Quiz Grading Keys

This document provides the general principles of making quiz grading keys:

- The principle is to give more points for understanding the main fluid dynamics concepts rather than for numerical calculations and to encourage class attendance
- Typical grade points (out of 10) and guidelines:

1) 2 points for attendance
2) $\mathbf{1}$ points for following the format similar to the format used for homework, i.e. in the order of NAME and Fluids ID; KNOWN; FIND; ASSUMPTIONS; ANALYSIS (See the 'Information' page on the class website, www.engineering. uiowa.edu/~fluids for more details of the format)
3) $\mathbf{4}$ points for the ANALYSIS parts, i.e. for understanding the main concept of the problem, giving about:
a. 2.5 points for knowing the correct equations related to the concept and the remaining
b. 1.5 points for using the correct assumptions/conditions to simplify/reduce the equations to be solved
4) $\mathbf{2}$ points for correct solving of the equations for the variables of interest
5) $\mathbf{1}$ point for correct evaluations by using the given variables/properties values

- The grade points listed above are only the typical values and those values may vary for each specific problem
- If multiple concepts are asked, then more points are assigned to the main concept and the remaining points to the secondary concepts with a distribution based on their relevance/significance/contribution to the main concept. See an example given at the following page

Example Grading Key

57:020 Mechanics of Fluids and Transport

	57:020 Mechanics of Fluids and Trans
NAME	Attendance: $\mathbf{+ 2}$ points (Guideline 1)
Fluids-ID	

Quiz 3. Air ($\gamma=12.0 \mathrm{~N} / \mathrm{m}^{3}$) flows steadily through the variable area pipe shown at the right. Determine the flow rate Q if viscous and compressibility effects are negligible. Note: $\gamma=$ $9.80 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3}$ for water.

Answer:

KNOWN: $\gamma_{\text {air }}=12.0 \mathrm{~N} / \mathrm{m}^{3} ; \gamma_{\text {H2O }}=9.80 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3}$;

$$
D_{1}=0.2 \mathrm{~m} ; D_{2}=0.1 \mathrm{~m}, h_{1}=0.1 \mathrm{~m}
$$

FIND: $Q \quad$ Format: +1 point (Guideline 2)

ASSUMPTIONS: Viscous and compressibility effects are negligible ANALYSIS:

