Summary of Reynolds Stresses and TKE Levels for Different Flows

Geometry	$\sqrt{k}/U_{\rm max}$	$\sqrt{uu}/U_{ m max}$	vv/uu	ww/uu	$\overline{uv/uu}$	uw/uu	vw/uu
Wall y+<50	0.089	0.1	0.24	0.35	0.15	/	/
		(y+=12)					
BL (0.1 <y td="" δ<0.7)<=""><td>/</td><td>$\sqrt{k}/U_{\rm max}$</td><td>$\frac{-}{vv} + \overline{w}$</td><td>$\overline{w} = \overline{uu}$</td><td>/</td><td>/</td><td>/</td></y>	/	$\sqrt{k}/U_{\rm max}$	$\frac{-}{vv} + \overline{w}$	$\overline{w} = \overline{uu}$	/	/	/
BL $(y/\delta > 0.7)$							
BL (flat plate,	0.14	0.12	0.12	0.29	0.11	/	/
$y/\delta < 0.8, Re_x = 10^7$)							
Wake	0.98	0.90	0.89	0.89	/	/	/
Jet	0.21	0.29	0.56	0.63	0.25	/	/
Plane mixing layer	0.19	0.17	0.60	0.77	0.33	0	0
Separated turbulent	0.11	0.13	0.23	0.41	0.00108	/	/
boundary layer							
Backward-facing step	0.18	0.18	0.44	0.63	0.0031	1	/
NACA0024	0.55	0.71	0.40	0.60	0.40	0.33	0.07
$(Re=2.26\times10^6)$							
Landing Gear	0.50	/	1	1	/	/	/
$(Re=6\times10^5)$							
Flat plate at high	0.55	0.50	1	/	/	/	/
incidence							
$(Re_c = 2 \times 10^4)$							
Sphere	0.32	0.24		/	/	/	/
$(Re=1\times10^4)$							

^{*} non-dimensionalized by U_{max}^2

TKE Budget and Reynolds Stress for Canonical Flows

C-convection; P-production; T-Transport; VD- viscous diffusion; VP-velocity pressure gradient; ε-dissipation

1. DNS of a plane mixing layer (Rogers & Moser, Physics of fluids, 1994)

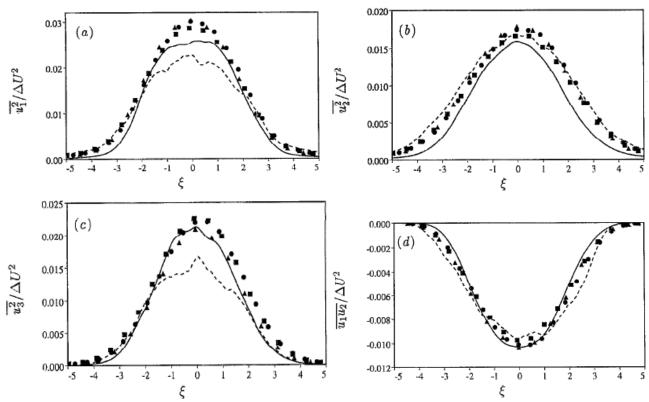


Figure 1.Comparison of the time-averaged ($\xi = x_2/\delta_m$) simulation results for the components of the Reynolds stress tensor (-) with the results of Bell and Mehta (1990) and the simulation profiles at $\tau = 187.5$ (----).

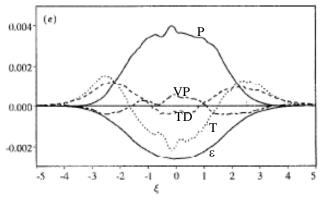
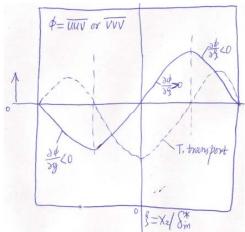


Figure 2. TKE budget for a plane mixing layer: δ_m is the momentum thickness.


Main conclusions:

- (1) **Reynolds normal stresses** (+): peak in the center of the mixing layer; \overline{uu} (0.030)> \overline{ww} (0.023)> \overline{vv} (0.018)
- (2) **Reynolds shear stress** (-): peaks in the center of the mixing layer; $-\overline{uv}$ (0.010) $< \overline{vv}$ (0.018)
- (3) **TKE** (+): peaks in the center of the mixing layer (0.036)

A. **Production** (+):
$$P_{ij} = -\overline{u_i}\overline{u_j}\frac{\partial U_i}{\partial x_j} = -\overline{u_i}\overline{v}\frac{\partial U_i}{\partial y} = -\overline{uv}\frac{\partial U}{\partial y} - \overline{vv}\frac{\partial V}{\partial y} - \overline{wv}\frac{\partial W}{\partial y}$$
 dominant and main producing term, peaks in the center of the layer

B. **Dissipation** (-): $\varepsilon_{ij} = -\frac{1}{\text{Re}} \frac{\overline{\partial u_i}}{\partial x_k} \frac{\partial u_i}{\partial x_k} = -\frac{1}{\text{Re}} \left(\frac{\partial u_i}{\partial y} \right)^2 = -\frac{1}{\text{Re}} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial y} \right)^2$ main consuming term; peaks in the center of the layer, $\varepsilon/P = 0.66$

C. **Transport** (+ or -): $T_{ij} = -\frac{1}{2} \frac{\partial \overline{u_i u_i u_j}}{\partial x_j} = -\frac{1}{2} \left(\frac{\partial \overline{u u v}}{\partial y} + \frac{\partial \overline{v v v}}{\partial y} \right)$ peaks in the center of the layer with T/P = 0.57. Zero at two locations that correspond to the half-thickness of the layer., i.e., move TKE from the middle of the shear layer (bounded by half-thickness of the layer $\xi = \pm 1.5$) to the edge of the shear layer.

D. **Convection**: $C_{ij} = -U_j \frac{\partial k}{\partial x_j} = -V \frac{\partial k}{\partial y}$ not available.

E. **Velocity-pressure gradient** (+ or -): $VP_{ij} = -\frac{\partial \overrightarrow{p'u_j}}{\partial x_j} = -\frac{\partial \overrightarrow{p'V}}{\partial y}$, peaks in the center of the layer with VP/P = 0.15. Zero at the same location of the zero for transport and shows opposite sign of transport.

F. **Viscous diffusion**: $D_{ij} = \frac{1}{\text{Re}} \frac{\partial^2 k}{\partial x_j^2} = \frac{1}{\text{Re}} \frac{\partial^2 k}{\partial y^2}$ an order of magnitude smaller than any other term across the entire layer and thus neglected.

2. DNS of a separated turbulent boundary layer (DNS, Na and Moin, JFM 1998)

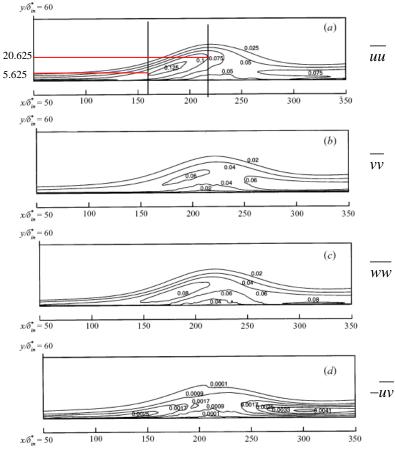


Figure 3. Contour of Reynolds stresses

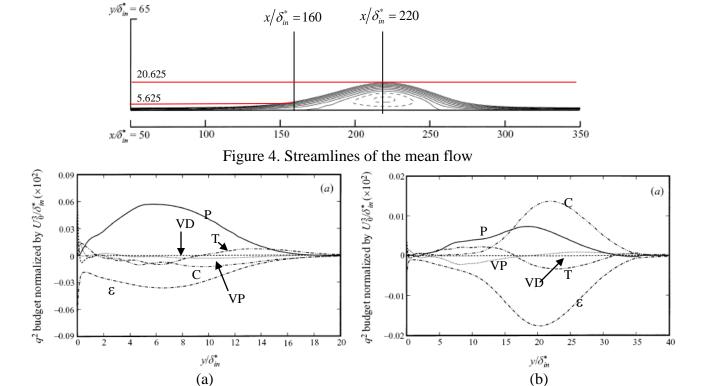


Figure 5. TKE budget for a **separated turbulent boundary layer under APG (entire region)**: (a) in the detachment region ($x/\delta_{in}^* = 160$); (b) in the middle of the separation bubble ($x/\delta_{in}^* = 220$)

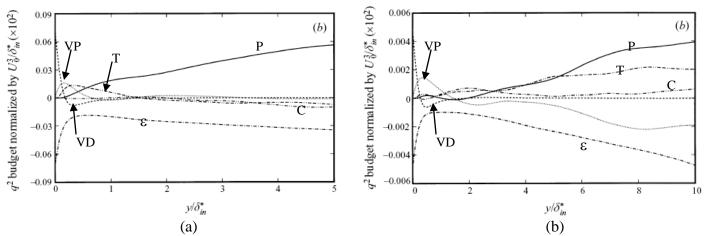


Figure 6. TKE budget for a **separated turbulent boundary layer under APG (CLOSE TO THE WALL)**: (a) in the detachment region ($x/\delta_{in}^* = 160$); (b) in the middle of the separation bubble ($x/\delta_{in}^* = 220$)

Main conclusions:

- (1) **Reynolds normal stresses** (+): peak near the toe and reach local maxima on the high-speed side of the free shear line (the separation streamline that divides the separation bubble from outer region). \overline{uu} (0.125)> \overline{vw} (0.08)> \overline{vv} (0.06)
- (2) **Reynolds shear stress** (+): maxima are significantly reduced up to the middle of the separation bubble. It increases thereafter and reaches its maximum value downstream of the reattachment region. $-\overline{uv}$ (0.0041) $< \overline{vv}$ (0.06)
- (3) **TKE** (+): peaks near the toe (0.133)
- (4) **TKE budget near the toe** $x/\delta_{in}^* = 160$:
 - A. **Production** (+): **dominant term**, peaks on the high-speed side of the free shear line; decrease to zero on the wall.
 - B. **Dissipation** (-): peaks on the high-speed side of the free shear line ($\varepsilon/P = 0.64$); significant consuming term near the wall and balanced mainly by viscous diffusion.
 - C. **Transport** (+ or -): peaks on the high-speed side of the free shear line (T/P = 0.15). Zero at two locations. One is very close to the wall ($y/\delta_{in}^* = 1.5$) and the other is on the high-speed side ($y/\delta_{in}^* = 9.0$ even farther away from the wall than P and ε), i.e., move TKE from the shear layer towards the wall and outer region.
 - D. **Convection** (-): peaks at $y/\delta_{in}^* = 9.0$ even farther away from the wall than P and ε , C/P = 0.22; decrease to zero on the wall; The main contribution to the convection term is from the longitudinal component C_{11} :

$$C_{11} = -U \frac{\partial \overline{u}\overline{u}}{\partial x} - V \frac{\partial \overline{u}\overline{u}}{\partial y}$$
, where the first term $-U \frac{\partial \overline{u}\overline{u}}{\partial x}$ is dominant.

At
$$x/\delta_{in}^* = 160$$
, U>0, $\frac{\partial \overline{uu}}{\partial x} > 0$, so C<0.

- E. **Velocity-pressure gradient** (+ or -): almost zero across the shear layer and only significant near the Wall (+).
- F. **Viscous diffusion** (+): an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

(5) TKE budget in the middle of the separation bubble $x/\delta_{in}^* = 220$:

- A. **Production** (+): peaks on the high-speed side of the free shear line, $P/\varepsilon = 0.43$; decrease to zero on the wall.
- B. **Dissipation** (-): **dominant term** peaks on the high-speed side of the free shear line; significant consuming term near the wall and balanced mainly by viscous diffusion.
- C. **Transport** (+ or -): peaks on the high-speed side of the free shear line with $T/\varepsilon = 0.22$. Zero at two locations. One is very close to the free shear line ($y/\delta_{in}^* = 16$) and the other is on the high-speed side ($y/\delta_{in}^* = 31$ even farther away from the solid surface than P, ε , and C), i.e., move TKE from the region bounded by the free shear line and the high-speed side of the free shear line into the separation bubble and outer region.
- D. **Convection** (+): peaks at almost the same location as dissipation, $C/\varepsilon = 0.78$; The main contribution to the convection term is from the longitudinal component C_{11} : $C_{11} = -U \frac{\partial \overline{uu}}{\partial x} V \frac{\partial \overline{uu}}{\partial y}$, where the first term $-U \frac{\partial \overline{uu}}{\partial x}$ is dominant. At $x/\delta_{in}^* = 220$, U>0, $\frac{\partial \overline{uu}}{\partial x} < 0$, so C>0.
- E. **Velocity-pressure gradient** (+ or -): almost zero across the shear layer and only significant near the wall (+).
- F. **Viscous diffusion** (+): an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

3. DNS of a backward-facing step flow (Le, Moin, and Kim, JFM 1997)

Figure 7. TKE budget for a **backward-facing step** flow at x/h=4.0: (a) overall; (b) near the wall.

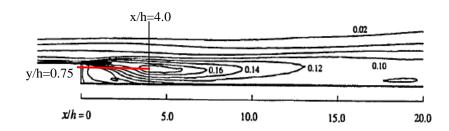


Figure 5.57. Longitudinal turbulence intensity contours $(\sqrt{\overline{u'^2}}/U_0)$.

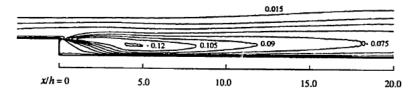


Figure 5.59. Vertical turbulence intensity contours $(\sqrt{\overline{v^{\prime 2}}}/U_0)$.

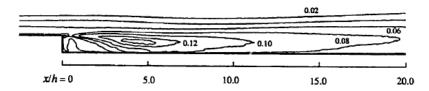


Figure 5.61. Spanwise turbulence intensity contours $(\sqrt{\overline{w'^2}}/U_0)$.

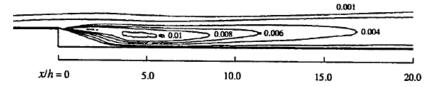


Figure 5.63. Reynolds shear stress contours $(-\overline{u'v'}/U_0^2)$.

- (1) **Reynolds normal stresses** (+): peak on the high-speed side of the free shear line, NOT near the separation point. \overline{uu} (0.18)> \overline{ww} (0.14)> \overline{vv} (0.12)
- (2) **Reynolds shear stress** (+): peak on the high-speed side of the free shear line, NOT near the separation Point. $-\overline{uv}$ (0.01) $< \overline{vv}$ (0.12).
- (3) **TKE** (+): peaks on the high-speed side of the free shear line (0.22).
- (4) **TKE** budget in the middle of the separation bubble x/h = 4:
 - A. **Production** (+): **dominant term,** peaks on the high-speed side of the free shear line and decrease to zero on the wall. Production is mostly due to the production of the longitudinal stress, $P_{11} = -uu \frac{\partial U}{\partial x}$, which is different from what found by Piirto *et al.* (Measuring Turbulence Energy with PIV in a Backward-facing Step Flow, Experiments in Fluids Vol. 35, 2003.) who concluded that "Production is mostly due to the Production of the longitudinal stress, $P_{21} = -uv \frac{\partial V}{\partial x}$ "
 - B. **Dissipation** (-): peaks on the high-speed side of the free shear line ($\varepsilon/P = 0.78$); significant consuming term near the wall and balanced mainly by viscous diffusion.
 - C. **Transport** (+ or -): peaks on the high-speed side of the free shear line (T/P = 0.21) and decreases to zero on the wall; Also zero at y/h=0.3 and on the high-speed side (y/h=1.1) even farther away from the wall than P and ε), i.e., Transport moves TKE from 0.3<y/h<1.1 towards the wall and the outer

region.

- D. **Convection** (+): peaks on the high-speed side of the free shear line (C/P = 0.21) and decreases to zero on the wall.
- E. **Velocity-pressure gradient** (+ or -): at least one-order smaller than other terms and only significant near the wall (+).
- F. **Viscous diffusion**: an order of magnitude smaller than any other term across the entire layer except near the wall where it becomes a significant producing term and balanced by ε .

Turbulent Kinetic Energy Budget and Reynolds Stress Budget Analysis

1. Canonical Flow (c—convection; p—production; ε—dissipation; T—transport; VP—velocity-pressure gradient)

G	Parameter/	,	TK	E budget		,	Reynolds stress Budget							Reference
Geometry	Approach	C	P	3	Т	VP		С	Р	ε	Т	VP	Comments	Reference
Axisymmetric wake of sphere	$Re_D = 8,600$ EFD	Dominant, Peaks near axis	P=0.2 ε P=0.15C	Peaks at axis; $\varepsilon = 0.5C$	T=0.5C	N/A	N	J/A	N/A	N/A	N/A	N/A	Turbulence is strongly influenced by conditions upstream. Reynolds stress reach self-similarity for (50 <x d<150).<="" td=""><td>Uberoi and Freymuth (1970), Physics of fluids, 13, 2205-2210.</td></x>	Uberoi and Freymuth (1970), Physics of fluids, 13, 2205-2210.
	Re=2x10^4 DNS	N/A	Dominant term, peaks at the center of the mixing	Peaks at the center of ML, ε =0.71P	Peaks at center of ML, T=0.65P		$\frac{\overline{u^2}}{\overline{v^2}}$	N/A	Dominant, peaks at center of ML	Peaks at center of ML, $\epsilon = 0.25P$ Peaks at	Peaks at center of ML, $\epsilon = 0.25P$ Peaks at	Peaks at center of ML, VP=0.5P Dominant,	All terms peaks at center of mixing layer; Production is always dominant terms for $\overline{u^2}$ and	Rogers and
Plane mixing layer			layer (ML)	01,71		N/A	·	N/A	N/A	center of ML, $\varepsilon = 0.5 \text{VP}$ Peaks at	center of ML, T=0.5VP Peaks at	peaks at center of ML Dominant.	\overline{uv} , while VP is the dominant term	Moser, 1994, Physics of fluids 6 (2)
							$\overline{w^2}$	N/A	N/A	center of ML, ε =0.6VP	center of ML, T=0.36VP	peaks at center of ML	for v^2 and w^2 . Flow rate of TKE increases linearly	,
							uv	N/A	Dominant, peaks at center of ML	Peaks at center of ML, ε=0.63P	Peaks at center of ML, T=0.5P	N/A	with x, which in contrast to jet and wakes.	
Turbulent boundary layer	R₀=1410 DNS	C=0 (y+<50) Peaks at BL edge	Peaks at $y+=12$; $P=\mathcal{E}$ $(y+=40\sim y/\delta=0.4)$; $P=0$ $(y>\delta)$	Peaks at wall; ε=P (y+=40~ y/δ=0.4)	Peaks at BL edge	Peaks at $y/\delta=0.8$; VP=0.5C; VP=0 for most BL		(y+<50) s at BL	P11 is the dominant term of u^2	Peaks at wall except for shear stress	Peaks at BL edge	VP dominant terms compared to 0 in TKE budget	Effect of pressure fluctuation is to redistribute energy from $\overline{u^2}$ to $\overline{v^2}$ and $\overline{w^2}$	Spalart (1988), JFM, 187, pp. 61-98.
Fully developed channel flow	Re=13,750 DNS	C=0 (y+<50)	Peaks at y+=12, where $P = 1.8\varepsilon$	Peaks at wall, $\varepsilon = P$	Peaks at y+=5 (>0) and y+=12 (<0)	VP=0	1	V/A	N/A	N/A	N/A	N/A	Peak P occurs where viscous stress and the Reynolds stress equal. Transports energy toward the wall and the log-law region.	Kim et al., 1987, JFM, 177, 133- 166.

1. Canonical Flow (c—convection; p—production; ε—dissipation; t—transport; vp—velocity-pressure gradient)

G	Parameter/		TK	E budget				<u>F</u>	Reynolds	stress Bu		J F		Reference
Geometry	Approach	С	P	3	Т	VP		С	P	3	T	VP	Comments	Reference
			Decks at Decks at		1	YI	$\overline{u^2}$	Peaks at centerline, C=0.65 &	Dominant term, Peaks at $r/(x-x_0) = 0.06$ P=1.48 ϵ Peaks at centerline,	Peaks at $r/(x-x_0) = 0.06$ Dominant term,	Peaks at $r/(x-x_0) = 0.06$ T=0.2 ϵ	Peaks at centerline, VP=0.65&	At edge, turbulence production goes to zero and turbulent transport balances dissipation, Reynolds stress decay. Reynolds stress decay when	Panchapake san and Lumley (1993), JFM, 246, 197-223.
Axisymmetric	EFD	Peaks at centerline; C=0.74 &	Peaks at $r/r_{1/2} = 0.6$ P=0.82 &	Dominant; peaks at centerline	Peaks at $r/r_{1/2} = 0.5$ T=0.35 ϵ	N/A	$\overline{v^2}$	•	Ρ=0.20ε	peaks at centerline	T=0.58	VP=0.72ε	approaching the edge and exhibit significant anisotropy.	
jet							$\frac{1}{w^2}$	Peaks at centerline, C=0.46 &	Peaks at centerline, P=0.10£	Peaks at centerline	Peaks at centerline T=0.58£	Dominant term, Peaks at centerline, VP=1.42&	ansonopy.	Hussein et al. (1994), JFM, 258, 31-75.
							uv	Peaks at $r/(x-x_0) = 0.05$ C=0.1T	Peaks at $r/(x-x_0) = 0.05$ C=0.17T	N/A	Dominant term, peaks at $r/(x-x_0) = 0.05$	N/A		

2. Separated Flow (separated turbulent boundary layer under Adverse Pressure Gradient)

C	Parameter/			TK	E budget					Reynolo	ds stress l			Reference	
Geometry	Approach	,	С	P	3	Т	VP		C	P	3	Т	VP	Comments	Reference
		x*= 160	C= 0.2P	Dominant, peaks at y*=6	Two peaks at wall (E=1.2P); at y*=6 (0.64P)	Peaks at y*=5, T=0.2P	Peaks at y*=0.2, VP=0.25P	$\overline{u^2}$	N/A	N/A	N/A	N/A	N/A	x*=160 is located at the detached region; x*=220 is located at the middle of separation bubble;	
Turbulent boundary layer (separated)	$Re_{\theta} = 300$ DNS	x*= 220	Peaks at y*=20; C=0.7 8 &	Peaks at y*=18; P=0.44ε	Dominant, Peaks at y*=20	Peaks at y*=20; T=0.17 ε	Peaks at y*=8; VP=0.11 ε	$\overline{u^2}$	Domi nant, peaks at y*=25	Peaks at y*=20, P=0.08C	Peaks at $y^*=21$, $\varepsilon = 0.63$ C	Peaks at y*=25 T=0.4C	Peaks at y*=21, VP =0.92C	x*=270 is located at the reattachment region; x*=320 is located at far downstream.	Na and Moin, 1998, JFM.
		x*= 270	Peaks at y*=11 C=P	dominant term; Peaks at y*=9;	Peaks at wall; ε =2.2P	Peaks at y*=5; T=0.3P	Peaks at y*=0.25; VP=0.65P	$\frac{1}{u^2}$	N/A	N/A	N/A	N/A	N/A	$x^* = x/\delta_{in}^*$ $y^* = y/\delta_{in}^*$	
		x*= 320	Peaks at y*=12 ;0.19P	Peaks at y*=0.4; dominant term	Peaks at wall; ε =1.4P	Peaks at y*=0.5; T=0.38P	Peaks at y*=0.5; VP=0.19P	$\overline{u^2}$	Peaks at wall, C=0	Dominant, peaks at y*=0.45	Peaks at wall, ε =0.88P	Peaks at y*=0.2, T=0.25P	Peaks at wall, VP=0.88P	11	

3. Separated Flow (backward-facing step, DNS by Huang Le, 1995, Ph.D. thesis) HSSL stands for "high-speed side of the free shear layer line"

			<u> </u>										
	Parameter/	TKE	budget (x/	h=-2, befo	re separa	tion)	Reynolds stress Budget (x/h=-2, before separation)						
Geometry	Approach	С	P	3	T	VP		С	P	3	T	VP	Comments
							$\overline{u^2}$	0	Dominant, peaks at (y-h)/h =0.04	Peaks at wall, ε=viscous diffusion	Peaks at (y-h)/h =0.02, T=0.5P	Peaks (y-h)/h >0.1 VP=0.13P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is
Backward- facing step	Re _h =10^5	0	Dominant, y/h=1.03	Peaks at wall, ε=1.35P	Peaks at y/h =1.019	Peaks at y/h=1.01	$\overline{v^2}$	Peaks at (y-h)/h = 0.7 C=0.19V P	0	Peaks at (y-h)/h =0.1 E=0.57 VP	0	Dominant, Peaks at (y-h)/h =0.2	dominant term. For v^2 and w^2 , velocity-pressure gradient term is dominant.
					T=0.54P	0.07P	$\overline{w^2}$	0	N/A	Peaks at wall, ε=VP	0	Dominant, peaks at y/h=0.025	
							uv	0	Dominant, peaks at (y-h)/h =0.08	0	Peaks at (y-h)/h =0.04 T=0.54P	Peaks at (y-h)/h =0.05 VP=P	

G .	Parameter/ Approach TKE budget (x/h=4, recirculation region)							Reynolds stress Budget (x/h=4, recirculation region					
Geometry	Approach	С	P	3	T	VP		С	P	3	T	VP	Comments
							$\overline{u^2}$	Peaks y/h=1.3 C=0.11P	Dominant term, peaks at HSSL	Peaks at HSSL ε=0.34P	Peaks at y/h=0.1 T=0.14P	Peaks at HSSL VP=0.69P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Backward-	Re _h =10^5 DNS	0	Dominant term, peaks y/h=0.8	Peaks at y/h=0.8	Peaks y/h=0.9	Peaks y/h=0.18	$\overline{v^2}$	Peaks y/h=1.2 C=0.25V P	Peaks at y/h=0.62 P=0.4VP	Peaks at $y/h=0.7$ $\epsilon=0.88VP$	Peaks at y/h=0.02 T=0.83VP	Dominant term, peaks at y/h=0.8	velocity-pressure gradient term is dominant.
facing step		U	y/II=0.6	ε=0.83P	T=0.28P	VP=0.11P	$\overline{w^2}$	Peaks y/h=1.0 C=0.21V P	N/A	Peaks at $y/h=0.8$ $\epsilon=0.8P$	Peaks at y/h=0.85 T=0.2VP	Dominant term, peaks at y/h=0.8	
							u v	0	Dominant term, peaks at y/h=0.7	0	Peaks at y/h=0.70 T=0.22P	Peaks at y/h=0.60 T=0.72P	

C	Parameter/	TKE b	udget (x/h	=7, reattach	ment regi	ion)	Re	ynolds str	ess Budget	(x/h=7 , re	attachmer	nt region)	
Geometry	Approach	С	P	3	T	VP		С	P	3	T	VP	Comments
							$\overline{u^2}$	Peaks at y/h=0.5, C=0.2P Peaks at	Dominant term, peaks at HSSL (y/h=0.8)	Peaks on wall, $\epsilon_{sL} = 0.33$ P	Peaks at HSSL, T=0.25P	Peaks at HSSL, VP=0.6P	For normal stress $\overline{u^2}$ and shear stress uv , turbulence production is dominant term. For vv and vv , velocity-pressure gradient term is dominant.
Backward- facing step	Re _h =10^5 DNS	0	Dominant term, peaks at y/h=0.75	Peaks at $y/h=0.7$, $\epsilon=0.67P$	Peaks y/h=0.7 T=0.55P	0	$\overline{v^2}$	y/h=1.25, C=0.26V P	y/h=0.5 P=0.43VP	y/h=0.6, ε=0.63VP	y/h=0.05 T=1.14V P	term, peaks at y/h=0.05	
g							\overline{w}^2	0	N/A	Peaks at $y/h=0.7$ $\varepsilon=VP$ (in SL)	0	Dominant term, peaks at y/h=0.7	
							uv	Peaks at y/h=0.5 C=0.11P	Dominant term, peaks at y/h=0.0075	0	Peaks at y/h=0.05, T=0.5P	Peaks at y/h=0.007 5, VP=0.67P	

	Parameter/ TKE budget (x/h=10, behind reattachment)								ess Budget (chment)			
Geometry	Approach	С	P	3	T	VP		С	P	3	T	VP	Comments
		0	Dominant	Peaks at	Peaks at		$\overline{u^2}$	Peaks at y/h=0.5, C=0.2P	Dominant term, peaks at HSSL	Peaks at wall, $\epsilon_{\text{SL}} = 0.2 P$	Peaks at y/h=0.75, T=0.18P	Peaks at HSSL, VP=0.5P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Backward-	Re _h =10^5	v	term, peaks at y/h=0.8	wall. At y/h=0.8, ϵ =P	y/h=0.8 T=0.5P	0	$\overline{v^2}$	Peaks at y/h=1.5 C=0.29V P	Peaks at y/h=0.6, P=0.36VP	Peaks at $y/h=0.7$, $\epsilon=0.7VP$	Peaks at y/h=0.05 T=1.29VP	Dominant term, peaks at y/h=0.05	velocity-pressure gradient term is dominant.
facing step							$\overline{w^2}$	0	N/A	Peaks at y/h=0.7 ε=VP	0	Dominant term, peaks at y/h=0.7	
							uv	Peaks at y/h=0.6 C=0.11P	Dominant term, peaks at y/h=0.75	0	Peaks at y/h=0.005 T=0.57P	Peaks at y/h=0.05 VP=0.9P	

G .	Parameter/	TKE	budget (x/	h=18, recov	ery regio	n)	F	Reynolds s	tress Budge	et (x/h=18,	recovery	region)	G.
Geometry	Approach	С	P	3	T	VP		С	P	3	T	VP	Comments
							$\overline{u^2}$	0	Dominant term, peaks at y/h=0.05	Peaks at wall, \$\&\epsilon = 0.42P\$	Peaks at y/h=1.2 T=0.01P	Peaks at y/h=1.5 VP=0.2P	For normal stress $\overline{u^2}$ and shear stress \overline{uv} , turbulence production is dominant term. For $\overline{v^2}$ and $\overline{w^2}$,
Backward-	Re _h =10^5	0	Dominant term, peaks at y/h=0.05	Peaks at wall, ε=P	Peaks at y/h=1.0 T=0.5P	0	$\overline{v^2}$	Peaks at y/h=0.6 C=0.19V P	Peaks at y/h=0.5 P=0.08VP	Peaks at $y/h=0.75$ $\epsilon=0.61\text{VP}$	Peaks at y/h=0.05 T=0.76VP	Dominant term, peaks at y/h=1.0	velocity-pressure gradient term is dominant.
facing step							$\overline{w^2}$	C=T=0.2 VP	N/A	ε=VP	T=C=0.2 VP	Dominant term, peaks near wall, y/h=0.01	
							uv	Peaks at y/h=0.8, C=0.14P	Dominant term, peaks at y/h=1,0.1	0	Peaks at y/h=1, T=0.29P	Peaks at y/h=0.05, VP=1.35P	