 0.46503 .
45° ar
0.6 0.08439 0.28058 0.46173 o L |
0.7 0.11474 0.32653 0.45718 , 2 5 T ;
0.8 0.14967 0.37196 0.45119 .
0.9 0.18911 0.41672 0.44363 . 1=y 5z
10 0.23299 0.46063 0.43438 .
1.1 0.28121 0.50354 0.42337
12 0.33366 054525 0.41057 2
13 0.39021 0.58559 0.39598 :
1.4 0.45072 0.62439 0.37969 = s 1.
15 0.51503 0.66147 0.36180 N df“
1.6 0.58296 0.69670 0.34249 Blasius w431 |
1.7 0.65430 0.72993 032195 £ 08 | Symbol Rs, X 10-¢|___|
1.8 0.72887 0.76106 0.30045 + 085
1.9 0.80644 079000  0.27825 04— -
2.0 0.88680 0.81669 0.25567 a o8z
29. 1.05495 0.86330 0.21058 L ° 18—
24 1.23153 0.90107 0.16756 . : ,;;j
26 1.41482 0.93060 0.12861 0 1 2 3 4 & 7 8
2.8 1.60328 0.95288 0.09511 faey [@
30 1.79557 0.96905 0.06771 . "/;
32 1.99058 0.98037 0.04637 (e}
34 2.18747 0.98797 0.03054 FIGURE 4.6
36 2.38559 (1.99289 0.01933 The Blasivs solution for the flat-plate houndary layer: (a) numerical solution of Eq. (4-45) ()
k%] 2._53450 ),99504 0.01176 comparison of = u/U with experiments by Liepmann (1943),
40 2.78388 0.99777 0.00687
42 2.98355 0.99882 0.00386
44 3.18338 0.99940 0.00208
46 3.38329 0.99970 0.00108
48 3.58325 .99986 0.00054
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Co ReL
Oseen 3-226 (3 <1
edition,vicous
flows)
Blasius 100<Re<Rey~3
%108
LE Higher
order
correction

CD :1.328/1/REL +2.3/Re|_

™.

Similar breakdown occurs at Trailing edge.

From triple — deck theory the correction is
+2.661/Re//®

e

S

Rex small therefore local breakdown of BL approximation

Cr= 7' ol ?

Fig. 7.10. Local coefficient
of skin friction on a flat
plate at zero incidence in
incompressible flow, deter-
mined from direct measure-
ment of shearing stress by
Liepmann and Dhawan
[6, 18]

Theory : laminar from eqn. (7.32);
turbulent from eqn. (21.12)

10 . a
| o '
| u ,,',,2” I
Uy /” .
a8 w4
' W :
/ ;
06 - // i
RS |
o4 Thenry £ 0807 T —
Biasius o Lai |
/ o 354X
& SIS
0z c 7.26x10°
/7 :
:
/f Pl
o | 1
10 20 a0 w0 50 ™ og 7

Tig. 7.9. Velocity distribution in the laminar boundary layer on u flat plate st zero incidence,

T

as measured by Nikuradse [20]

00— e ==
] ] 1
T~ Thealy Pranal! -H
005 - ~~<  Theory Blasivs “;__’\inl [
T < ) PN T -
0003 +———] } " turbulent
laminar ;‘gi |||
0o +———f——— i~
ﬁ-‘«h
0.601 — S Rast
1 \.‘\q
] —4 —q
0.0005 - -
+ o edirect skin friclion measurement
o003 + From velocity profile
®  Direct skin friction measurement, X =~ 28.8 om
0.0002 +
[« ] Fl o I F r , X =86 cm
|| u
ponr L “
0? 2 3 456 810° 2 4 456 810
Yy X
R =22
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Falkner-Skan Wedge Flows (s N
74+ C ff +C,(1- £2)=0 B ) o of BL
( ) ( ):0 ( ) U—Y/Q(X) eq.
’ : U =1f(n)

c,=yUg), c,=%u

>

Consider (ng)x =2Ugg, + g°U
=2Ugg, +29°U, -g’U
= 2g(ug)x o gzux
=2vC, —vC,

Hence > (Ug 2)x = V(ZCl — CZ), C, :g—UX

Choose C1=1 and C; arbitrary=C,

(Blasius Solution: C,=0, C1=1)

Integrate Ug® =v(2—-C)x
u € 1
Combine U 2_C x
C=g%U,/v Wby Elrn
. C U(xﬁ%ﬁ' o
InU = > C In X+ Kk o
Then U(x)= kx/2=¢)
3 ): V(Z—C) g
K
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Change constants

U(x)=kx™
Yy /m+1U
=9 V2 wx
2
7+ - £2)=0, ﬁ=m—Tl,m=%
f(0)=(0)=0 f'(o0)=1

Solutions for —0.19884 < 5 <1.0

/

Separation (z,, =0)
Solutions show many commonly observed characteristics of BL flow:
e The parameter £ is a measure of the pressure gradient, dp/dx .
For #>0, dp/dx < Oand the pressure gradient is favorable. For
B <0,the dp/dx > 0 and the pressure gradient is adverse.

e Negative S solutions drop away from Blasius profiles as separation
approached
e Positive S solutions squeeze closer to wall due to flow acceleration

e Accelerated flow: Tmax near wall

e Decelerated flow: Tmax moves toward 5/ 2
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Wl
e Y
b tﬂfum\ D_Ew\ Loy v =) U;--k/),.
L= \
e wdi .. seg t o el

Trtate e Sk s S B

P peuSaon G . EF"“* ®o g Sy
/% 2 = 8%k Q&XWI»&'\-N\) hrs . Sae. d U0
A=\ : . g — S ey
pel gs”-&i‘“""““\a"‘*{ m\/’/ Mc;: e
T\ Tl Ve
: . - e e zypi‘a

1.4
‘ , ¢ 12
Accelerated | | \
flows | Accelerated flows
1.0 - —o|== = o 1.0 B=1.0
87 Pt
0.8 B=1.0 08 L
;L_ B=0.3 P /ﬁ =0.0
F 06 — B=0.0 0.6 Retarded flows
I~/ ~— B=—0.1 _B=—01]
/ A T— f=—0.18 =-0.18
s T= 6= -0.1988381 04 § = —0.198838 1
Retarded flows
0.2 ‘ ‘ 024 i\
/ ‘ i e \ \Q
0.0 0.0
0 1 2 3 4 5 6 0 1 2 3 4 5 6

_ . [ul1+m) = fU(1+ml
1=y 2vx nzy 2vx
(a) (b)

FIGURE 4-11
(a) Velocity profiles and (b) shear-stress profiles for the Falkner-Skan equation.
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7.5. Momentum Integral Equation

Historically similarity and other AFD methods used for idealized flows
and momentum integral methods for practical applications, including
pressure gradients.

Momentum integral equation, which is valid for both laminar and
turbulent flow:
o0

[ (BL form of momentum equation + (u —U )continuity Jdy
y=0
puUs 2 dx U dx
Y . _au
For flat plate equation>—_ =0

dx
5
0= jiﬁl—ijdy;
Ul U
.
91
. O
) =j( —Ejdy
0 U

M uu, +Vvu 0 ( pj-I— 1oz
omentum: X y —— | — -
oxX\p) poy

The pressure gradient is evaluated form the outer potential flow using
Bernoulli equation

H =

P +% pU? = constant

px+%p2UUX=0
— Py =pUU,
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(u—U) (ux + vy) = uu, +uv, — Uu, — Uy,
h,"_,/
Continuity
uuy +vuy, —UUy — =7y + uly + uvy, — Uuy, +Uv, =0
P .
0

0

—;Ty = —2uuy —vuy, + UUy —uvy, + Uu, + Uv,,

d 0
=—(uU —u?)+ (U —w)U, + — (vU + vu)
dy 0

001 o0 o0
——r,dy = Z'W/ = u(U —u)dy +U, [(U —u)dy + (vU<vu) g
[yt (gl =)t = 20—ty 0, 0 -y (<

0

Tw 8 2 ® B
{u jU (1—Ujdy+ux(j)(u —u)dy} -

P " ox 0

U2, +2UU,0+U,5

C;

“r 299, g4 5t Y

2 dx U dx

Cy _deo 6 dU S
=T (2+H) S H=2
2 dx + )U dx 0
Tw 1

0
0 ECf —6?X+(2+H)UUX

Historically two approaches for solving the momentum integral equation
for specified potential flow U(x):

1. Guessed Profiles
2. Empirical Correlations

Best approach is to use empirical correlations to get integral parameters
(5, 0*,0, H, Cy, Cp) after which use these to get velocity profile u/U
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Thwaites Method

ué
Multiply momentum integral equation by =,

r,0 _U6do 6 du

= (2+H)
ud vV dx Vo odx

The equation is dimensionless and, LHS and H can be correlated with

2
pressure gradient parameter A =9—%—li as shear and shape-factor
14

correlations

M

yr.y;
5

H=616=H(1)=> 3(0.25-1)'
i=0

= 5(2)= (4 +0.09)*

ai= (2, 4.14, -83.5, 854, -3337, 4576)

Note
uode 1,d(6*
V dx 2 dx{ 9

Substitute above into momentum integral equation

2
d(2/U,)
dx

S(4) _Ly %[%ij(u H)

U

=2[S- A2+ H)A]=F(1)

F(4)=0.45-64 based on AFD and EFD



ME:5160 Chapter 7

Professor Fred Stern  Fall 2018 21
92
Define £ = sothat A= zd—U
4 dx
U _045-61-045-679Y
dx dx
U % + 62 d—U =0.45
dx dx
1 d(,
ie. ——\zU " )=0.45

6 X5
7U5 = 0.45[U5dx + C
0

0.45v ¢
99229024- U6 IUSdX
0

By (X =0) = 0 and U(x) known from potential flow solution

Complete solution:

2
gzg@ﬂzg_%i
v dx
7,0
lw_q@
5 =eH(1)

Accuracy: mild px +5% and strong adverse px (tw near 0) +15%
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. Pohlhausen Velocity Profile:

= f(n)=an+bn®+cn’® +dn* with 77=%

Clc

QD

, b, ¢, d determined from boundary conditions
U
1) y=0>u=0,u, =——U,
14
2)y=0>u=U,u,=0,u, =0

No slip is automatically satisfied.
F(7)=2n-27°+n*

G(n)="T-n)

separation

95 = F(7)+ AG(y), —12< A <12

%) (experiment: Aggnaration = -5)
2 2
A — 5_d_U — px 5_
v dx y7.8,

pressure gradient parameter related to

2
hean)=| B A A
315 945 9072

Profiles are fairly realistic, except near separation. In guessed profile
methods u/U directly used to solve momentum integral equation
numerically, but accuracy not as good as empirical correlation methods;
therefore, use Thwaites method to get A, etc., and then use A to get A and
plot u/U.
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23
ii.  Howarth linearly decelerating flow (example of exact
solution of steady state 2D boundary layer)

e T ¥ L(_U —
s | b L?\\J - ( f oo 1:
g i X
L T 5 e Pr +quux=o
= i s CL::I s s dhd
o e b, — s o e - e
N Gl . L5k
",.m..;.‘,l \ \rsl_ I {
e '
[ A N ke };w' 7 M‘ T.,ﬂ,.ﬁ_._
=§\.4..._¢\—

Howarth proposed a linearly decelerating external velocity distribution

U(x):UO(l—%j as a theoretical model for laminar boundary layer study.
Use Thwaites’s method to compute:

a) Xsep

Note Uy = -Uo/L

Solution

X 5 —6
g? = 04 ju51—5 dx=0075 5 (1-X] _1
6070 L U L
Ue(l— Xj 0 0
0

can be evaluated for given L, Re.

(Note:

A

0=0—->x=0,

=0 —>Xx=L

2 -6
_odu —0.075{(1—% —1}
v dx L
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X
Asep =—0.09 = Eep =0.123
3% higher than exact solution =0.1199
C; (E = 0_1) —>i.e. just before separation

A =-0.0661

s(&):o.oggzécf Re,

2(0.099)

C, =
Re,

Compute Reg in terms if Re.

6 =0. 075—[1 0.1)° ~1]=0.06617"

U,

2
9* _ 4 ogert _ 0-0661
L® U, Re,
6 0257
L ReL%
To complete
Reg = Q ReL =0.257 ReL% solution must
L specify Re,
~2(0.099) _—

[ = Re, 72 =0.77Re "2
0.257
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Consider the complex potential

F(z)=§22 _a, 2,20
2 2

¢ = Re[F(z)]

v = Im[F(z)]= %rzsin 20

Er2c0326?
2

Orthogonal rectangular hyperbolas
@ asymptotes y = £ X

w . asymptotes x=0, y=0
V=Vp=08& + %%é@

V, =arcos26

\V, =—arsin 26

} %s&gomo

] s [
| 10 Al
r 3, 8 S
c 1.3 a ﬁl ”
\ ) i
\ F
| __} N
: . e A
| \
| &
| X - ~
= Ny T
I = Ld
v £ x
< — et -
rrr

direction as shown)

V =V, (cosd +sinéf)+vy(-sind +cosdf )=

(v, cOS@ —Vgsin O + (v, sin @ +vy cosh)]

Potential flow slips along surface: (consider & = 90°)

1) determine a such that V, =Ugatr=L, & =90°

v, =aLcos(2x90)=U, =>aL=-U,, ie. a:_U_O

2) let U(X)=V, at x=L-r:

= v, =a(L—x)cos(2x90) =U (x)

L

Or: U(x)=-a(L-x) :U—LO(L—X) =U0(1—E)
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7.6. Turbulent Boundary Layer

1. Introduction: Transition to Turbulence
Chapter 6 described the transition process as a succession of Tollmien-
Schlichting waves, development of A - structures, vortex decay and
formation of turbulent spots as preliminary stages to fully turbulent
boundary-layer flow.

The phenomena observed during the transition process are similar for
the flat plate boundary layer and for the plane channel flow, as shown in
the following figure based on measurements by M. Nishioka et al.
(1975). Periodic initial perturbations were generated in the BL using an
oscillating cord.

For typical commercial surfaces transition occurs atRe,, ~5x10°.

However, one can delay the transition to Re,, ~3x10° with care in
polishing the wall.

1M N K

TS-Waves Spikes Decay
2. ] :
}q Tmansiona] »le 3-dimensional —>| |
Laminar L,: Transition —————>| Turbulent

Fig. 15.38. Signals found at different regions in the transition at a plate at zero
incidence, after M. Nishioka et al. (1975, 1990)

2. Reynolds Average of 2D boundary layer equations

u=U+uU; v=V+V; W=W+W;, p=p+p;

Substituting u, v and w into continuity equation and taking the time
average we obtain,
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aU oV aw ou ov ow
=0 +—+

=0
OX 6y 0z ox oy oz
Similarly for the momentum equations and using continuity (neglecting
0,
DV
—=-Vp+V-7,
p Dt p 1
Where
Tii = U i + N — pUiU
. 5Xj aXi "
Laminar Turbulent
Assume
0 — 0
a 5()() << Xwhich means V <<U, 5y oy

b. mean flow structure is two-dimensional: W = 0 : 5 =0

Note the mean lateral turbulence is actually not zero, w2 %0 , but its z

derivative is assumed to vanish.
Then, we get the following BL equations for incompressible steady

flow:

a_U + @ =0 ..
X oy Continuity
8_u+ ou ~U dU, 107
N oy ~Ye dx  p oy X-momentum
op oV’
oy P oy y-momentum
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Where U is the free-stream velocity and:

r—,ua—U—pLW
oy

Note:

e The equations are solved for the time averages U and V

e The shear stress now consists of two parts: 1. first part is due to
the molecular exchange and is computed from the time-averaged
field as in the laminar case; 2. The second part appears
additionally and is due to turbulent motions.

e The additional term is new unknown for which a relation with
the average field of the velocity must be constructed via a
turbulence model.

Integrate y- momentum equation across the boundary layer
2
p~ p,(x)—pv
So, unlike laminar BL, there is a slight variation of pressure across the
turbulent BL due to velocity fluctuations normal to the wall, which is no
more than 4% of the stream-wise velocity and thus can be neglected.
The Bernoulli relation is assumed to hold in the inviscid free-stream:

dp, /dx ~ —pU,dU, / dx

Assume the free stream conditions, U (x) is known, the boundary
conditions:

No slip: U(X,O):V(X,O): 0
Free stream matching: U(X, 5) =U, (x)
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3. Momentum Integral Equations valid for BL solutions

The momentum integral equation has the identical form as the
laminar-flow relation:

C
d—6)+(2+H) 0 du, _ T
dx Ue dx pUe 2
For laminar flow:
(C,H,0) are correlated in terms of simple parameter :%Zd;)’(e

For Turbulent flow:
(C+,H,0) cannot be correlated in terms of a single parameter.

Additional parameters and relationships are required that model the
influence of the turbulent fluctuations. There are many possibilities all of
which require a certain amount of empirical data. As an example we will
review the n—f3 method.

4. Flat plate boundary layer (zero pressure gradient)

a. Smooth flat plate

Rer = 5x10°~ 3x10%for a flat plate boundary layer
Recrit ~ 100,000
c; do

2 dx

as was done for the approximate laminar flat plate boundary-
layer analysis, solve by expressing ¢t = ¢ (d) and 6 = 6(5) and
integrate, 1.e. assume log-law valid across entire turbulent
boundary-layer
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i_EmY_U*JF B neglect laminar sub layer and
Uk v velocity defect region
aty=9o6,u=U
Uu 1, 8u
s :—|n8—+ B
u K Vv
\ c. \V/2
~f
R%(zj |

5 1/2 c 1/2
or (—) =2.44|n{Re6(f) }5
Cf 2 > Cf(8)

c; =.02Re; ° power-law fit
Next, evaluate

0
%LE_EGJ%W

dx dx oU U
can use log-law or more simply a power law fit
1/7
u_ (Xj Note: cannot be used to
U 0 | obtain cs (0) since tw — ©
7
0=—0=0(d
7500
1 ,d0 7 . ,dd
= Ty =C—pU =pU°"—=—pU"—
w =P P~ ax - 72 dx
Re, /¢ =972 %

dx
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or 9 _ 0.16Re;"’ I.e., much faster
X growth rate than

Soc x®” almost linear  laminar
boundary layer

0,027
" Re”
0.0135u1/7 p6/7yy13/7
Tw turb = 1/7

Tw.urb decreases slowly with x, increases with p and U? and insensitive to
1l

0.031 7
CD = Cf = W = ng(L)
5 ==6
5
H=-=13

These formulas are for a fully turbulent flow over a smooth flat
plate from the leading edge; in general, give better results for
sufficiently large Reynolds number Re. > 107,

1.0

Turbulent

root profile;= =~

Seventh U (y)7
Eq. (739U

Cl=

_ (See Table 4-1 on
Exact Blasius profile

for all laminar Rcr‘page 13 Of thlS
(Table 7.1 lecture note)

Parabolic U 2 (y) (y)
approximation, 77 I~ i R
Eq. (7.6) U S 5

\ | | |
0.2 0.4 0.6 0.8 1.0

0.4

2

Comparison of dimensionless laminar and turbulent flat-plate velocity profiles (Ref: White,
F. M., Fluid Mechanics, 7' Ed., McGraw-Hill)
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Alternate forms by using the same velocity profile u/U = (y/8)Y’
assumption but using an experimentally determined shear stress

formula w = 0.0225pU%(v/U)Y* are:

o 15 0.058 0.074
;2037Rex Cf ZW Cf:@

X

0.029 pU 2
shear stress: 7, = T Re"

X

These formulas are valid only in the range of the experimental
data, which covers Re. =5 x 10° ~ 10’ for smooth flat plates.

Other empirical formulas are by using the logarithmic velocity-
profile instead of the 1/7-power law:

2 = ¢£(0.98log Re, — 0.732)
¢ = (2logRe, — 0.65)7%3

0455
I ™ (log1o Rey)?58

These formulas are also called as the Prandtl-Schlichting skin-
friction formula and valid in the whole range of Re. < 10°.

For these experimental/empirical formulas, the boundary layer is
usually “tripped” by some roughness or leading edge disturbance, to
make the boundary layer turbulent from the leading edge.

No definitive values for turbulent conditions since depend on
empirical data and turbulence modeling.
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Finally, composite formulas that take into account both the initial
laminar boundary layer and subsequent turbulent boundary layer, i.e.
in the transition region (5 x 10° < Re. < 8 x 107) where the laminar
drag at the leading edge is an appreciable fraction of the total drag:

C. = 0.031 1440
f ReL% Re;
C. = 0.074 1700
r- = Re
ReL
0.455 1700

Cr = —
! (logyo Re; )8 Re;,

with transitions at Re; = 5 x 10° for all cases.
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0.co8
0.006 |- ¢ = (2logRe, — 0.65)7%3
e
e Turbulent smooth plate
[T - \\
0.004 |-
Laminar
0.002 0.66
| ol |

10 10 10° 10 10
Re
0.008
; 0.45¢
/ f (logyp Rey )22
0.006 = < Turbulent smooth plate
\ 0.074 . _
w | \\\\\ G ’; (5% 10° < Rey = 107)
( , MH\: \\\
0.004
. 0.031
p r‘J" 1
Spintivterceri it - e Re;
¢ T .mm"'."?t‘.?-iﬁ_
v T 0.455 1700 TS EEma
0.002 % = GogioRe P  Re, \
Laminar e . 0074 1700 . .
o G= ” o (5%10° < Re, < 107)
. : of ]
G _ 1328 Y0031 1440
VRe, b= Re,
oL T | — e i
10° 10 10’ 10° 10°
Re,

Local friction coefficient ¢¢ (top) and friction drag coefficient
Cr(bottom) for a flat plate parallel to the upstream flow.
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b. Influence of roughness
The influence of roughness can be analyzed in an exactly analogous
manner as done for pipe flow i.e.

b=t igiaBE) @D
K 9]

AB(g") = —iln(l+ 0.3¢")
K
I.e. rough wall velocity profile shifts downward by a constant amount

AB(¢™) which, increases with & = 19

A complete rough-wall analysis can be done using the composite log-
law in a similar manner as done for a smooth wall i.e. determine C(0)
and 0(9) from@ and equate using momentum integral equation

Ct(0) = 219(5)
dx
Then eliminate & to get C¢ (X,&/X)

However, analysis is complicated: solution is Fig. 7.6. For fully rough-
flow a curve fit to the Cs and Cp equations is given by,
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(0.014 \ .
i 2(H)
\ Fully rough
Eq. {7.485) 5
0.012 \ .
)
_.-f ‘
A

) 500 i

0.010 d
2 i

\ !

\\ 1000 |"

0.008 Vot d
A i

C N 2000 i
i) .
N ;-:

(1.006 Vil s 5000 !
”]-1; ’

e :

i 2% 10 |

0.004 A [ - 5% 104 ’
B e |

0.002 Transition \:l \%]6:
Laminar: Eq. (7.49) 2

Eq. (7.27) 7] !

ﬂ .
10° 10 107 10% 109

Fig. 7.6 Drag coefficient of laminar and turbulent boundary layers on

smooth and rough flat plates.

N

C; = (2.87 +1.58l0g )25
E

Cp = (1.89 +1.62log =) 25 J
&

~ Fully rough flow

Again, shown on Fig. 7.6. along with transition region curves developed

by Schlichting which depend on Re;= | 5x10°
3x10°
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5. Boundary layer with pressure gradient

Uy +Vvy =0

0 107
Uuy +Vuy :—&(p/p)+;@

ou I !
T:ﬂa—puv

The pressure gradient term has a large influence on the solution. In
particular, adverse pressure gradient (i.e. increasing pressure) can cause
flow separation. Recall that the y momentum equation subject to the
boundary layer assumptions reduced to

py= 0 i.e. p = pe = constant across BL.

That is, pressure (which drives BL equations) is given by external
inviscid flow solution which in many cases is also irrotational. Consider
a typical inviscid flow solution (chapter 8)

| |
SRR T
e e \
s MJ...A_% s (et zﬁb,.,bh_*\

Y v B
(\&n&ﬂ-m-&,; Lt Mw,k.j!‘!?‘ 3
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Even without solving the BL equations we can deduce information about
the shape of the velocity profiles just by evaluating the BL equations at

the wall (y = 0)
o’u  op,
o T ox
where %:-pue v,
OX dx

which, shows that the curvature of the velocity profile at the wall is
related to the pressure gradient.

Effect of Pressure Gradient on Velocity Profiles

Point of inflection: a point where a graph changes between concave
upward and concave downward.

The point of inflection is basically the location where second derivative
ou 0
of U is zero, i.e. oy? -

(a) favorable gradient: px<0, Ux>0, uyy<0

,.315 J

i
U

=
N

No point of inflection i.e. curvature is negative all across the BL and BL

IS very resistant to separation. Note uyy(3)<0 in order for u to merge
smoothly with U.
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(b) zero gradient: px=Ux = Uy =0
| 2 b

(c) weak adverse gradient: px>0, Ux<0, uyy>0

-

4 A
—g
s
T
>
U

Pl in flow, still no separation
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(d) critical adverse gradient: px>0, Ux<0, uy>0, uy =0

w

24
—
e
o4 a
Z.Ugf‘LO—'S:O

Pl in flow, incipient separation

(e) excessive adverse gradient: p,>0, Uyx<0, uy>0, uy <0
H_}
Tw < O

_b
U

Pl in flow, backflow near wall i.e. separated flow region

I.e. main flow breaks away or separates from the wall: large increase in
drag and loss of performance:
Hseparation = 3.5 laminar

= 2.4 turbulent
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6. 7~ Method

As mentioned earlier. the momentum mtegral equation for turbulent
flow has the identical form as the laminar-flow relation:

e C, 8 dU
L (24 H)
e JL-; dx @D

With U(x) assumed known, there are three unknown C f'H & for

turbulent flow. Thus, at least two additional relations are needed to find
unknowns. There are many possibilities for additional relations all of
which require a certain amount of empirical data. As an example we will
review the m—p method.

Cole’s law of the wake:

By adding the wake to the log-law. the velocity profile for both overlap
and outer layers can be written as:

,3
u” =lh1}r' +5 +£f{r,.1]
K K

where
n=yls

. i 3
f(m)=sin’(5m)=3n"—27
II=xA4d/2

The quantity IT 1s called Coles’ wake parameter.

By integrating wall-wake law across the boundary layer:

V2 H
A—C—f—a(H)—H_l
o 7112
a(IT) = 2+3179IT+1.5I1
x(1+1I1)

_Ue_1+II
¥ i

Re, exp{sd —x B —2I1)
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If we eliminate ITbetween these formulas. we obtain a unique relation
among C,=2/4" Hand 6.

C, =2/ A =2/[a(m—2—
i 2/Ta( ]H 1]
o 223 17011 +1.51T3
K(1+11) (II)
Re, =28 I o —xB—2m)
L v xH

Clauser's equalibrium parameter B:

For outer layer.

A — ap
U —-u=filr,. o vy.d—

‘ fr,.o. {ﬁ}
Using dimensional analysis:

U —u _], & dp

(r,/p)" & r, dx

Clauser (1954) replaced 3 by displacement thickness 5™

U -u ¥
W = E'{E-. £)
_Sdp_ .
r, ax I, dx

p 15 called Clauser's equilibrium parameter.

Das (1987) showed that EFD data pomts fit into the following
polynomial correlation:
B =—04+0.76IT+0.421T°

Therefore:

6 dU.
_ilg =
YH &

e

= —0.4+0.76IT+0421T" (I1T)
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If we eliminate ITusing that Re, _Le_ %w(tﬂ. —xB-21IT). we obtam
' L

another relation among C, =2/4° Hand 6.

Equations (I). (II). and (III) can be solved simultaneously using say a
Runge-Kutta method to find C ¥ .H. 6. Equations are solved with mmitial

condition for 8(x;) and integrated to x=x;+Ax iteratively. Estimated &
gives Reg and I'T. P gives H. Lastly Cs1s evaluated using Reg and H.
Iterations required until all relations satisfied and then proceed to next
Ax
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7. 3-D Integral methods

Momentum integral methods perform well (i.e. compare well with
experimental data) for a large class of both laminar and turbulent 2D
flows. However, for 3D flows they do not, primarily due to the inability
of correlating the cross flow velocity components.

Wk

—
A

The cross flow is driven by ? which is imposed on BL from the
Z

outer potential flow U(x,2z).

3-D boundary layer equations
Uuy + VU, + WU ——g(p/p)+l9u —Q(W)'
X y ‘ OX 4 oy ’

0 0 /.
UWy + YWy + WW, =—§(p/p)+l9wyy—@(vw),

Uy +Vy +W, =0;

+ closure equations
Differential methods have been developed for this reason as well as for
extensions to more complex and non-thin boundary layer flows.
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7.7 Separation

What causes separation?
The increasing downstream pressure slows down the wall flow and

can make it go backward-flow separation.
dp/dx >0 adverse pressure gradient, flow separation may occur.

dp/dx <0 favorable gradient, flow separation can never occur

Previous analysis of BL was valid before separation.
Separation Condition

-
Edge of f—p
boundary »
layer B "
Flos = i
X/ > Separation
. /%ﬁ =0 streamline -
L1111 LR RRRANNY CRRRRRRRNRRNNN
A B C D

LA LS LA AT S

7777 %k
airfoil surtace
Separation point

Note: 1. Due to backflow close to the wall, a strong thickening of the
BL takes place and BL mass is transported away into the

outer flow
2. At the point of separation, the streamlines leave the wall at a

certain angle.
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Separation of Boundary Layer

Fig. 2.6. Separation of the boundary layer
and vortex formation at a circular cylinder
(schematic). S = separation point

Notes:
1. D to E, pressure drop, pressure is transformed into kinetic energy.
2. From E to F, kinetic energy is transformed into pressure.

3. A fluid particle directly at the wall in the boundary layer is also
acted upon by the same pressure distribution as in the outer flow
(inviscid).

4. Due to the strong friction forces in the BL, a BL particle loses so
much of its kinetic energy that is cannot manage to get over the
“pressure gradient” from E to F.

5. The following figure shows the time sequence of this process:

a. reversed motion begun at the trailing edge

b. boundary layer has been thickened, and start of the reversed
motion has moved forward considerably.

c. and d. a large vortex formed from the backflow and then soon
separates from the body.
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Examples of BL Separations (two-dimensional)

Features: The entire boundary layer flow breaks away at the point of
zero wall shear stress and, having no way to diverge left or right, has to
go up and over the resulting separation bubble or wake.

Thin wall

1. Plane wall(s)

Fig. 2.10. Stagnation point flow, after H. Fottinger (19;39}, (a) fre;e stagnatiqn—
point flow without separation, (b) retarded stagnation—point flow, with separation

(a). Plane stagnation-point flow: no separation on the streamlines of
symmetry (no wall friction present), and no separation at the wall
(favorable pressure gradient)

(b).Flat wall with right angle to the wall: flow separate, why?

2. Diffuser flow:

Fig. 2.9. Flow in & widening channel (diffuser) (a) separation at both diffuser
walls, (b) suction of the boundary layer at the upper diffuser wall, (c) suction at
both diffuser walls (after L. Prandtl; O. Tietjens (1931))
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3. Turbulent Boundary Layer

(b)

3 - : e

Influence of a strong pressure gradient on a turbulent flow

(a) a strong negative pressure gradient may re-laminarize a flow

(b) a strong positive pressure gradient causes a strong boundary
layer top thicken. (Photograph by R.E. Falco)

Examples of BL Separations (three-dimensional)
Features: unlike 2D separations, 3D separations allow many more
options.

There are four different special points in separation:

(1). A nodal Point, where an infinite number of surface streamlines
merged tangentially to the separation line

(2). A saddle point, where only two surface streamlines intersect and
all others divert to either side

(3). A focus, or spiral node, which forms near a saddle point and
around which an infinite number of surface streamlines swirl

(4). A three-dimensional singular point, not on the wall, generally
serving as the center for a horseshoe vortex.
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1. Boundary layer separations induced by free surface (animation)

CFDSHIP-IOWA

2. Separation regions in corner flow

Profile NACA 0015

Separation

FIGURE 4-47

Separation regions in corner flow
between airfoils. [After Gersten
Separation (1959).]
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3. 3D separations on a round-nosed body at angle of attack

Separation

__—-r’/

Approach
flow

/ Attached

surface
streamiine
2,

FIGURE 4-49. Three-dimensional separation on a round-nosed body at angle of attack, first
described by Legendre (1965). Point 4 is a nodal attachment point, point S is a saddle point, and
point F is a focus of separation.

Video Library (animations from “Multi-media Fluid Mechanics”,
Homsy, G. M., etc.)

Conditions Producing Separation Separations on airfoil (different attack angles)

Leding edge separation Separations in difse
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Laminar Separation

Transition to Turbulence

i __~——Turbulent
Separation

| 09.6 || 13.1 || 26.0 || 30.2 || 2000 |[10,000] 2638 |[ 56.5 || 118 || 250 |[15,000][30.000]
Reynolds Number

Reynolds Number
Flow over cylinders: effect of Re Flow over spheres: effect of Re
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Vertical Plate

Forward Facing Step Backward Facing Step

Rectangular Tower Rectangular Cavity

Flow over edges and blunt bodies Flow over a truck

T Golf Ball

Cue Ball

Baseball

Tennis Ball

Effect of separation on sports balls
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