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Chapters 3 & 4:  Integral Relations for a Control Volume 
and Differential Relations for Fluid Flow 
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Reynolds Transport Theorem (RTT) 
 
Need relationship between ( )sysB

dt
d  and changes in 

∫ ∀=∫=
CVCV

ddmcvB βρβ . 

 
 

1 = time rate of change of B in CV = ∫ ∀=
CV

d
dt
d

dt
cvdB

βρ  

 
2 = net outflux of B from CV across CS = R

CS

V n dAβρ ⋅∫  

As with Q and 𝑚̇𝑚, ∆𝐵̇𝐵 flux though A per unit time is:  
𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
𝑑𝑑𝑚̇𝑚 = 𝜌𝜌𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
𝑑𝑑∆𝐵̇𝐵 = 𝛽𝛽𝛽𝛽𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑 
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Therefore: 
 

dAnVd
dt
d

dt
dB

R
CSCV

SYS ⋅+∀= ∫∫ βρβρ  

 
General form RTT for moving deforming control volume 
Special Cases: 
 
1)  Non-deforming CV 
 

( ) dAnVd
tdt

dB
R

CSCV

SYS ⋅+∀
∂
∂

= ∫∫ βρβρ  

 
2)  Fixed CV 
 

( ) dAnVd
tdt

dB

CSCV

SYS ⋅+∀
∂
∂

= ∫∫ βρβρ  

 
 Greens Theorem:  

CV CS

b d b n dA∇⋅ ∀ = ⋅∫ ∫  

 
( ) ( ) ∀



 ⋅∇+
∂
∂

= ∫ dV
tdt

dB

CV

SYS βρβρ  

 
Since CV fixed and arbitrary 

0
lim

→∀d
gives governing 

differential equation. 
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3)  Uniform flow across discrete CS (steady or unsteady) 
 

∑∫ ⋅=⋅
CS

R
CS

R dAnVdAnV βρβρ   (- inlet, + outlet) 

or for fixed CV, 𝑉𝑉𝑅𝑅 = 𝑉𝑉,   𝑉𝑉𝑆𝑆 = 0 
 
4) Steady Flow:  0=

∂
∂
t

 

 
 
Continuity Equation: 
 
B = M = mass of system 
β = 1 
 

0=
dt

dM  by definition, system = fixed amount of mass 

 
Integral Form: 
 

dAnVd
dt
d

dt
dM

CS
R

CV
∫∫ ⋅+∀== ρρ0  

 
dAnVd

dt
d

CS
R

CV
∫∫ ⋅=∀− ρρ  

 
Rate of decrease of mass in CV = net rate of mass outflow across CS 
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Note simplifications for 1) non-deforming and fixed CV   
(∀≠∀ (t), 𝑉𝑉𝑆𝑆 = 0), 2) uniform flow across discrete CS 

(∫=∑), 3) steady flow ( 0=
∂
∂
t

), and 4) incompressible fluid 

(ρ = constant ⇒  dAnVd
dt
d

CS
R

CV
∫∫ ⋅=∀−  : “conservation of 

volume”) 
 
1) Non-deforming and fixed CV 

0
CV CS

d V n dA
t
ρ ρ∂

∀+ ⋅ =
∂∫ ∫  

2) and uniform flow over discrete inlet/outlet 
0

CV

d V nA
t
ρ ρ∂

∀+ ⋅ =
∂ ∑∫  

3) and steady flow 
0V nAρ ⋅ =∑  

or 
( ) ( ) 0

in out
VA VAρ ρ− + =∑ ∑  

 
( ) ( )in out

Q m m mρ = ⇒ =∑ ∑    
4) and incompressible flow 

0in outQ Q− + =∑ ∑  
 
if non-uniform flow over discrete inlet/outlet 

( ) 1
i i

CS av avCS
CS CS

Q V n dA V A V V n dA
A

= ⋅ = = ⋅∫ ∫  
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Differential Form: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 = ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇. �𝜌𝜌𝑉𝑉�� 𝑑𝑑∀
𝐶𝐶𝐶𝐶

 

𝛽𝛽 = 1 

( ) 0=⋅∇+
∂
∂ V

t
ρρ

       

0=∇⋅+⋅∇+
∂
∂ ρρρ VV

t  

0=⋅∇+ V
Dt
D ρρ

 

0

1 1

d dM dM d d

D D
Dt Dt

ρρ ρ ρ
ρ

ρ
ρ

∀
= ∀⇒ = ∀+∀ = ⇒ − =

∀
∀

= −
∀

 0

11

1
=

∀
∀

∀
∀

==−
∂
∂+

∂
∂+

∂
∂

⋅∇+

  



unitper
changeofrate

Dt
D

Dt
D

z
w

y
v

x
u

V

unitper
changeofrate
Dt
D

ρ
ρρ

ρ

ρ
ρ  

Called the continuity equation since the implication is that 
ρ and V are continuous functions of x. 
  
Incompressible Fluid:  ρ =  constant 

0

0

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

z
w

y
v

x
u

V
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P3.15 Water, assumed incompressible, flows steadily 
through the round pipe in Fig. P3.15. The entrance 
velocity is constant, 0u U= , and the exit velocity 
approximates turbulent flow, ( )1 7

max 1u u r R= − . Determine 
the ratio U0/umax for this flow. 

 
Steady flow, non-deforming, fixed CV, one inlet uniform 
flow and one outlet non-uniform flow 
−𝑚𝑚𝚤𝚤𝚤𝚤̇ + 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜̇ = 0;   𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;   ̇ − 𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = 0 

( )1 72
0 max0

0 1 2
R

U R u r R rdrπ π= − + −∫  
2 2

0 max
490
60

U R u Rππ= − +  

0

max

49
60

U
u

=  

( ) ( )
1 7

15 7 8 7
max max0 2 2

0

1 12 1 2 1 1
1 12 1
7 7

R

R ru rdr u r R r R
R R R

π π
− −

 
    − = − − −        + +        

∫

2
max

7 72 0
15 8

u Rπ   = − −    
2

max
49
60

u Rπ=  
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P3.12 The pipe flow in Fig. P3.12 fills a cylindrical tank 
as shown. At time t=0, the water depth in the tank is 
30cm. Estimate the time required to fill the remainder of 
the tank. 

 
 
 
Unsteady flow, deforming CV, one inlet one outlet 
uniform flow 

1 20
CV

d d Q Q
dt

ρ ρ ρ= ∀− +∫  
2 2

1 20
4 4CV

d d dd V V
dt

π πρ ρ ρ= ∀− +∫  

( ) ( )
2

4
Dt h t π

∀ =  

h (0)=0.3m 
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( )
2 2

2 10
4 4
D dh d V V

dt
ρπ πρ= + −  

( )
2

1 2 0.0153dh d V V
dt D

 = − = 
   

0.7 46
0.0153 0.0153

dhdt s= = =  
 
Steady flow, fixed CV with one inlet and two exits with 
uniform flow 

Note:   
A

Q V n dA
dt
∀

= ⋅ =∫    
3L

s  

1 2 30 Q Q Q= − + +  

𝑄𝑄3 =
∀
𝑑𝑑𝑑𝑑

= 𝑄𝑄1 − 𝑄𝑄2 =
𝜋𝜋𝑑𝑑2

4
(𝑉𝑉1 − 𝑉𝑉2) 

𝑑𝑑𝑑𝑑 =
∀
𝑄𝑄3

=
𝑑𝑑ℎ 𝜋𝜋𝐷𝐷

2

4
𝜋𝜋𝑑𝑑2

4 (𝑉𝑉1 − 𝑉𝑉2)
 

 

( )

2

1 2

Ddh
d

V V

 
 
 =
−  
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P4.17 A reasonable approximation for the two-
dimensional incompressible laminar boundary layer on 

the flat surface in Fig.P4.17 is 
2

2

2y yu U
δ δ

 
= − 

   for y δ≤ , 

where 1 2Cxδ = , C const=  
(a) Assuming a no-slip condition at the wall, find an 
expression for the velocity component ( ),v x y  for y δ≤ . 
(b) Find the maximum value of v  at the station 1x m= , for 
the particular case of flow, when 3U m s=  and 1.1cmδ = . 

 
0u v

x y
∂ ∂

+ =
∂ ∂  

( )2 2 32 2v u U y y
y x x

δδ δ− −∂ ∂ ∂
= − = − − +

∂ ∂ ∂  

( )2 2 3

0
2

y

xv U y y dyδ δ δ− −= −∫  

(a) 
2 3

2 32
2 3x
y yv Uδ
δ δ

 
= − 

   1 2Cxδ =  
1 2

2 2x
C x

x
δδ −= =  

(b) Since 0yv =  at y δ=  

( )max
2 1 1
2 2 3
Uv v y

x
δδ  = = = − 
 

3 0.011 0.0055
6 6
U m s

x
δ ×

= = =  
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Momentum Equation: 
 
B = MV = momentum, β = V 
 
Integral Form: 


( )

3
1 2

R
CV CS

d MV d V d V V n dA F
dt dt

ρ ρ= ∀+ ⋅ =∑∫ ∫
 

 

∑F  =  vector sum of all forces acting on CV 
 = FB + Fs 
FB =  Body forces, which act on entire CV of fluid due to 

external force field such as gravity or electrostatic or 
magnetic forces.  Force per unit volume. 

Fs =  Surface forces, which act on entire CS due to normal 
(pressure and viscous stress) and tangential (viscous 
stresses) stresses.  Force per unit area. 

 
When CS cuts through solids Fs may also include FR = 
reaction forces, e.g., reaction force required to hold nozzle 
or bend when CS cuts through bolts holding nozzle/bend 
in place. 
 
 1 = rate of change of momentum in CV 
       2 = rate of outflux of momentum across CS 
 3 = vector sum of all body forces acting on entire CV 
and  surface forces acting on entire CS. 
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Many interesting applications of CV form of momentum 
equation: vanes, nozzles, bends, rockets, forces on bodies, 
water hammer, etc. 
 
Differential Form: 
 

( ) ( )
CV

V V V d F
t

ρ ρ∂ +∇ ⋅ ∀ = ∂ 
∑∫  

Where ( ) VV V
t t t

ρρ ρ∂ ∂ ∂= +
∂ ∂ ∂

 

and ˆˆ ˆV V VV ui V vjV wkVρ ρ ρ ρ ρ= = + +  is a tensor 
( ) ( ) ( ) ( ) ( )V V VV uV vV wV

x y z
ρ ρ ρ ρ ρ∂ ∂ ∂

∇ ⋅ = ∇ ⋅ = + +
∂ ∂ ∂  

VVVV ∇⋅+⋅∇= ρρ )(  
 
 

( )
CV

VV V V V d F
t t
ρ ρ ρ ∂ ∂    +∇ ⋅ + + ⋅∇ ∀ =    ∂ ∂    

∑∫  

 
  

= 0 , continuity 
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Since 
V DVV V
t Dt

∂
+ ⋅∇ =

∂  

∑∫ =∀ Fd
Dt
VD

CV

ρ  

∑= f
Dt
VDρ  per elemental fluid volume 

sb
ffa +=ρ  

 
b

f  = body force per unit volume 

s
f  = surface force per unit volume 

 
Body forces are due to external fields such as gravity or 
magnetic fields.  Here we only consider a gravitational 
field; that is, 

dxdydzgFdF gravbody ρ=∑ =  
 

and  ˆg gk= −   for    

i.e. ˆ
body

f gkρ= −  
  

z 

g 
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Surface Forces are due to the stresses that act on the sides 
of the control surfaces 

ijijij p τδσ +−=  
 

















+−
+−

+−
=

zzzyzx

yzyyyx

xzxyxx

p
p

p

τττ
τττ
τττ

 

 
 
 

As shown before, for p alone it is not the stresses 
themselves that cause a net force but their gradients. 
 
Symmetry condition from requirement that for elemental 
fluid volume, stresses themselves cause no rotation. 
 

s pf f fτ= +  
 

Recall pf p= −∇  based on 1st order TS.  fτ  is more 
complex since 

ijτ  is a 2nd order tensor, but similarly as for 
p, the force is due to stress gradients and are derived 
based on 1st order TS. 
 
 

Viscous stress Normal pressure 

Symmetric ij jiσ σ=  
 
2nd order tensor 
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^ ^ ^

^ ^ ^

^ ^ ^

x xx xy xz

y yx yy yz

z zx zy zz

i j k

i j k

i j k

σ σ σ σ

σ σ σ σ

σ σ σ σ

= + +

= + +

= + +

   

 
 
 
 
 
 
 
 

and similarly for z 
 

𝐹𝐹𝑠𝑠 = �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑥𝑥𝑥𝑥) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑦𝑦� +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑧𝑧𝑧𝑧)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝚤𝚤̂ 

+ �
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑥𝑥𝑥𝑥� +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑦𝑦� +
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜎𝜎𝑧𝑧𝑧𝑧�� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝚥𝚥̂ 

+ �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑥𝑥𝑥𝑥) +
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜎𝜎𝑦𝑦𝑦𝑦� +
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜎𝜎𝑧𝑧𝑧𝑧)� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘� 

 

( ) ( ) ( )s x y zF dxdydz
x y z
σ σ σ

 ∂ ∂ ∂
= + + ∂ ∂ ∂   

 
  

z 

Resultant 
stress  
on each face 

x 

y 

dydzdx
x

xx
xx 








∂
∂

+
σσ  

yx
yx dy dxdz

y
σ

σ
∂ 

+ ∂   

yx dxdzσ  

xx dydzσ  
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Divided by the volume: 

( ) ( ) ( )s x y zf
x y z
σ σ σ∂ ∂ ∂

= + +
∂ ∂ ∂  

s ij ij
j

f
x

σ σ∂
= ∇⋅ =

∂  

 
Putting together the above results, 

ˆ
ij

DVa gk
Dt

ρ ρ ρ σ= = − +∇⋅  
 
 

 
Next, we need to relate the stresses σij to the fluid motion, 
i.e. the velocity field.  To this end, we examine the 
relative motion between two neighboring fluid particles. 
 
 
 
 
@ B: VdrVdVV ∇⋅+=+   1st order Taylor Series 

jij

zyx

zyx

zyx

dxe
dz
dy
dx

www
vvv
uuu

VdrdV =
































=∇⋅=  

 
 

 

body force 
due to 
gravity 

Inertial force 
surface force = p + viscous terms 
(due to stress gradients) 

B 

relative motion 

deformation rate 
tensor = ije  

A (u,v,w) = V 
dr  
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1 1
2 2

j ji i i
ij ij ij

j j i j i

u uu u ue
x x x x x

symmetric part anit symmetric part
ij ji ij ji

ε ω

ε ε ω ω

   ∂ ∂∂ ∂ ∂
= = + + − = +      ∂ ∂ ∂ ∂ ∂   

−
= =−

   

1 10 ( ) ( )
2 2

1 1( ) 0 ( )
2 2

1 1( ) ( ) 0
2 2

y x z x

ij x y z y

x z y z

u v u w

v u v w rigid body rotation
of fluid element

w u w v

η

ω

ζ

ξ

 
 
 
 − − 
 
 = − − = 
 
 
 

− − 
 
  







  

 
where ξ= rotation about x axis 

η = rotation about y axis 
ς= rotation about z axis 

 
Note that the components of ωij are related to the vorticity 
vector define by: 
 

ˆˆ ˆ( ) ( ) ( )
2 22

y z z x x yV w v i u w j v u kω
η ζξ

= ∇× = − + − + −
   

 
= 2 × angular velocity of fluid element 
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1 1( ) ( )
2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

ij

x y x z x

x y y z y

x z y z z

rate of strain tensor

u u v u w

v u v v w

w u w v w

ε =

 + + 
 
 = + + 
 
 + +
  

 

 
x y zu v w V+ + = ∇⋅ = elongation (or volumetric dilatation)  

of fluid element 
1 D

Dt
∀

=
∀

 

)(
2
1

xy vu +  = distortion wrt (x,y) plane 

)(
2
1

xz wu +  = distortion wrt (x,z) plane 

)(
2
1

yz wv +  = distortion wrt (y,z) plane 

Thus, general motion consists of: 
 

1) pure translation described by V  
2) rigid-body rotation described by ω 
3) volumetric dilatation described by V∇⋅  
4) distortion in shape described by εij  i≠ j 
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It is now necessary to make certain postulates concerning 
the relationship between the fluid stress tensor (σij) and 
rate-of-deformation tensor (eij).  These postulates are 
based on physical reasoning and experimental 
observations and have been verified experimentally even 
for extreme conditions. For a Newtonian fluid: 
 

1) When the fluid is at rest the stress is hydrostatic and 
the pressure is the thermodynamic pressure 
 

2) Since there is no shearing action in rigid body 
rotation, it causes no shear stress. 

 
3) τij is linearly related to εij and only depends on εij. 

 
 

4) There is no preferred direction in the fluid, so that 
the fluid properties are point functions (condition of 
isotropy). 
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Using statements 1-3 
 

ijijmnijij kp εδσ +−=  
 
kijmn = 4th order tensor with 81 components such that each 
stress is linearly related to all nine components of εij. 
 
However, statement (4) requires that the fluid has no 
directional preference, i.e. σij is independent of rotation of 
coordinate system, which means kijmn is an isotropic 
tensor = even order tensor made up of products of δij. 
 

ijmn ij mn im jn in jmk λδ δ µδ δ γδ δ= + +  
 

scalars=),,( γµλ  
 

Lastly, the symmetry condition σij = σji requires: 
 

kijmn = kjimn  γ = μ = viscosity 
 

𝜎𝜎𝑖𝑖𝑖𝑖 = −𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜇𝜇𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜇𝜇𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑚𝑚𝑚𝑚𝜀𝜀𝑖𝑖𝑖𝑖  
 


2ij ij ij mm ijp

V
σ δ µε λ ε δ= − + +

∇⋅
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λ and μ can be further related if one considers mean 
normal stress vs. thermodynamic p. 
 

3 (2 3 )ii p Vσ µ λ= − + + ∇⋅  
1 2
3 3iip V

p mean
normal stress

σ µ λ = − + + ∇⋅ 
 

=
  

 
2
3

p p Vµ λ − = + ∇⋅ 
   

 
Incompressible flow: pp =   and absolute pressure is 
indeterminant since there is no equation of state for p.  
Equations of motion determine p∇ . 
 
Compressible flow:  pp ≠  and λ = bulk viscosity must be 
determined; however, it is a very difficult measurement 
requiring large 1 1D DV

Dt Dt
ρ

ρ
∀

∇⋅ = − =
∀

, e.g., within shock 
waves. 
 
Stokes Hypothesis also supported kinetic theory 
monotonic gas. 

pp =

−= µλ 3
2
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2 2
3ij ij ijp Vσ µ δ µε = − + ∇ ⋅ + 

   

Generalization 
dy
duµτ =   for 3D flow. 









∂
∂

+
∂
∂

=
i

j

j

i
ij x

u
x
uµσ  ji ≠  relates shear stress to strain rate 

 
2 12 2
3 3

i i
ii

i i

u up V p V
x x

normal viscous stress

σ µ µ µ
   ∂ ∂

= − − ∇⋅ + = − + − ∇⋅ +   ∂ ∂   
 

 
Where the normal viscous stress is the difference between 
the extension rate in the xi direction and average 
expansion at a point.  Only differences from the average = 









∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u

3
1  generate normal viscous stresses.  For 

incompressible fluids, average = 0 i.e. 0V∇⋅ = . 
 
Non-Newtonian fluids: 

ijij ετ ∝  for small strain rates 
⋅

θ , which works well for 
air, water, etc. Newtonian fluids 
 

 

n
ij ij ijt

non linear history effect

τ ε ε∂
∝ +

∂
−

  Non-Newtonian 

      Viscoeslastic  materials 
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Non-Newtonian fluids include: 
 

(1) Polymer molecules with large molecular 
weights and form long chains coiled together 
in spongy ball shapes that deform under shear. 

  
(2) Emulsions and slurries containing suspended 

particles such as blood and water/clay 
 
 
Navier Stokes Equations: 
 

ˆ
ij

DVa gk
Dt

ρ ρ ρ σ= = − +∇⋅  
 

2ˆ 2
3ij ij

j

DV gk p V
Dt x

ρ ρ µε µ δ∂  = − −∇ + − ∇⋅ ∂    

 
Recall μ = μ(T)  μ increases with T for gases, decreases 
with T for liquids, but if it is assumed that μ = constant: 
 

2ˆ 2
3ij

j j

DV gk p V
Dt x x

ρ ρ µ ε µ∂ ∂
= − −∇ + − ∇⋅

∂ ∂  

 
2

2 22 ji i
ij i

j j j i j j

uu u u V
x x x x x x
ε

 ∂∂ ∂∂ ∂
= + = = ∇ = ∇  ∂ ∂ ∂ ∂ ∂ ∂ 
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𝜌𝜌 𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

2 2ˆ
3 j

g k p V V
x

ρ µ
 ∂

= − −∇ + ∇ − ∇⋅ 
∂  

 

For incompressible flow 0V∇⋅ =  
 

2ˆ

ˆ ˆ

DV gk p V
Dt

p where p p z
piezometric pressure

ρ ρ µ
γ

= − −∇ + ∇

−∇ = +
  

For μ = 0 
 

ˆDV g k p
Dt

ρ ρ= − −∇   Euler Equation 
 

NS equations for ρ, μ constant 
 

2ˆDV p V
Dt

ρ µ= −∇ + ∇  
 

2ˆV V V p V
t

ρ µ∂ + ⋅∇ = −∇ + ∇ ∂   

21 ˆV V V p V
t

ν
ρ

∂ + ⋅∇ = − ∇ + ∇ ∂      
µν
ρ

=  kinematic viscosity 

 
Non-linear 2nd order PDE, as is the case for ρ, μ  not constant 

 
Combine with V∇⋅  for 4 equations for 4 unknowns V , p 
and can be, albeit difficult, solved subject to initial and 
boundary conditions for V , p at t = t0 and on all 
boundaries i.e. “well posed” IBVP. 
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Application of CV Momentum Equation: 
 
 ∑𝐹𝐹�

𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶

= 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝜌𝜌 𝑑𝑑∀𝐶𝐶𝐶𝐶���������

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶

+ ∫ 𝑉𝑉𝜌𝜌𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶���������
𝑛𝑛𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

 

 SB FFF +=  ( SF  includes reaction forces) 
 
Note: 
 

1. Vector equation 
  
2. n = outward unit normal: RV n⋅  < 0 inlet, > 0 outlet 

 
3. 1D Momentum flux, fixed CV 

 
( ) ( )i ii iout in

CS

V V n dA m V m Vρ ⋅ = −∑ ∑∫    

 
Where iV , iρ are assumed uniform over fixed discrete 
inlets and outlets 
  

i i ni im V Aρ=  
 

∑𝐹𝐹 = 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝜌𝜌 𝑑𝑑∀𝐶𝐶𝐶𝐶 + ∑�𝑚̇𝑚𝑖𝑖  𝑉𝑉𝑖𝑖�𝑜𝑜𝑜𝑜𝑜𝑜���������

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

− ∑�𝑚̇𝑚𝑖𝑖  𝑉𝑉𝑖𝑖�𝑖𝑖𝑖𝑖�������
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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4. Momentum flux correlation factors 

�𝑢𝑢𝑢𝑢𝑉𝑉.𝑛𝑛 𝑑𝑑𝑑𝑑 = 𝜌𝜌�𝑢𝑢2 𝑑𝑑𝑑𝑑
�������

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤ℎ
𝑛𝑛𝑛𝑛𝑛𝑛−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝜌𝜌𝜌𝜌𝜌𝜌𝑉𝑉𝑎𝑎𝑎𝑎2 = 𝑚̇𝑚𝛽𝛽𝑉𝑉𝑎𝑎𝑎𝑎 

Where  
2

1

avCS

u dA
A V

β
 

=  
 
∫    

  
1

av
CS

QV u dA AA
= =∫  

Laminar pipe flow: 
 

 
1

2 2

0 021 1r ru U U
R R

   = − ≈ −   
  

 

 
 0.53avV U=  𝛽𝛽 = 4

3
= 1.33 

Turbulent pipe flow: 
 

 
m

R
rUu 





 −= 10   1 1

9 5m≤ ≤  

 

       ( )0
2

1 (2 )avV U
m m

=
+ + :  for  7

1=m , Vav =.82U0 

 ( ) ( )
)22)(21(2

21 22

mm
mm
++
++

=β :  for  m=1/7, β = 1.02 
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5. Constant p causes no force;  Therefore, 
 

 Use  pgage = patm-pabsolute 
 

0p
CS CV

F pn dA p d= − = − ∇ ∀ =∫ ∫  for p = constant 

 
6.  For jets open to atmosphere: p = pa, i.e. pgage = 0. 
  
7.  Choose CV carefully with CS normal to flow (if 

possible) and indicating coordinate system and ∑F  
on CV similar as free body diagram used in 
dynamics. 

 
8.   Many applications, usually with continuity and 

energy equations. Careful practice is needed for 
mastery. 

a. Steady and unsteady developing and fully 
developed pipe flow 

b. Emptying or filling tanks 
c. Forces on transitions 
d. Forces on fixed and moving vanes 
e. Hydraulic jump 
f. Boundary Layer and bluff body drag 
g. Rocket or jet propulsion 
h. Nozzle 
i. Propeller 
j. Water-hammer 
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First relate umax to U0 using continuity equation 
 

 
( )∫ −=

==⇒==⇒=+−

R m

avoutavinavoutinoutin

drrR
ruRU

A
QVVVQQQQQ

0
max

2
0

,,

21

     ;      0

ππ
 

 

 ( )0 max2
0

1 1 2
R m

av
rU u r dr VRR

π
π

= − =∫  

 max
2

(1 )(2 )avV u
m m

=
+ +     

m = 1/2 Vav = .53umax  umax = Vav/.53   
m = 1/7 Vav = .82umax  umax = Vav/.82 
 

≈ 
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Second, calculate F using momentum equation: 
 
 F = wall drag force = Rdxw πτ 2  (force fluid on wall) 
 -F = force wall on fluid 
 
 ( ) ∫ −=−−=∑

R

x URUdrruuFRppF
0

0

2

022

2

21 )()2( ρππρπ  
 

 
( ) 2 2 2 2

1 2 0 2
0

2

2

R

F p p R U R u r dr

AVav

π ρ π ρ π

βρ

= − + − ∫
  

 
 𝐹𝐹 = (𝑝𝑝1 − 𝑝𝑝2)𝜋𝜋𝑅𝑅2 + 𝜌𝜌𝑈𝑈02𝜋𝜋𝑅𝑅2 − 𝛽𝛽2𝜌𝜌𝜌𝜌𝑉𝑉𝑎𝑎𝑎𝑎2�������������

𝜌𝜌𝑈𝑈02𝜋𝜋𝑅𝑅2(1−𝛽𝛽2)

 

 

𝛽𝛽 = 1
𝐴𝐴 ∫ �

𝑢𝑢
𝑉𝑉𝑎𝑎𝑎𝑎
�
2
𝑑𝑑𝑑𝑑�����������

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

  

= 4/3 laminar flow 
=  1.02 turbulent flow 

22

0

2

21 3
1)( RURppFlam πρπ −−=  

 
22

0

2

21 02.)( RURppFturb πρπ −−=  
 
 

= U0
2 from  

continuity 

Complete analysis 
using CFD! 
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Reconsider the problem for fully developed flow: 
 
 Continuity: 
 

 
0in out

in out

m m
m m m
− + =

= =

 

     or  Q = constant 

 
 Momentum: 

  

( ) ( )2
1 2

2 2

( )

( ) ( )
( )

0

x
in out

ave in ave out

ave out in

F p p R F u V n dA u V n dA

AV AV
QV

π ρ ρ

ρ β ρ β
ρ β β

= − − = ⋅ + ⋅

= − +
= −
=

∑ ∫ ∫

 

(𝑝𝑝1 − 𝑝𝑝2)𝜋𝜋𝑅𝑅2 − 𝜏𝜏𝑤𝑤2𝜋𝜋𝜋𝜋dx = 0 
 

Δ𝑝𝑝𝑝𝑝𝑅𝑅2 − 𝜏𝜏𝑤𝑤2𝜋𝜋𝜋𝜋dx = 0 
  Since Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 = −𝑑𝑑𝑑𝑑 = −(𝑝𝑝2 − 𝑝𝑝1) 
 
 






−=

dx
dpR

w 2
τ  or for smaller CV r < R, 






−=

dx
dpr

2
τ  

 
  (valid for laminar or turbulent flow, but assume laminar) 
 
  






−=−==

dx
dpr

dr
du

dy
du

2
µµτ   y = R-r  (wall coord.) 

  





−−=

dx
dpr

dr
du

µ2
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  c
dx
dpru +






−−=

µ4

2

 

 
  0)( == Rru     






−=

dx
dpRc

µ4

2

 

 
  






−

−
=

dx
dprRru

µ4
)(

22

 (If  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 flow moves from left to right) 

 
  






−=

dx
dpRu

µ4

2

max
  






 −=

2

2

max 1)(
R
ruru  

 
  






−=∫= dx

dpRdrrruQ
R

µ
ππ
8

2)(
4

0

 

 

  
2

max
28ave

Q R dp uV
A dxµ

 = = − = 
   

 

  2

8 4
2 2

ave ave
w

V VR dp R
dx R R

µ µτ   = − = =   
     

 

  2

8 32 64 64
Re

w

ave ave ave

f
V RV V D
τ µ µ

ρ ρ ρ
= = = =  

 

  Re aveV D
ν

=    
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Piezometric head 
h = z +

p
𝛾𝛾

 

For a horizontal pipe 
∆𝑝𝑝 = 𝛾𝛾∆ℎ , ∆𝑧𝑧 = 0  

 
2 𝑑𝑑𝑑𝑑 𝜏𝜏𝑤𝑤

𝑅𝑅
= −𝑑𝑑𝑑𝑑 = ∆𝑝𝑝 = 2 𝐿𝐿 𝜏𝜏𝑤𝑤

𝑅𝑅
 ,   𝑓𝑓 = 8𝜏𝜏𝑤𝑤

𝜌𝜌𝑉𝑉𝑎𝑎𝑎𝑎2
 

 
∆𝑝𝑝 = 2𝐿𝐿𝐿𝐿𝑉𝑉𝑎𝑎𝑎𝑎2 𝑓𝑓

8𝑅𝑅
= 𝐿𝐿𝐿𝐿𝑉𝑉𝑎𝑎𝑎𝑎2 𝑓𝑓

2𝐷𝐷
  

Dividing by 𝛾𝛾 
∆𝑝𝑝
𝛾𝛾

=
𝐿𝐿𝐿𝐿𝑉𝑉𝑎𝑎𝑎𝑎2 𝑓𝑓

2𝐷𝐷𝐷𝐷
= 𝑓𝑓

𝐿𝐿
𝐷𝐷
𝑉𝑉𝑎𝑎𝑎𝑎2

2𝑔𝑔
  

More generally 
 

∆ℎ = 𝑓𝑓 𝐿𝐿
𝐷𝐷
𝑉𝑉𝑎𝑎𝑎𝑎2

2𝑔𝑔
  Darcy–Weisbach equation 

 
Exact solution of NS for laminar fully developed pipe
 flow 
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Application of relative inertial coordinates for a 
moving but non-deforming control volume (CV) 
 
The CV moves at a constant velocity CSV  with respect to 
the absolute inertial coordinates. If RV  represents the 
velocity in the relative inertial coordinates that move 
together with the CV, then: 
 
                                     R CSV V V= −  
                     
Reynolds transport theorem for an arbitrary moving deforming 
CV:  

                     
SYS

R
CV CS

dB d d V n dA
dt dt

βρ βρ= ∀+ ⋅∫ ∫    

 
For a non-deforming CV moving at constant velocity, RTT for 
incompressible flow: 

                     
syst

R
CV CS

dB
d V ndA

dt t
βρ ρ β∂

= ∀+ ⋅
∂∫ ∫

    
 

 
1. Conservation of mass 
   systB M= , and 1β = : 

                                R
CS

dM V ndA
dt

ρ= ⋅∫
                                         

 

For steady flow:  
 
                                    0R

CS

V ndA⋅ =∫
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2. Conservation of momentum  
 

   ( )CSsyst RB M V V= +  and syst R CSdB dM V Vβ = = +   
 
 
                   

( ) ( ) ( )
[ ]CS CSR R

CSR R
CV CS

d M V V V V
F d V V V ndA

dt t
ρ ρ

+ ∂ +
= = ∀+ + ⋅

∂∑ ∫ ∫
 

 
 
For steady flow with the use of continuity: 
 
 

                               

( )CSR R
CS

CSR R R
CS CS

F V V V ndA

V V ndA V V ndA

ρ

ρ ρ

= + ⋅

= ⋅ + ⋅

∑ ∫

∫ ∫
0

        

 
 

R R
CS

F V V ndAρ= ⋅∑ ∫
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Example (use relative inertial coordinates): 
 
     A jet strikes a vane which moves to the right at constant velocity 𝑉𝑉𝐶𝐶  on a 

frictionless cart.  Compute (a) the force 𝐹𝐹𝑥𝑥 required to restrain the cart and (b) 
the power 𝑃𝑃 delivered to the cart.  Also find the cart velocity for which (c) the 
force 𝐹𝐹𝑥𝑥 is a maximum and (d) the power 𝑃𝑃 is a maximum. 

 
Solution: 

 
Assume relative inertial coordinates with non-deforming CV i.e. CV moves 

at constant translational non-accelerating  
                                              𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑢𝑢𝐶𝐶𝐶𝐶𝚤𝚤̂ + 𝑣𝑣𝐶𝐶𝐶𝐶𝚥𝚥̂ + 𝑤𝑤𝐶𝐶𝐶𝐶𝑘𝑘� = 𝑉𝑉𝐶𝐶𝚤𝚤̂ 
then R CSV V V= −  . Also assume steady flow 𝑉𝑉 ≠ 𝑉𝑉(𝑡𝑡) with 𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 
neglect gravity effect. 
 
Continuity: 
                                                    0 = 𝜌𝜌 ∫ 𝑉𝑉𝑅𝑅 ⋅ 𝑛𝑛𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶  

−𝜌𝜌𝑉𝑉𝑅𝑅1𝐴𝐴1 + 𝜌𝜌𝑉𝑉𝑅𝑅2𝐴𝐴2 = 0 
𝑉𝑉𝑅𝑅1𝐴𝐴1 = 𝑉𝑉𝑅𝑅2𝐴𝐴2 = �𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶��������

𝑉𝑉𝑅𝑅1=𝑉𝑉𝑅𝑅𝑥𝑥1=𝑉𝑉𝑗𝑗−𝑉𝑉𝐶𝐶

𝐴𝐴𝑗𝑗 

Bernoulli without gravity: 

                                          1p
0 2

1 2
1
2 RV pρ+ =

0 2
2

1
2 RVρ+  

                                                        1 2R RV V=  
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                                                      1 2 jA A A= =       
Momentum: 

∑𝐹𝐹 = 𝜌𝜌� 𝑉𝑉𝑅𝑅  𝑉𝑉𝑅𝑅 ⋅ 𝑛𝑛𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

 

x x Rx RCS
F F V V ndAρ= − = ⋅∑ ∫  

 
−𝐹𝐹𝑥𝑥 = 𝜌𝜌𝑉𝑉𝑅𝑅𝑥𝑥1(−𝑉𝑉𝑅𝑅1𝐴𝐴1) + 𝜌𝜌𝑉𝑉𝑅𝑅𝑥𝑥2(𝑉𝑉𝑅𝑅2𝐴𝐴2) 

 
−𝐹𝐹𝑥𝑥 = 𝜌𝜌�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶��−�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶�𝐴𝐴𝑗𝑗� + 𝜌𝜌�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶� cos𝜃𝜃 �𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶�𝐴𝐴𝑗𝑗 

 
𝐹𝐹𝑥𝑥 = 𝜌𝜌�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶�

2𝐴𝐴𝑗𝑗[1 − cos 𝜃𝜃] 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉𝐶𝐶𝐹𝐹𝑥𝑥 = 𝑉𝑉𝐶𝐶𝜌𝜌�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝐶𝐶�
2𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) 

 
𝐹𝐹𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑉𝑉𝑗𝑗2𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃), 𝑉𝑉𝐶𝐶 = 0 

 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ⇒
𝑑𝑑𝑑𝑑
𝑑𝑑𝑉𝑉𝐶𝐶

= 0 

𝑃𝑃 = 𝑉𝑉𝐶𝐶𝜌𝜌�𝑉𝑉𝑗𝑗2 − 2𝑉𝑉𝐶𝐶𝑉𝑉𝑗𝑗 + 𝑉𝑉𝐶𝐶2�𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) 
= 𝜌𝜌�𝑉𝑉𝑗𝑗2𝑉𝑉𝐶𝐶 − 2𝑉𝑉𝐶𝐶2𝑉𝑉𝑗𝑗 + 𝑉𝑉𝐶𝐶3�𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑉𝑉𝐶𝐶

= 𝜌𝜌�𝑉𝑉𝑗𝑗2 − 4𝑉𝑉𝐶𝐶𝑉𝑉𝑗𝑗 + 3𝑉𝑉𝐶𝐶2�𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) = 0 

3𝑉𝑉𝐶𝐶2 − 4𝑉𝑉𝑗𝑗𝑉𝑉𝐶𝐶 + 𝑉𝑉𝑗𝑗2 = 0 

𝑉𝑉𝐶𝐶 =
+4𝑉𝑉𝑗𝑗 ± �16𝑉𝑉𝑗𝑗2 − 12𝑉𝑉𝑗𝑗2

6
=

4𝑉𝑉𝑗𝑗 ± 2𝑉𝑉𝑗𝑗
6

 

For 3
j

C

V
V = :  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑉𝑉𝑗𝑗
3
𝜌𝜌 �

2𝑉𝑉𝑗𝑗
3
�
2
𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) = 4

27
𝑉𝑉𝑗𝑗3𝜌𝜌𝐴𝐴𝑗𝑗(1 − cos𝜃𝜃) 
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Example (use absolute inertial and relative inertial 
coordinates) 

 
Assume gravity force is negligible and the cross section 
area of the jet does not change after striking the bucket. 
Taking moving CV at speed Vs= ΩR î enclosing jet and 
bucket: 
 
Solution 1 (relative inertial coordinates) 
 
Continuity:  , , 0in R out Rm m− + =   

  , , RR in R out R
CS

m m m V n dAρ= = = ⋅∫  
 

Bernoulli without gravity: 

ΩR 

CV 

Vout,R 

Vin,R 
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                   1p
0 2

, 2
1
2 in RV pρ+ =

0 2
,

1
2 out RVρ+  

                             , ,in R out RV V=  

Inlet             𝑉𝑉𝑖𝑖𝑖𝑖,𝑅𝑅 = �𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�𝚤𝚤̂ 
Outlet 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑅𝑅 = −�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�𝚤𝚤̂ 
 
  Since        , 1 , 2 0in R out RV A V Aρ ρ− + =  
                            1 2 jA A A= =      
 

Momentum: 
 , ,X bucket R out R R in RF F m V m V= − = −∑    

 
2

( ) ( )

2 ( )

2 ( )

bucket R j j

R j

j j

F m V R V R

m V R

A V Rρ

 = − − −Ω − −Ω 
= −Ω

= −Ω



  

  ( )R j jm A V Rρ= −Ω  
 22 ( )bucket j jP RF A R V Rρ= Ω = Ω −Ω  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝜌𝜌𝐴𝐴𝑗𝑗𝑅𝑅�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�2 − 2𝜌𝜌𝐴𝐴𝑗𝑗𝛺𝛺𝛺𝛺2�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�𝑅𝑅 

= 2𝜌𝜌𝐴𝐴𝑗𝑗𝑅𝑅 ��𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�2 − 2𝑅𝑅𝑅𝑅�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�� 
= 2𝜌𝜌𝐴𝐴𝑗𝑗𝑅𝑅�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺��𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺 − 2𝑅𝑅𝑅𝑅� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0  →   𝑉𝑉𝑗𝑗 − 3𝛺𝛺𝛺𝛺 = 0  →   
𝑉𝑉𝑗𝑗
3

= 𝛺𝛺𝛺𝛺 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜌𝜌𝐴𝐴𝑗𝑗
𝑉𝑉𝑗𝑗
3
�𝑉𝑉𝑗𝑗 −

𝑉𝑉𝑗𝑗
3
�
2

= 2𝜌𝜌𝐴𝐴𝑗𝑗
𝑉𝑉𝑗𝑗
3

4𝑉𝑉𝑗𝑗2

9
=

8
27�
0.296

𝜌𝜌𝐴𝐴𝑗𝑗𝑉𝑉𝑗𝑗3 
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If infinite number of buckets:  R j jm A Vρ=  
  

  

3
max

2 ( )

2 ( )

10
2 2

bucket j j j

j j j

j
j j

F A V V R

P A V R V R

VdP for R P A V
d

ρ

ρ

ρ

= −Ω

= Ω −Ω

= Ω = =
Ω

 

 
Solution 2 (absolute inertial coordinates) 
 

𝑉𝑉𝑅𝑅 = 𝑉𝑉 − 𝑉𝑉𝐶𝐶𝐶𝐶   →    𝑉𝑉 = 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝐶𝐶𝐶𝐶 
 

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗  𝚤𝚤̂ 
 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = −�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺� 𝚤𝚤̂ + 𝛺𝛺𝛺𝛺 𝚤𝚤̂ = −�𝑉𝑉𝑗𝑗 − 2𝛺𝛺𝛺𝛺� 𝚤𝚤̂ 
 
Continuity: from solution 1 
 

−𝑉𝑉𝑖𝑖𝑖𝑖,𝑅𝑅 + 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜,𝑅𝑅 = 0 
 
express in the absolute inertial coordinates: 𝑉𝑉𝑅𝑅 = 𝑉𝑉 − 𝑉𝑉𝐶𝐶𝐶𝐶 
 

−�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺� 𝚤𝚤̂ + �𝑉𝑉𝑗𝑗 + 2𝛺𝛺𝛺𝛺 − 𝛺𝛺𝛺𝛺� 𝚤𝚤̂ = 0 
 
 

all jet mass flow 
result in work. 
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Momentum: 
 

�𝐹𝐹𝑥𝑥 = −𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑚̇𝑚(𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑖𝑖𝑖𝑖) 
 

= 𝜌𝜌𝐴𝐴𝑗𝑗�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺��−�𝑉𝑉𝑗𝑗 − 2𝛺𝛺𝛺𝛺� − 𝑉𝑉𝑗𝑗� 
 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2𝜌𝜌𝐴𝐴𝑗𝑗�𝑉𝑉𝑗𝑗 − 𝛺𝛺𝛺𝛺�2 
  
Same as Solution 1. 
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Application of CV continuity equation for steady 
incompressible flow, fixed CV, one inlet and outlet with 
A = constant 

 

in out

V ndA V ndA m Qρ ρ ρ⋅ = ⋅ = =∫ ∫   

in outQ Q=  
( ) ( )ave avein out
V A V A=  

For A = constant  ( ) ( )ave avein out
V V=  
( ) ( )

in out

F V V n dA V V n dAρ ρ= ⋅ + ⋅∑ ∫ ∫  

Pipe: 
( ) ( )x

in out

F u V n dA u V n dAρ ρ= ⋅ + ⋅∑ ∫ ∫  

( ) ( )2 2
ave avein out

AV AVρ β ρ β= − +  
( )ave out inQVρ β β= −    change in shape u 

Vane: 
�𝐹𝐹 = 𝑚̇𝑚 �𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑉𝑉𝑖𝑖𝑖𝑖� ;    |𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜| = |𝑉𝑉𝑖𝑖𝑖𝑖| 

 
If θ=180: 
( ) ( )2x out in inF m u u m u= − = −∑    

 
For arbitrary θ: 

�𝐹𝐹𝑥𝑥 = 𝑚̇𝑚(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 cos𝜃𝜃 − 𝑢𝑢𝑖𝑖𝑖𝑖) = 𝑚̇𝑚𝑢𝑢𝑖𝑖𝑖𝑖(cos𝜃𝜃 − 1) 
change in direction u 
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Application of differential momentum equation: 
 

1. NS valid both laminar and turbulent flow; however, 
many order of magnitude difference in temporal and 
spatial resolution, i.e. turbulent flow requires very 
small time and spatial scales 

  

2. Laminar flow Recrit = 
Uδ
ν

≤  2000 
Re > Recrit    instability 

 
3. Turbulent flow Retransition > 10 or 20 Recrit 

 
Random motion superimposed on mean coherent 
structures. 
 
Cascade: energy from large scale dissipates at 
smallest scales due to viscosity. 
Kolmogorov hypothesis for smallest scales 

 
4. No exact solutions for turbulent flow: RANS, DES, 

LES, DNS (all CFD) 
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5. 80 exact solutions for simple laminar flows are 
mostly linear 0V V⋅∇ =  

 
a.  Couette flow = shear driven 
b.  Steady duct flow =  Poiseuille flow 
c.  Unsteady duct flow 
d.  Unsteady moving walls 
e.  Asymptotic suction 
f.  Wind-driven flows 
g.  Similarity solutions. etc. 

 
6. Also many exact solutions for low Re Stokes and 

high Re BL approximations 
 

7. Can also use CFD for non simple laminar flows 
  
8. AFD or CFD requires well posed IBVP; therefore, 

exact solutions are useful for setup of IBVP, 
physics, and verification CFD since modeling errors 
yield USM = 0 and only errors are numerical errors 
USN, i.e., assume analytical solution = truth, called 
analytical benchmark 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2017  45 
 

Energy Equation: 
 
B = E = energy 
β = e = dE/dm = energy per unit mass 
 
  
Integral Form (fixed CV): 

 
( )

CV CS

dE e d e V n dA Q W
dt t

rateof change rateof outflux
E in CV E across CS

ρ ρ∂
= ∀ + ⋅ = −

∂∫ ∫  

 
 

 
 
 

=++= gzvue 2

2
1^

 internal + KE + PE 

 
Q  = conduction + convection + radiation 

 

   
/
shaft pW W W W

pressure viscouspump turbine
ν= + +   

 

 
 ( )pdW p ndA V= ⋅   - pressure force × velocity 
 

 ( )p
CS

W p V n dA= ⋅∫
 

 

Rate of 
change E 

Rate of heat 
added CV 

Rate work 
done by CV 
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vdW dA Vτ= − ⋅
   - viscous force × velocity 

 

v
CS

W V dAτ= − ⋅∫
 

 

( )( ) /s
CV CS

Q W W e d e p V n dA
tν ρ ρ ρ∂

− − = ∀+ + ⋅
∂∫ ∫  

 

 
For our purposes, we are interested in steady flow one 
inlet and outlet.  Also 𝑊̇𝑊𝑣𝑣 ≈ 0 in most cases; since, V = 0 
at solid surface; on inlet and outlet only τn ~ 0 since its 
perpendicular to flow; or for V ≠0 and τstreamline ~ 0 if 
outside BL. 

2

&

1ˆ /
2S

inlet outlet

Q W u V gz p V n dAρ ρ − = + + + ⋅ 
 ∫ 

 

 
Assume parallel flow with /p gzρ +

  and û constant over 

inlet and outlet. 
 

( ) 2

& &

ˆ / ( )
2S

inlet outlet inlet outlet

Q W u p gz V n dA V V n dAρρ ρ− = + + ⋅ + ⋅∫ ∫   

 

( ) 3ˆ / ( )
2S in in inin

in

Q W u p gz m V dAρρ− = + + − − ∫    

( ) 3ˆ / ( )
2out out outout

out

u p gz m V dAρρ+ + + + ∫  

= constant ie hydrostatic 
pressure variation 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2017  47 
 

Define kinetic energy correction factor 
 

3 2
21 ( )

2 2
ave

aveA A

VV dA V V n dA m
A V

ρα α
• 

= → ⋅ = 
 
∫ ∫  

 

Laminar flow: 













−=

2

0 1
R
rUu  

 
  Vave=0.5  β = 4/3  α=2 
 

Turbulent flow: 
m

R
rUu 





 −= 10  

 

  
( ) ( )3 31 2
4(1 3 )(2 3 )

m m
m m

α
+ +

=
+ +  

 
m=1/7  α=1.058  as with β, α~1 for  

turbulent flow 
 
 

 
2 2

ˆ ˆ( / ) ( / )
2 2

s ave ave
out in

W V VQ u p gz u p gz
m m

ρ α ρ α− = + + + − + + +
 

   
 
Let in = 1, out = 2, V = Vave, and divide by g 
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2 21 1 2 2
1 1 2 22 2p t L

p pV z h V z h h
g g g g

α α
ρ ρ

+ + + = + + + +  
 

ps t
t p

WW W h h
gm gm gm

= − = −
 

    
 

 2 1
1 ( )L

Qh u u
g mg

= − −


  
 
 hL = thermal energy (other terms represent mechanical energy 
 

1 1 2 2m AV A Vρ ρ= =  
 
Assuming no heat transfer mechanical energy converted 
to thermal energy through viscosity and can not be 
recovered; therefore, it is referred to as head loss > 0, 
which can be shown from 2nd law of thermodynamics. 
 
1D energy equation can be considered as modified 
Bernoulli equation for hp, ht, and hL. 
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Application of 1D Energy equation fully developed pipe 
flow without hp or ht. 
 
Recall the horizontal pipe flow using continuity and 
momentum (page 32): 𝜏𝜏𝑤𝑤 = 𝑅𝑅

2
�− 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�, i.e. −𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2𝜏𝜏𝑤𝑤

𝑅𝑅
 

 
Similarly, for non-horizontal pipe: − 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑝𝑝 + 𝛾𝛾𝛾𝛾) = 2𝜏𝜏𝑤𝑤

𝑅𝑅
 

 
Using energy equation, 𝐿𝐿 = 𝑑𝑑𝑑𝑑 and 𝑝̂𝑝 = 𝑝𝑝 + 𝛾𝛾𝛾𝛾: 
 
ℎ𝐿𝐿 = 𝑝𝑝1−𝑝𝑝2

𝜌𝜌𝜌𝜌
+ (𝑧𝑧1 − 𝑧𝑧2) = 𝐿𝐿

𝜌𝜌𝜌𝜌
�− 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑝𝑝 + 𝛾𝛾𝛾𝛾)�    

 
ℎ𝐿𝐿 = 𝐿𝐿

𝜌𝜌𝜌𝜌
�− 𝑑𝑑𝑝𝑝�

𝑑𝑑𝑑𝑑
� = 𝐿𝐿

𝜌𝜌𝜌𝜌
�2𝜏𝜏𝑤𝑤

𝑅𝑅
�   (If  𝑑𝑑𝑝𝑝�

𝑑𝑑𝑑𝑑
< 0 flow moves from left to right) 

 
Where 𝜏𝜏𝑤𝑤 = 1

8
𝑓𝑓𝑓𝑓𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎2  

 

ℎ𝐿𝐿 = ℎ𝑓𝑓 = 𝑓𝑓
𝐿𝐿
𝐷𝐷
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎2

2𝑔𝑔
    

Where ℎ𝑓𝑓 is the friction loss 
Also recall from page 33 that 𝜏𝜏𝑤𝑤 = 4𝜇𝜇𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅
 

For laminar flow, 

2

8 32w

ave ave

f
V RV
τ µ

ρ ρ
= =  

 

2

32 ave
L

LVh
D

µ
γ

=   ∝  Vave   exact solution! 

Darcy-Weisbach Equation (valid for laminar or Turbulent 
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For turbulent flow,  Recrit ~ 2000, Retrans ~ 3000 
 
 f=f (Re, k/D)  Re = VaveD/ν, k = roughness 
 
 2

L aveh V∝   
 
Pipe with minor losses, 
 

 hL = hf + Σhm   where 

2

2m
Vh K

g
K loss coefficient

=

=
 

 
hm = “so called” minor losses, e.g. entrance/exit, 
expansion/contraction, bends, elbows, tees, other 
fitting, and valves. 
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(a) First suppose 2D problem: D1 and D2 denotes width in 
y instead of diameter and we take unit in z (span-wise) 
direction  
 
  

2
2 2

2

.79 989 0.02 1 425xF F mV V N
Aρ

= − = − ⇒ ∗ × × × =∑     

  2 5.22 / , 81.6 /V m s m kg s= =  
 
Continuity equation between points 1 and 2 
 

  
2

1 1 2 2 1 2
1

2.09 /DV A V A V V m s
D

= ⇒ = =  

Bernoulli neglect g, p2=pa 
2 2

1 1 2 2
1 1
2 2

p V p Vρ ρ+ = +    hL=0, z=constant 

( )2 2
1 2 2 1

1
2

p p V Vρ= + −    2 2
1

.79 998101,000 (5.22 2.09 )
2

p ×
= + −  

1 110,020p Pa=  
 

Note: 2 2 2
2 2 3 3 4 42 2 2

p V p V p Vρ ρ ρ
+ = + = +  

  2 3 4 2 3 4ap p p p V V V= = = → = =  
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  2 2 3 3 4 40
CS

V A A V A V A Vρ= ⋅ → = +∑  
  432 AAA +=  
 
  3 3 3 4 4 40 ( )y

CS
F VV A V V A V V Aρ ρ ρ= = ⋅ = + −∑ ∑  

   2 2
3 3 4 4V A V Aρ ρ= −    43 AA =  

 
(b) For the round jet implied in the problem statement 

 
2 2

2 2

2

.79 989 .02 425
4xF F mV V N

A

π

ρ
= − = − ⇒ ∗ =∑  

  

 2 41.4 / , 10.3 /V m s m kg s
•

= =  
Continuity equation between points 1 and 2 

2

2
1 1 2 2 1 2

1

DV A V A V V
D

 
= ⇒ =  

   

 
2

1
241.4
5

V  =  
    1 6.63 /V m s=  

 
Bernoulli neglect g, p2=pa 
 

2 2
1 1 2 2

1 1
2 2

p V p Vρ ρ+ = +    hL=0, z=constant 
 

( )2 2
1 2 2 1

1
2

p p V Vρ= + −    2 2
1

.79 998101,000 (41.4 6.63 )
2

p ×
= + −  

Pap 000,7601 =  
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(a) 
2

2
1 22

Vz z
g

= +    0,11,0,1 212 ==== zzhLα  

 2 1 22 ( )V g z z= −  11*81.9*2=  sm /7.14=  
 

 
2 3

2 2 2 (.01) *14.7*3600 4.16 /
4

Q A V m hπ
= = =  

 5
6

14.7 0.01Re 1.5 10
10

VD
ν −

×
= = = ×  

 

(b) 
2

2
1 2 22 L

Vz z h
g

α= + +   
6 2

2 2

322, , 10 /L
VLh m s

D g
µα ν

ρ
−= = =  

 2
2 23.2 107.8 0V V+ − =  

      V2 = 8.9 m/s 
      Q= 2.516 m3/h 
 

Re=89,000=8.9*104 >>2000 
 
 
 

Torricelli’s 
expression 
for speed of 
efflux from 
reservoir 
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(c) 

2 2
2 2

1 2 22 2
V VLz z f

g D g
α= + +

  α2=1 

 ( )
2

2
1 2 1 /

2
Vz z fL D

g
− = +  

 [ ]1
2

2 1 22 ( ) /(1 / )V g z z fL D= − +  

 [ ]1
2

2 216 /(1 *1000)V f= +   (Re), Re VDf f
ν

= =  
  guess f = 0.015 (smooth pipe Moody diagram) 

  

4
2

4
2

4
2

3.7 / Re 3.7 10 , .024

2.94 / Re 2.9 10 , .025

2.88 / Re 2.9 10

V m s x f
V m s x f
V m s x

= → = =

= → = =

= → =
 

 

(d) Re 2000VD
ν

= =    
2000D

V
ν

=  

 
2

2 2
1 2 2 2 2

2
2

32( )
20002

V LVz z
g g

V

να
ν

− = +  

 
2 3

2 2
1 2 2 2

32( )
2 2000
V LVz z

g g
να

ν
− = +  

 
3 2

2 2
2

32 11 0
2000

LV V
g gν
+ − =   2 1.1 /V m s=  

 
       mD 00182.0=  

Low U and small D to actually have laminar flow 
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Differential Form of Energy Equation: 

( ) ( )
CV

dE e e V d Q W
dt t

ρ ρ
 
∂ = +∇ ⋅ ∀ = − ∂  

∫  

  

 
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑒𝑒∇. �𝜌𝜌𝑉𝑉������������
=0

+ 𝜌𝜌𝑉𝑉.∇𝑒𝑒 = 𝜌𝜌
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉.∇𝑒𝑒�
 

2 21 1ˆ ˆ
2 2

e u V gz u V g r= + + = + − ⋅  
ˆ

( ) /De Du DVQ W q w V g V
Dt Dt Dt

ρ ρ  = − ∀ = − = + − ⋅ 
 

     
 

( )q q k T= −∇⋅ = ∇ ⋅ ∇   Fourier’s Law 

𝑤̇𝑤 = −∇ ⋅ �𝑉𝑉 ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖������
𝜌𝜌�
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷−𝑔𝑔�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

− 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 

First term for 𝑤̇𝑤
 −𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝑉𝑉 ⋅ 𝜌𝜌 �

𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

− 𝑔𝑔� = −𝜌𝜌 �𝑉𝑉 ⋅
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

− 𝑉𝑉 ⋅ 𝑔𝑔� 

Where  

𝑉𝑉 ⋅
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

= 𝑉𝑉 ⋅ �
𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 ⋅ ∇𝑉𝑉� =
𝜕𝜕𝑉𝑉2

𝜕𝜕𝜕𝜕
+ 𝑉𝑉2∇𝑉𝑉 = 𝑉𝑉

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

 

Therefore 
−𝑉𝑉 ⋅ �∇ ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖� = −𝜌𝜌 �𝑉𝑉

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑉𝑉 ⋅ 𝑔𝑔� 
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And 

𝑤̇𝑤 = −𝜌𝜌 �𝑉𝑉
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑉𝑉 ⋅ 𝑔𝑔� − 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 

Substitute equation for 𝑞̇𝑞 and 𝑤̇𝑤 
𝑞̇𝑞 − 𝑤̇𝑤 = −∇ ⋅ (𝑘𝑘∇T) + 𝜌𝜌 �𝑉𝑉

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑉𝑉 ⋅ 𝑔𝑔� + 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜌𝜌 �
𝐷𝐷𝑢𝑢�
𝐷𝐷𝐷𝐷

+ 𝑉𝑉
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

− 𝑉𝑉 ⋅ 𝑔𝑔�  
 

𝜌𝜌
𝐷𝐷𝑢𝑢�
𝐷𝐷𝐷𝐷

= −∇ ⋅ (𝑘𝑘∇T)+𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 

Second term on right hand side 
 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= (𝜏𝜏𝑖𝑖𝑖𝑖 − 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖)
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝑝𝑝∇ ⋅ V  

From continuity  
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

+ 𝜌𝜌∇.𝑉𝑉 = 0 → ∇.𝑉𝑉 = −
1
𝜌𝜌
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

 

−𝑝𝑝∇.𝑉𝑉 =
𝑝𝑝
𝜌𝜌
𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −𝜌𝜌
𝐷𝐷
𝐷𝐷𝐷𝐷

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

 

Therefore  
𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜌𝜌
𝐷𝐷
𝐷𝐷𝐷𝐷

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

 

And 
𝜌𝜌
𝐷𝐷𝑢𝑢�
𝐷𝐷𝐷𝐷

= −∇ ⋅ (𝑘𝑘∇T) + 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜌𝜌
𝐷𝐷
𝐷𝐷𝐷𝐷

�
𝑝𝑝
𝜌𝜌
� +

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

 

Rearranging equation and substituting dissipation 
function Φ = 𝜏𝜏𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

≥ 0 

𝜌𝜌
𝐷𝐷
𝐷𝐷𝐷𝐷

�𝑢𝑢 +
𝑝𝑝
𝜌𝜌
� = −∇ ⋅ (𝑘𝑘∇T) +

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

+ Φ 
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 Summary GDE for compressible non-constant property 
fluid flow 
 

Continuity: ( ) 0V
t
ρ ρ∂
+∇⋅ =

∂  
 
 
Momentum: 𝜌𝜌 𝐷𝐷𝑉𝑉

𝐷𝐷𝐷𝐷
= 𝜌𝜌𝑔𝑔 − ∇𝑝𝑝 + ∇. 𝜏𝜏𝑖𝑖𝑖𝑖 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜖𝜖𝑖𝑖𝑖𝑖 + 𝜆𝜆∇.𝑉𝑉𝛿𝛿𝑖𝑖𝑖𝑖;  𝑔𝑔 = −𝑔𝑔𝑘𝑘� 

 
 
Energy Φ+∇⋅∇+= )( Tk

Dt
Dp

Dt
Dhρ  

 
Primary variables: p, V, T 
 
Auxiliary relations:  ρ = ρ (p,T)  μ = μ (p,T) 
(equations of state)   h = h (p,T)  k = k (p,T) 
 
Restrictive Assumptions: 

1) Continuum 
2) Newtonian fluids 
3) Thermodynamic equilibrium 
4) 𝑔𝑔 = −𝑔𝑔𝑘𝑘� 
5) heat conduction follows Fourier’s law 
6) no internal heat sources 

 
For incompressible constant property fluid flow 
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ˆ vdu c dT=   cv, μ, k , ρ ~ constant 

 
Φ+∇= Tk

Dt
DTcv

2ρ  

 
For static fluid or V small 
 

Tk
t
Tcp

2∇=
∂
∂ρ  heat conduction equation (also valid for solids) 

 
Summary GDE for incompressible constant property fluid 
flow (cv ~ cp) 
 

0V∇⋅ =   
 

2ˆDV gk p V
Dt

ρ ρ µ= − −∇ + ∇   “elliptic” 
 

Φ+∇= Tk
Dt
DTcp

2ρ   where 
j

i
ij x

u
∂
∂

=Φ τ  

 

 
Continuity and momentum uncoupled from energy; 
therefore, solve separately and use solution post facto to 
get T. 
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For compressible flow, ρ solved from continuity equation, 
T from energy equation, and p = (ρ,T) from equation of 
state (eg, ideal gas law).  For incompressible flow, ρ = 
constant and T uncoupled from continuity and momentum 
equations, the latter of which contains p∇  such that 
reference p is arbitrary and specified post facto (i.e. for 
incompressible flow, there is no connection between p 
and ρ).  The connection is between p∇  and 0V∇⋅ = , i.e. a 
solution for p requires 0V∇⋅ = . 
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NS  
21 ˆDV p V

Dt
ν

ρ
= − ∇ + ∇   p̂ p zγ= +  

)(NS⋅∇   (See derivation details on p.87) 
 

2 21 ji

j i

uuD V p
Dt x x

ν
ρ

∂∂ − ∇ ∇⋅ = − ∇ +  ∂ ∂   

 
For 0V∇⋅ = : 
 

 
i

j

j

i

x
u

x
up
∂
∂

∂
∂

−=∇ ρ2  

 
Poisson equation determines pressure up to additive 
constant. 
 
Approximate Models: 
 
1) Stokes Flow 
  

 For low Re 1, ~ 0UL V V
ν

= << ⋅∇  
 
 0V∇⋅ =  

21V p V
t

ν
ρ

∂
= − ∇ + ∇

∂  
 

0)( 2 =∇⇒⋅∇ pNS  

Linear, “elliptic” 
Most exact solutions NS; and for steady 
flow superposition, elemental solutions and 
separation of variables 
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2)  Boundary Layer Equations 
 
 For high Re >> 1 and attached boundary layers or 
fully developed free shear flows (wakes, jets, mixing 
layers), v<<U, 

yx ∂
∂

<<
∂
∂ , 0=yp , and for free shear flows  

px = 0.   
 
 0=+ yx vu  
 
 ˆt x y x yyu uu vu p uν+ + = − +  non-linear, “parabolic” 
 
 ˆ0y x t xp p U UU= ⇒ − = +  
 
 Many exact solutions; similarity methods 
 
3)  Inviscid Flow 

 

( ) 0

, ," "

( ) , , , , ( , )

V
t
DV g p Euler Equation nonlinear hyperbolic
Dt
Dh Dp k T p V T unknowns and h k f p T
Dt Dt

ρ ρ

ρ ρ

ρ ρ

∂
+∇⋅ =

∂

= −∇

= +∇⋅ ∇ =
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4)  Inviscid, Incompressible, Irrotational 
 

∇ × 𝑉𝑉 = 0 → 𝑉𝑉 = ∇𝜑𝜑 
∇.𝑉𝑉 = 0 → ∇2𝜑𝜑 = 0   𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 elliptic 

 
 ∫ Euler Equation   Bernoulli Equation: 

 
2

2
p V gz constρ ρ+ + =  

 
 Many elegant solutions:  Laplace equation using 
superposition elementary solutions, separation of 
variables, complex variables for 2D, and Boundary 
Element methods. 
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Couette Shear Flows:  1-D shear flow between surfaces of 
like geometry (parallel plates or rotating cylinders). 
 
Steady Flow Between Parallel Plates: Combined  Couette 
and Poiseuille Flow. 

 
0

0

0
x y z

x

V
u v w
u

∇⋅ =
+ + =

=
 

2ˆDV p V
Dt

ρ µ= −∇ + ∇   0=+++
∂
∂

zyx wuvuuu
t
u  

ˆ0 x yyp uµ= − +  

Φ+∇= Tk
Dt
DTcp

2ρ   0x y z
T uT vT wT
t

∂
+ + + =

∂  
20 yyy ukT µ+=  

 
 
 
 
 
(note:  inertia terms vanish identically and ρ is absent 
from equations) 

2 2 2

2 2 2

2

2 2 2

( ) ( ) ( )

( )

x y z

x y y z z x

x y z

y

u v w

v u w v u w

u v w

u

µ

λ

µ

Φ = + +
+ + + + + + 

+ + +

=
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Non-dimensionalize equations, but drop * 
 

Uuu /* =   
01

0*

TT
TTT

−
−

=  * /y y h=  

 
0=xu         (1) 

2

ˆ .yy x
hu p B cons
Uµ

= = − =      (2) 

[ ]2

01

2

Pr

)( yyy u
TTk

UT

Ec

−
−

=


µ      (3) 

B.C. y = 1 u = 1 T = 1 
  y = -1 u = 0 T = 0 
(1) is consistent with 1-D flow assumption.  Simple 

form of (2) and (3) allow for solution to be 
obtained by double integration. 

 
21 1(1 ) (1 )

2 2
u y B y⇒ = + + −

 
 y=y/h 

 
 
 

Solution depends on 
2

ˆ x
hB p
Uµ

= − : 

 B < 0    ˆ xp  is opposite to U 
 B < -0.5  backflow occurs near lower wall 
 |B| >> 1   flow approaches parabolic profile 

Linear flow 
due to U 

Parabolic flow 
due to px Note:  linear 

superposition since 
0V V⋅∇ =  
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Pressure gradient effect

2
2 3 4Pr Pr Pr1 (1 ) (1 ) ( ) (1 )

2 8 6 12
c c cE E B E BT y y y y y= + + − − − + −



 
 
 
 

 
 

Note: usually PrEc is quite small 
 

Substance  PrEc  dissipation 
Air   0.001 very small 

Water  0.02      
#

Pr
Brinkman

EBr c

=
=

 

Crude oil  20  large      
 
 
 
  

Pure 
conduction
 

T rises due to 
viscous dissipation 

Dominant term 
for B ∞ 
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Shear Stress 
1)  ˆ 0xp =  i.e. pure Couette Flow 

𝐵𝐵 = −
ℎ2

𝜇𝜇𝜇𝜇
𝑝̂𝑝𝑥𝑥 = 0 

Using solution shown previously 

𝑢𝑢∗ =
1
2

(1 + 𝑦𝑦∗) +
1
2
𝐵𝐵�1 − 𝑦𝑦∗2� =

1
2

(1 + 𝑦𝑦∗) 
Calculating wall shear stress 

𝑢𝑢
𝑈𝑈

=
1
2
�1 +

𝑦𝑦
ℎ
� 

𝜕𝜕 �𝑢𝑢𝑈𝑈�

𝜕𝜕 �𝑦𝑦ℎ�
=

1
2

 

𝜏𝜏𝑤𝑤 = 𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦=−1

  =
𝜇𝜇𝜇𝜇
2ℎ

 

𝐶𝐶𝑓𝑓 =
𝜏𝜏𝑤𝑤

1
2𝜌𝜌𝑈𝑈

2
=

𝜇𝜇𝜇𝜇
2ℎ

1
2𝜌𝜌𝑈𝑈

2
=

𝜇𝜇
𝜌𝜌𝜌𝜌ℎ

 

Since 𝑅𝑅𝑒𝑒ℎ = 𝜌𝜌𝜌𝜌ℎ/𝜇𝜇 

𝐶𝐶𝑓𝑓 =
1
𝑅𝑅𝑒𝑒ℎ

 

 
P0 = CfRe = 1:  Better for non-accelerating flows 
since ρ is not in equations and P0 = pure constant 
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2)  U = 0 i.e.  pure Poiseuille Flow 
 

* *21 (1 )
2

u B y= −  *
* *
y

u By= −   y
h

BUuy 2
−=   uVave =  

 

Where  max2ˆ x
uhB p

U Uµ
−

= =  

Dimensional form ( )2 2

max

1 ˆ 1
2 x

h yu p h
u
µ

 
= − − 

 
 max3

4 hudyuQ
h

h
=∫=

−

 

 
aveVu

h
Qu === max3

2
2  

Remember that for laminar pipe flow, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 

 

h
u

h
u

h
BU

lower
h

BU

upper
h

BUu

w

hyyw

32 max µµµτ

µ

µµτ

===

+=

−==
±=

    

 
6Re

Re
66

2
1 0

2

===== hf

h

w
f CPor

huU
C

ρ
µ

ρ

τ  

Remember that for laminar pipe flow, 𝐶𝐶𝑓𝑓 = 16
𝑅𝑅𝑅𝑅𝐷𝐷

 and 𝜏𝜏𝑤𝑤 = 𝜇𝜇8𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝐷𝐷

, 
i.e. Except for numerical constants same as for circular 
pipe. 

2

.

.

u lam

u turbρ

∝

∝
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Rate of heat transfer at the walls: 

h
UTT

h
kTkq

hyyw 4
)(

2

2

01 µ±−==
±

  + = upper, - = lower 

 
Heat transfer coefficient: 
 

( )1 0

wq
T Tς = −  
 

212 Br
k
hNu ±==
ς  

 
For Br >> 2, both upper & lower walls must be cooled to 

maintain T1 and T0 
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Conservation of Angular Momentum: moment form of 
momentum equation (not new conservation law!) 
 

0
sys

B H r V dm= = × =∫  angular momentum of system about inertial 

coordinate system 0 (extensive property) 
 

𝛽𝛽 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟 × 𝑉𝑉   (intensive property) 
 

𝑑𝑑𝐻𝐻0
𝑑𝑑𝑑𝑑�

Rate of
change of
angular

momentum

=
𝑑𝑑
𝑑𝑑𝑑𝑑

��𝑟𝑟 × 𝑉𝑉�𝜌𝜌 𝑑𝑑∀
𝐶𝐶𝐶𝐶

+ ��𝑟𝑟 × 𝑉𝑉�𝜌𝜌 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

 

 
           ∑ == 0M   vector sum all external moments applied 
on CV due to both FB and FS, including reaction forces 
 
For uniform flow across discrete inlet/outlet: 
 
� �𝑟𝑟 × 𝑉𝑉�𝜌𝜌 𝑉𝑉𝑅𝑅 .𝑛𝑛 𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

= ∑�𝑟𝑟 × 𝑉𝑉�𝑜𝑜𝑜𝑜𝑜𝑜𝑚̇𝑚𝑜𝑜𝑜𝑜𝑜𝑜 − ∑�𝑟𝑟 × 𝑉𝑉�𝑖𝑖𝑖𝑖𝑚̇𝑚𝑖𝑖𝑖𝑖
   

( ) R
CVCS

MrdgrdAM

momentforcebodymomentforcesurface

+∫ ×∀+∫ ×⋅=


ρτ0  

 
=RM   moment of reaction forces 
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Take inertial frame 0 as fixed to earth such that CS 
moving at Vs= -Rω 𝚤𝚤̂ 

𝑉𝑉 = 𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑆𝑆 
𝑉𝑉2 = 𝑉𝑉0𝚤𝚤̂ − 𝑅𝑅𝑅𝑅𝚤𝚤̂ = (𝑉𝑉0 − 𝑅𝑅𝑅𝑅)𝚤𝚤̂     𝑟𝑟2 = 𝑅𝑅 𝚥𝚥̂ 

𝑉𝑉1 = 𝑉𝑉0𝑘𝑘�       𝑟𝑟1 = 0 𝚥𝚥̂ 
 

0
pipe

QV A=  
 
 

�𝑀𝑀𝑧𝑧 = 0 = −𝑇𝑇0𝑘𝑘� = �𝑟𝑟2 × 𝑉𝑉2�𝑚̇𝑚𝑜𝑜𝑜𝑜𝑜𝑜 − �𝑟𝑟1 × 𝑉𝑉1�𝑚̇𝑚𝑖𝑖𝑖𝑖 
 

out inm m Qρ= =    0
ˆ ˆ( )( )oT k R V R k Qω ρ− = − −  

 
0 0

2

V T
R QR

ω
ρ

= −   interestingly, even for T0=0, ωmax=V0/R    

(limited by ratio such that large R small ω; large V0 large ω) 

Retarding torque due to 
bearing friction 
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Differential Equation of Conservation of Angular 
Momentum: 
 
Apply CV form for fixed CV: 

 
zω = angular acceleration 

I  = moment of inertia 

2 2 2 2z
dx dx dy dyI a dy b dy c dx d dxω = + − −  

( )z xy yxI dxdyω τ τ= −  

Since 3 3 2 2

12 12
I dxdy dydx dxdy dx dyρ ρ   = + = +     

2 2

12 z xy yxdx dyρ ω τ τ + = −    

0, 0
lim

dx dy→ → yxxy ττ = , similarly zxxz ττ = , zyyz ττ =  
i.e  jiij ττ =  stress tensor is symmetric (stresses 

themselves cause no rotation) 
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Boundary Conditions for Viscous-Flow Problem 
 

The GDE to be discussed next constitute an IBVP for 
a system of 2nd order nonlinear PDE, which require 
IC and BC for their solution, depending on physical 
problem and appropriate approximations. 

 
 Types of Boundaries: 
 

1. Solid Surface 
2. Interface 
3. Inlet/exit/outer 
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1. Solid Surface 
 

a. Liquid 
 
ℓ = mean free path << fluid motion; therefore, 
maroscopic view is “no slip” condition, i.e. no 
relative motion or temperature difference between 
liquid and solid. 
 

liquid solidV V=   solidliquid TT =  
 

Exception is for contact line for which analysis is 
similar to that for gas. 
 
b. Gas 

 

Smooth wall    
 
 

Rough wall    
 

w

w dy
dulu =  

Specular reflection 
Conservation  of 
tangential momentum 
uw=0=fluid velocity at 
wall 

Diffuse reflection.  
Lack of reflected 
tangential momentum 
balanced by uw 
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w

w dy
duµτ =   

a
l

ρ
µ

3
2=   low density limit 

 

µ
τ

ρ
µ w

w a
u

2
3

=   a
UMa =  21

2

w
fC

U
τ

ρ
=  

 
fw CMaUu 75./ =  

 
High Re:  Cf  ~ 0.005 
    Say Ma ~ 20 
 
Low Re:   Cf  ~ .6Rex

-1/2  Rex=Ux/υ 
     

2
1

Re

4.

x

w Ma
U
u

=  

 
Significant slip possible at low Re, high Ma:  
“Hypersonic LE Problem” 
 
Similar for T: 
 
High Re:  Tgas = Tw 
 

Low Re   ( )
.87gas w

f
r w

T T
MaC

T T
−

=
−   air 

 
= driving ∆T 

01.0<
U
uw  

Ref. T 
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Where  


22 == hf CC
  

)( wrp

w

TTUC
q

−ρ
 

 
 
2.  Idealized gas/liquid interface (free surface problems 
since interface is unknown and part of the solution, but 
effect gas on liquid idealized). 
 

Kinematic FSBC: free surface is stream surface 
 
 1

2 2 2

( , )

/ ( , , 1) / 1x y x y

F x y z surface function

n F F

ζ

ζ ζ ζ ζ

= − =

 = ∇ ∇ = − + + 
 

 

     
 
 

 
 
 

Ch = Stanton number, i.e. wall 
heat transfer coefficient 

Reynolds Analogy 

0

1 0

DF F V F
Dt t

F V n
F t

∂
= = + ⋅∇

∂
∂

+ ⋅ =
∇ ∂
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Dynamic FSBC: stress continuous across free surface 
(similarly for mass and heat flux) 
 

*
ij j ij j ijn n pγτ τ δ= −  

 
 

 
(vector whose components are stress in direction of coordinate axes on surface with normal nj) 
 

)(Re ,,

1

ijjiijij UUp ++−= −δτ  

 
1

, , 2

* Re ( )ij ij i j j i fluid
p U Uτ δ − = − + +  eg ijap δ=  for air if 

neglecting μair 
 

( )1
SN tNp We K Kγ

−= +  
ˆˆ

ˆˆ

S
SN

t
tN

eK n
s

eK n
t

∂
= ⋅

∂
∂

= ⋅
∂

 

 
NumberWeberLUWe == σρ /2  

 
11 1 12 2 13 3 1(2) ( )x an n n p p nγτ τ τ τ= + + = −  
21 1 22 2 23 3 2(3) ( )y an n n p p nγτ τ τ τ= + + = −  
31 1 32 2 33 3 3(4) ( )z an n n p p nγτ τ τ τ= + + = −  

 

Fluid 1 stress Fluid 2 stress Surface 
tension pres. 

Atmospheric pressure 

Surface tension 

Note: ˆSe  and t̂e  normal to n = ˆne  

Curvature F for two mutually perp. directions. 
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(5) 0 x y zV U V W incompressible flow∇⋅ = = + +  

 
Many approximations, eg, inviscid approximation: 
 

 0ap pγ= =  
 small slope: ζx ~ ζy ~ 0 
 small normal velocity gradient:  Wx ~ Wy ~ Wz = 0 
 
 0),( =

∂
∂ VU
z

  yxz VUW −−=   or  0=zW  

 
 p = 0 or  p̂ gzρ=  p̂ = piezometric pres. 
 
3)  Inlet/exit/outer 
 
 a) inlet: V, p, T  specified 
 b) outer: V, p, T specified 
  

c) exit: depends on the problem, but often use 0=XXU , 
(i.e. zero stream wise diffusion for external 
flow and periodic for fully developed 
internal flow). 

1+3+1=5 conditions for 5 unknowns = (V, p, ζ)  
The first 4 conditions nonlinear 
 
-Also need conditions for turbulence variables 

eg. constant Temp., 
uniform stream: 
V = U î , p = 0 , T = Ti,o 
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Interface Velocity Condition 
 
 Just as with solid surface, there can be no relative 
velocity across interface (i.e. exact condition for 
liquid/liquid and gas/gas or gas/liquid non-mixing fluids). 
 

1 2V V=  
1 2n nV V=  required by KFSBC 

1 2
1 FV n V n
F t

∂
⋅ = ⋅ = −

∇ ∂  

 
Tangential should also match, but usually due to 

different approximations used in fluid 1 or 2, (eg fluid 1 
liquid and fluid 2 gas do not).  Often, in fact, motions in 
gas are neglected and therefore V is not continuous. 
  

Also liquid/liquid interfaces are not stable for large 
Re and one must consider “turbulent interface”. 
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Vorticity Theorems 
 
 The incompressible flow momentum equations focus 
attention on V and p and explain the flow pattern in terms 
of inertia, pressure, gravity, and viscous forces.  
Alternatively, one can focus attention on ω and explain 
the flow pattern in terms of the rate of change, deforming, 
and diffusion of ω by way of the vorticity equation.  As 
will be shown, the existence of ω generally indicates the 
viscous effects are important since fluid particles can only 
be set into rotation by viscous forces.  Thus, the 
importance of this topic is to demonstrate that under most 
circumstances, an inviscid flow can also be considered 
irrotational.   
 
1.  Vorticity Kinematics 
 

 ˆˆ ˆ( ) ( ) ( )y z z x x yV w v i u w j v u kω = ∇× = − + − + −  
 

 j jk
i ijk

k j k

u uu
x x x

ω ε
 ∂ ∂∂

= = −  ∂ ∂ ∂ 
  

123 321 231

213 321 132

1
1

0ijk

alternating tensor

otherwise

ε ε ε
ε ε ε
ε

= = =
= = = −
=


 

 = 2  the angular velocity of the fluid element 
 
 (i, j, k cyclic)
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A quantity intimately tied with vorticity is the circulation: 
 
  

V dxΓ = ⋅∫   

 
 
Stokes Theorem: 
 

 
A

a dx a dA⋅ = ∇× ⋅∫ ∫  

 
 

A A

V dx V dA ndAω∴Γ = ⋅ = ∇× ⋅ = ⋅∫ ∫ ∫  

 
 Which shows that if ω =0 (i.e., if the flow is 
irrotational, then Γ = 0 also. 
 
Vortex line = lines which are everywhere tangent to the 
vorticity vector. 
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Next, we shall see that vorticity and vortex lines must 
obey certain properties known as the Helmholtz vorticity 
theorems, which have great physical significance.   
 
The first is the result of its very definition: 

 

( ) 0

V

V

ω

ω

= ∇×

∇⋅ = ∇ ⋅ ∇× =
 

 
i.e. the vorticity is divergence-free, which means that 
there can be no sources or sinks of vorticity within the 
fluid itself. 
 
Helmholtz Theorem #1:  a vortex line cannot end in the 
fluid.  It must form a closed path (smoke ring), end at a 
boundary, solid or free surface, or go to infinity. 
          

   
 
 
The second follows from the first and using the 
divergence theorem: 

 
0

A

d n dAω ω
∀

∇⋅ ∀ = ⋅ =∫ ∫  

Vector identity 

Propeller vortex is 
known to drift up 
towards the free surface 
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Application to a vortex tube results in the following 

1 2

1 2

0
A A

n dA n dAω ω⋅ + ⋅ =

−Γ Γ

∫ ∫
 

 

Or  Γ1= Γ2 

 

Helmholtz Theorem #2: 
 
The circulation around a given vortex line (i.e., the 
strength of the vortex tube) is constant along its length. 
 
This result can be put in the form of a simple one-
dimensional incompressible continuity equation.  Define 
ω1 and ω2 as the average vorticity across A1 and A2, 
respectively 

ω1A1 = ω2A2 
 

which relates the vorticity strength to the cross sectional 
area changes of the tube. 
 
2.  Vortex dynamics 
 
 Consider the substantial derivative of the circulation 
assuming incompressible flow and conservative body 
forces 
 

Minus sign due to 
outward normal 
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D D V dx
Dt Dt

DV Ddx V dx
Dt Dt

Γ
= ⋅

= ⋅ + ⋅

∫

∫ ∫



 
 

 
From the N-S equations we have 
 

21DV pf V
Dt

ν
ρ ρ

∇
= − + ∇  

( ) 2pF Vνρ= −∇ + + ∇  
 

Also, 
D Dxdx d dV
Dt Dt

= =  

 

( ) 2/

1 ( )
2

D F p d x V d x V dV
Dt

dp d V VdF

ρ ν

ρ

Γ  = −∇ + ⋅ + ∇ ⋅ + ⋅    

⋅− −

∫ ∫ ∫

∫∫∫
   



 

2 21
2

dpdF dV V d xν
ρ

 
= − − + + ∇ ⋅ 

 
∫ ∫

   

 
 

2D V dx dx
Dt

ν ν ωΓ
= ∇ ⋅ = − ∇× ⋅∫ ∫   

 
    ( ) ( ) 2

0
V V V

ω

∇× ∇× = ∇ ∇⋅ −∇

=
   

Define Ff −∇=  for 
the gravitational body 
force F=ρgz. 

=0 since integration is around a closed 
contour and F,p, & V are single valued! 
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Implication:  The circulation around a material loop of 
particles changes only if the net viscous force on those 
particles gives a nonzero integral. 
 
If 0ν =  or 0=ω  (i.e., inviscid or irrotational flow, 
respectively) then  
 

0=
Γ

Dt
D      

 
  
Kelvins Circulation Theorem:  for an ideal fluid (i.e. 
inviscid, incompressible, and irrotational) acted upon by 
conservative forces (e.g., gravity) the circulation is 
constant about any closed material contour moving with 
the fluid, which leads to: 
 
Helmholtz Theorem #3:  No fluid particle can have 
rotation if it did not originally rotate.  Or, equivalently, in 
the absence of rotational forces, a fluid that is initially 
irrotational remains irrotational.  In general, we can 
conclude that vortices are preserved as time passes.  Only 
through the action of viscosity can they decay or 
disappear.   
 Kelvins Circulation Theorem and Helmholtz 
Theorem #3 are very important in the study of inviscid 
flow.  The important conclusion is reached that a fluid 

The circulation of a 
material loop never 
changes 
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that is initially irrotational remains irrotational, which is 
the justification for ideal-flow theory. 
 In a real viscous fluid, vorticity is generated by 
viscous forces.  Viscous forces are large near solid 
surfaces as a result of the no-slip condition.  On the 
surface there is a direct relationship between the viscous 
shear stress and the vorticity.  
 
Consider a 1-D flow near a wall: 
  

 
 
 
 
 
 
 

12 12

22 22

32 32

2 0

0

u v u
y x y
v
y

w v
y z

τ µε µ µ

τ µε µ

τ µε µ

 ∂ ∂ ∂
= = + = ∂ ∂ ∂ 

∂
= = =

∂

 ∂ ∂
= = + = ∂ ∂ 

 

 
Which shows that  

dy
u

x

∂
= µτ          0== zy ττ  

The viscous stresses are given by:  
ij jnτ  where ij ijτ µε=  

 

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

x

y

z

n n n
n n n

n n n

τ τ τ τ

τ τ τ τ

τ τ τ τ

+ + =

+ + =

+ + =
 

NOTE: the only component of 
ω is ωz.  Actually, this is a 
general result in that it can be 
shown that ωsurface is 
perpendicular to the limiting 
streamline. 
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However from the definition vorticity we also see that 
 

x z
u
y

τ µ µω∂
= = −

∂  
 

i.e., the wall vorticity is directly proportional to the wall 
shear stress.  This analysis can be extended for general 3D 
flow. 

 

ij j ij jn nτ µω= −  at a fixed solid wall 
 

True since at a wall with coordinate x2, 
1 3

0
x x
∂ ∂

= =
∂ ∂  and 

from continuity 
2

0v
x
∂

=
∂  

Once vorticity is generated, its subsequent behavior is 
governed by the vorticity equation. 
 

N-S  ( ) 2/V V V p V
t

ρ ν∂
+ ⋅∇ = −∇ + ∇

∂    neglect f  

 

Or  ( ) 21 /
2

V V V V p V
t

ω ρ ν∂  +∇ ⋅ − × = −∇ + ∇ ∂  
 

 
The vorticity equation is obtained by taking the curl of 
this equation.  (Note ( ) 0θ∇× ∇ = ). 

Rotation tensor 
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( ) 2V
t
ω ω ν ω∂
−∇× × = ∇

∂   

     ( ) ( ) ( ) ( )V V V Vω ω ω ω= ∇⋅ − ∇ ⋅ − ⋅∇ + ⋅∇  
 
Therefore, the transport Eq. for ω is 

( ) 2( )

D
Dt

V V
t

ω

ω ω ω ν ω∂
+ ⋅∇ = ⋅∇ + ∇

∂   

2
x y zu v w V

t x y z x y z
ω ω ω ω ω ν ω

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + + + ∇   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 



2x x x x
x y z x

Stretching turning

u u uu v w
t x y z x y z
ω ω ω ω ω ω ω ν ω∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + + ∇
∂ ∂ ∂ ∂ ∂ ∂ ∂

  

2y y y y
x y z y

v v vu v w
t x y z x y z
ω ω ω ω

ω ω ω ν ω
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + + ∇
∂ ∂ ∂ ∂ ∂ ∂ ∂  

2z z z z
x y z z

w w wu v w
t x y z x y z
ω ω ω ω ω ω ω ν ω∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + + ∇
∂ ∂ ∂ ∂ ∂ ∂ ∂  

 
Note:   (1) Equation does not involve p explicitly 
  (2) for 2-D flow ( ) 0Vω ⋅∇ =  since ω is perp. to V  
   and there can be no deformation of ω, ie  

   2D
Dt
ω ν ω= ∇  

 

Rate of change of ω     =    

Rate of viscous 
diffusion of ω 

Rate of 
deforming vortex 
lines 
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In order to determine the pressure field in terms of the 
vorticity, the divergence of the N-S equation is taken. 
 

( ) 2/V V V p V
t

ρ ν∂ ∇ ⋅ + ⋅∇ = −∇ + ∇ ∂ 
 

 
[ ]2 ( / )p V Vρ∇ = −∇⋅ ⋅∇    Poisson Eq. for p 

 

( )2 21
2

V V V V ω ω= − ∇ ⋅ + ⋅∇ + ⋅    
does not depend explicitly on ν 

 
Derivation of pressure Poisson equation: 
 
Three vector identities to be used: 

 (1) ( ) ( )1
2

⋅∇ = ∇ ⋅ − × ∇×V V V V V V  

 (2) ( ) ( ) ( )∇ ⋅ × = ⋅ ∇× − ⋅ ∇×a b b a a b  
 (3) ( ) ( )2∇× ∇× = −∇ +∇ ∇⋅a a a  
 
Pressure Poisson equation in vector form: 

 ( )2 p
ρ

 
∇ = −∇⋅ ⋅∇ 

 
V V  

  ( ) ( )1
2

 = −∇ ⋅ ∇ ⋅ − × ∇× 
 

V V V V  

  ( ) ( )21
2

= − ∇ ⋅ +∇ ⋅ ×V V V ω  
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  ( ) ( ) ( )21
2

= − ∇ ⋅ + ⋅ ∇× − ⋅ ∇×V V ω V V ω  

  ( ) ( )( )21
2

= − ∇ ⋅ + ⋅ − ⋅ ∇× ∇×V V ω ω V V  

  ( )2 21
2

= − ∇ ⋅ + ⋅ − ⋅ −∇ +∇ ∇⋅V V ω ω V V V( ) 
   

  ( )2 21
2

= − ∇ ⋅ + ⋅∇ + ⋅V V V V ω ω  
Pressure Poisson equation in tensor form: 

 ( )2 2 21
2

p
ρ

 
∇ = − ∇ ⋅ + ⋅∇ + ⋅ 

 
V V V V ω ω  

 ( ) ( ) ( ) ( ) ( ) ( )
221

2
k k

j j k k i i
i i j j

u e
u e u e u e

x x x x
∂∂  = − ⋅ + ⋅ + ∇× ⋅ ∇× ∂ ∂ ∂ ∂

V V  

 ( )
221

2
k k n

j k jk i ik ijk i lmn l
i i j j j m

u u uu u u e e
x x x x x x

δ δ ε ε
   ∂ ∂ ∂∂

= − + ⋅ + ⋅    ∂ ∂ ∂ ∂ ∂ ∂  
 

 
( ) ( )

2 21
2

j j i k n
i ijk lmn i l

i i j j j m

u u u u uu e e
x x x x x x

ε ε
∂  ∂ ∂ ∂

= − + + ⋅  ∂ ∂ ∂ ∂ ∂ ∂ 
 

 ( )
21

2
i k n

j j i ijk lmn il
i i j j j m

u u uu u u
x x x x x x

ε ε δ
   ∂ ∂ ∂∂ ∂

= − + +     ∂ ∂ ∂ ∂ ∂ ∂   
 

 ( )
21 2

2
j i k n

j i jm kn jn km
i i j j j m

u u u uu u
x x x x x x

δ δ δ δ
∂  ∂ ∂ ∂∂

= − + + − ∂ ∂ ∂ ∂ ∂ ∂ 
 

 
2

j i k n k n
j i jm kn jn km

i i j j j m j m

u u u u u uu u
x x x x x x x x

δ δ δ δ
∂  ∂ ∂ ∂ ∂ ∂∂

= − + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

 
2 2

j j j ji k k k
j i

i i i i j j j j j k

u u u uu u u uu u
x x x x x x x x x x

 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= − + + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
jk

j k

uu
x x

∂∂
= −

∂ ∂  
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3. Kinematic Decomposition of flow fields 
 
Previously, we discussed the decomposition of fluid 
motion into translation, rotation, and deformation.  This 
was done locally for a fluid element.  Now we shall see 
that a global decomposition is possible. 
 
Helmholtz’s Decomposition:  any continuous and finite 
vector field can be expressed as the sum of the gradient of 
a scalar function φ  plus the curl of a zero-divergence 
vector A.  The vector A vanishes identically if the original 
vector field is irrotational.   

V V Vω φ= +  

Where    0

V

V

ω

φ

ω = ∇×

= ∇×   

 
 
 

  V φ φ= ∇  
 

If  0V V Vω φ∇ ⋅ = ∇ ⋅ +∇ ⋅ =  
Then 

2 0φ∇ =   The GDE for φ is the Laplace Eq. 

And  V Aω = ∇×   Since    ( ) 0=×∇⋅∇ A  
 

2 ( )
V A

A A

ω ω∇× = = ∇×∇×

= −∇ +∇ ∇⋅  

The irrotational part of 
the velocity field can be 
expressed as the gradient 
of a scalar 

Again, by vector identity 
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i.e  ω−=∇ A2  
The solution of this equation is  ∀∫= d

R
A ω

π4
1  

Thus 3
1

4
RV d

R
ω ω

π
×

= − ∀∫  

Which is known as the Biot-Savart law. 
 
The Biot-Savart law can be used to compute the velocity 
field induced by a known vorticity field.  It has many 
useful applications, including in ideal flow theory (e.g., 
when applied to line vortices and vortex sheets it forms 
the basis of computing the velocity field in vortex-lattice 
and vortex-sheet lifting-surface methods). 
 
The important conclusion from the Helmholtz 
decomposition is that any incompressible flow can be 
thought of as the vector sum of rotational and irrotational 
components.  Thus, a solution for irrotational part V φ  
represents at least part of an exact solution.  Under certain 
conditions, high Re flow about slender bodies with 
attached thin boundary layer and wake, V ω  is small over 
much of the flow field such that V φ  is a good 
approximation to V .  This is probably the strongest 
justification for ideal-flow theory. (incompressible, 
inviscid, and irrotational flow). 
Non-inertial Reference Frame 
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Thus far we have assumed use of an inertial reference 
frame (i.e. fixed with respect to the distant stars in 
deriving the CV and differential form of the momentum 
equation).  However, in many cases non-inertial reference 
frames are useful (e.g. rotational machinery, vehicle 
dynamics, geophysical applications, etc). 
 

 
𝑎𝑎𝑖𝑖 =

𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

+ 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 

�𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑖𝑖 = 𝑚𝑚�
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

+ 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟� 

∑𝐹𝐹 −𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

 
 

𝑆𝑆𝑖𝑖 = 𝑅𝑅 + 𝑟𝑟  

𝑉𝑉𝑖𝑖 = 𝑉𝑉 +
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

+ Ω × 𝑟𝑟 

𝑎𝑎𝑖𝑖 =
𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

+
𝑑𝑑2𝑅𝑅
𝑑𝑑𝑡𝑡2

+
𝑑𝑑Ω
𝑑𝑑𝑑𝑑

× 𝑟𝑟 + 2Ω × V + Ω × �Ω × 𝑟𝑟� 

= 𝐷𝐷𝑉𝑉
𝐷𝐷𝐷𝐷

+ 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟  

i.e Newton’s law 
applies to non-
inertial frame with 
addition of known 
inertial force terms  

3rd term from fact that 
(x,y,z) rotating at Ω(t). 
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2

2

dt
Rd

  = acceleration (x,y,z) 
 

r
dt

d
×

Ω
  = angular acceleration (x,y,z) 

 
2 VΩ×   = Coriolis acceleration 
 

)( r×Ω×Ω  = centripetal acceleration (=-Ω2L, where L = normal  
      distance from r to axis of rotation Ω). 
 
Since R and Ω assumed known, although more 
complicated, we are simply adding known 
inhomogeneities to the momentum equation. 
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CV form of Momentum equation for non-inertial 
coordinates: 

rel R
CV CV CS

dF a d V d V V n dA
dt

ρ ρ ρ− ∀ = ∀+ ⋅∑ ∫ ∫ ∫  

where RV  is the velocity of the CV relative to the non-
inertial coordinates (x,y,z). 
 
Differential form of momentum equation for non-inertial 
coordinates: 

           ( ) 2
rel

body force

V V V a p z V
t

ρ ρ γ µ∂ + ⋅∇ = − −∇ + + ∇ ∂      

where                                                                  
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅̈𝑅 + 2Ω × V + Ω × �Ω × 𝑟𝑟� + Ω̇ × 𝑟𝑟 

 

All terms in rela  seldom act in unison (e.g. geophysical 
flows): 
••

R  ~ 0  earth not accelerating relative to distant stars 
 
•

Ω  ~ 0  for earth 
 

( )r×Ω×Ω  ~ 0   g nearly constant with latitude 
 

2 V∴ Ω×    most important! 
𝑎𝑎𝑖𝑖 = 𝐷𝐷𝑉𝑉

𝐷𝐷𝐷𝐷
+ 𝑅𝑅0−1�2Ω × V�    0

0

, tVVV t
V L

= =  
2

0 0
0

0

# V L VR Rossby
V L

= = =
Ω Ω  if L is large, i.e., comparable to 

the order of magnitude of the 
earth radius, R0<1, then Coriolis 
term is larger than the inertia 
terms and is important.  
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Example of Non-inertial Coordinates: 
Geophysical fluids dynamics 
 
Atmosphere and oceans are naturally studied using non-
inertial coordinate system rotating with the earth.  Two 
primary forces are Coriolis force and buoyancy force due 
to density stratification ρ = ρ(T).  Both are studied using 
Boussinesq  approximations (ρ = constant, except 

( ) ˆT gkρ−  term; and μ, k, Cp = constant) and thin layer on 

rotating surface assumption 







L
H

U
W ~ . 

 
Differences between atmosphere and oceans: lateral 
boundaries (continents) in oceans; currents in ocean (gulf  
and Kuroshio stream) along western boundaries; clouds 
and latent heat release in atmosphere due to moisture 
condensation; Vocean = 0.1~1 or 2 m/s and Vatmosphere

 10~20 
m/s 
 
H << L = 0 (radius of earth = 6371 km) 
Therefore, one can neglect curvature of earth and replace 
spherical coordinates by local Cartesian tangent plane 
coordinates. 
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Coriolis force = 2 VΩ×  

     =
wvu

kji

zyx ΩΩΩ

^^^

 

 
     = ( ) 



 −+−Ω θθθθ cossinsincos2

^^^
ukujvwi  

 
     = 

^^^
cos2 kujfuifv θΩ−+−   θsin2Ω=f  

 
  f > 0 northern hemisphere 
  f < 0 southern hemisphere 
  f = Ω±  at poles 
  f = 0 at equator 
 
 

0 since w << v 

= planetary 
vorticity 
= 2 * vertical 
component Ω 

Person 
spins at 
Ω 

Person translates with inertial 

period 
f

Ti

π2
=  
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Equations of Motion 
0V∇⋅ =  

 

wg
z
p

Dt
Dw

v
y
pfu

Dt
Dv

u
x
pfv

Dt
Du

2

00

2

0

2

0

1

1

1

∇+−
∂
∂

−=

∇+
∂
∂

−=+

∇+
∂
∂

−=−

υ
ρ
ρ

ρ

υ
ρ

υ
ρ

 

[ ])(1 00 TT −−= αρρ    
 
p, ρ = perturbation from hydrostatic condition 
 
Geostrophic Flow:  quasi-steady, large-scale motions in 
atmosphere  or ocean far from boundaries 

x
pfv
∂
∂

−=−
0

1
ρ

   
y
pfu
∂
∂

−=
0

1
ρ

 

 
2

~ 0DV U
Dt L

 
 
 

 ~ 0 ( )f V fU  U,L = horizontal scales 

 
Rossby number = 

fL
U  

Atmosphere:  U ~ 10 m/s; f = 10-4 Hz; L ~ 1000 km;  
    and R0 = 0.1 
Ocean:   U ~ 0.1 m/s; f = 10-4 Hz; L ~ 1000 km;  
    and R0 = 0.01 

vertical component Ω negligible due 
to thin layer assumption, i.e.,  
magnitude of 2 cos uθΩ << other terms 
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Therefore, neglect DV
Dt  and since there are no boundaries,  

neglect 2Vν∇ . 
 
Z momentum   p g

z
ρ∂

= −
∂

 baroclinic (i.e. p = p(T)) 
and can be used to eliminate p in above equations 
whereby (u,v) = f(T(z)), which is called thermal wind but 
not considered here. 
If we neglect ρ=ρ(T) effects, (u,v) = f(p) and can be 
determined from measured p(x,y).  Not valid near the 
equator (+ 3o) where f is small. 
 

( )
0

1ˆ ˆ ˆ ˆ ˆ ˆp p p pu i v j p i j i j
f y x x yρ
   ∂ ∂ ∂ ∂

+ ⋅∇ = − + ⋅ +   ∂ ∂ ∂ ∂   
 

 
= 0 

 
i.e V is perpendicular to p∇   horizontal velocity is 
along (and not across) lines of constant horizontal 
pressure, which is reason isobars and stream lines 
coincide on a weather map! 



ME:5160  Chapters 3 & 4 
Professor Fred Stern     Fall 2017  100 
 

Ekman Layer on Free Surface: effects of friction near  
       boundaries 
 
 Viscous layers: 
 
 Sudden acceleration flat plate: t yyu uν=  
        3.64 tδ ν=  
 
 Oscillating flat plate: yyt uu υ=  
      6.5 /δ ν ω=  
 
 Flat plate boundary layer:  
 
    4.9 /x Uδ ν=  
 
 
 
For Ekman layer viscous effects due to wind shear τ(x).  
Assume horizontal uniformity (i.e px = py = 0), which is 
justified for L ~ 100 km and H ~ 50 m.  However, can be 
included easily if assume p = p(z) such that geostropic 
solution is additive and combined solution recovers 
former for large depths −∞→δ

z . 
 

ZZfv uν− =    ZZfu vν=  

 

0),(
),0(

0)0,(

=∞
=
=

tu
Utu

yu
 

0),(
cos),0( 0

=∞
=

tu
tUtu ω

 

Uxu
xu

uvuuu
vu

yyyx

yx

=∞
=

=+

=+

),(
0)0,(

0
υ
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  τµ =zu   at z = 0 
 
  0=zv   at z = 0 
 
  0),( =vu   at z =-∞ 
 
Multiply v-equation by 1−=i  and add to u-equation: 
 

2

2

d V i f V
dz ν

=  
V u i v

complex velocity
= +

=    z x i y= +  
 

 (1 ) / (1 ) /i z i zV Ae Beδ δ+ − += +  
 

 
2
f
νδ = =  Ekman layer thickness 

 
 B = 0 for u(-∞), v(-∞) = 0 
 

 
dV
dz

µ τ=  at z = 0  
 

 
(1 )

2
iA τδ

ρν
−

→ =  
 
 i.e.  






 +−=

4
cos/ / π

δυ
ρτ δ ze

f
u z    and  

 

))0((002.

^

uv
i

windair −=
=

ρτ
ττ
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  





 +−=

4
sin/ / π

δυ
ρτ δ ze

f
v z  

 
F. Nansen (1902) observed drifting arctic ice drifted 20-
400 to the right of the wind, which he attributed to 
Coriolis acceleration.  His student Ekman (1905) derived 
the solution. 
 
Recall f < 0 in southern hemisphere, so the drift is to the 
left of τ. 
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Similar solution for impulsive wind: 
 

0)0,(,0,0, =−∞===== zuzuzuuu zzzt τµυ  
 

π
υ

µ
τ tu 2

0 =   

laminar solution: 
0

0 ( 6 / , 20 )windu V m s T C= = = 0.6 m/s after one min., 2.3 m/s  
      after one hour  
 
turbulent νt solution:(more realistic) 
u0=0.2 m/s after 1 hr (3 % vwind) 
 
 
 
For Ekman layer similar conditions θ = 400 N , 
 
Laminar solution u0 = 2.7 m/s at D = 45 cm, which are too 
high/low; however, using turbulent νt, u0 = 2 cm/s and D = 
100 m, which is more realistic. 


