ME:5159 FRACTURE MECHANICS

Spring 2017

Instructor: Professor Sharif Rahman, 2140 SC, 335-5679
 sharif-rahman@uiowa.edu

Lecture: 1:30 - 2:20 pm, MWF, 4030 SC

Office Hours: 2:30 - 3:30 pm at 2140 SC, MWF and by appointment

Website: http://css.engineering.uiowa.edu/~me159

Prerequisites: ME:4055 or ME:5150 or equivalents (see instructor)

 (Available at Zephyr, 125 S. Dubuque St., Iowa City; Tel. 351-3500)

 2. Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering
 Library]

 [Engrg. Library]

 [Engrg. Library]

Catalog Data: 3D stress states, definition and criteria for failure, nominal and local yield
 phenomena, linear-elastic and elastic-plastic fracture mechanics, plane stress
 and plane strain fracture toughness, J-integral, crack-opening displacement,
 environmental assisted cracking, fatigue crack growth, fail safe, and damage
tolerant design.
Course Objectives

1. Students will have the knowledge of 2D and 3D field equations of elasticity, material yield criteria, stress concentrations, and introduction to the finite element method.

2. Students will have a fundamental understanding of linear-elastic fracture and will able to solve elementary linear-elastic fracture-related problems.

3. Students will be able to analyze stationary cracks and perform crack propagation in 2D linear-elastic mechanical components of arbitrary geometry using commercially available finite element software.

4. Students will have an understanding of crack-tip plasticity and elastic-plastic fracture and will able to solve practical elastic-plastic fracture problems using J-estimation methods.

5. Students will be able to analyze planar cracks in 3D elastic-plastic mechanical components using commercially available finite element software.

6. Students will have an elementary knowledge of fatigue crack growth and will be able to conduct fatigue life prediction of simple mechanical components under constant-amplitude loading.
Course Outline (44 Meetings)

1 Introduction
1. Relevance, Motivation, and Examples

2 Review of Elasticity Theory, Stress Concentration, and FEM
2. 3D Elasticity Equations in the Cartesian System
3. 2D Elasticity Equations in the Polar System and Yield Criteria
4. Stress Concentration in Mechanical Components
5. Formulation of 2D Finite Element Analysis
6. Introduction to CASCA/FRANC2D and Computer Project No. 1
7. Computer Project No. 1 (Contd.)
8. Computer Project No. 1 (Contd.)

3 Linear-Elastic Fracture Mechanics (LEFM)
9. Stress-Intensity Factors (SIFs), Crack-Tip Fields, and Energy Release Rate
10. SIFs for Common Fracture Specimens
11. Singular Finite Elements
12. Computational Methods for Evaluating SIFs
13. Fracture Toughness, SIF as a Failure Criterion, and Examples
14. 2D Fracture Analysis by CASCA/FRANC2D and Computer Project No. 2
15. Computer Project No. 2 (Contd.)
16. Computer Project No. 2 (Contd.)
17. Principle of Superposition in LEFM
18. Fracture Analysis of Fuselage Lap Joints: Aircraft Industry
19. Mixed-Mode Fracture Analysis and Crack Trajectory Prediction
20. 2D Crack Propagation by CASCA/FRANC2D and Computer Project No. 3
21. Computer Project No. 3 (Contd.)

4 Elastic-Plastic Fracture Mechanics (EPFM)
22. Crack-Front Process Zone and Limitations of LEFM
23. The \(J \)-integral, HRR Singularity Fields, and Validity of \(J \)
24. Pipe Fracture Evaluations by the GE/EPRI Method
25. Fracture Analysis of Ductile Piping: Nuclear Industry
26. Pipe Fracture Evaluations by Limit-Load Analysis
27. 3D Fracture Analysis by ABAQUS/CAE and Computer Project No. 4
28. Computer Project No. 4 (Contd.)
29. Computer Project No. 4 (Contd.)
30. Computer Project No. 4 (Contd.)
31. Crack-Opening-Area (COA) Analysis by the GE/EPRI Method
32. Leak-Rate Analysis and NRC Leak-Before-Break Concept
33. An Example on Leak-Before-Break Analysis

5 Fatigue Crack Propagation
34. Subcritical Crack Propagation and Various Crack-Growth Equations
35. Life Prediction under Constant Amplitude Loading
36. Crack Closure, Variable Amplitude Loading, and Crack-Tip Plasticity
37. Life Prediction by CASCA/FRANC2D and Computer Project No. 5
38. Computer Project No. 5 (Contd.)
39. Computer Project No. 5 (Contd.)
 + [1 class for video on experimental fracture]
 + [2 classes for examinations]
 + [2 classes for reviews]
Performance Evaluation Criteria

A. Homework and Project Assignments

- The assigned homework problems and computer projects should be worked out and submitted to the instructor in a professional format at the beginning of the lecture period. Include your name, course title, assigned homework/project problem numbers in the heading of your paper. The dates of assignments and their due dates are given in the attached assignment sheet (Page 5).

- Your homework/project solution must be submitted individually. No group submission or copies are permitted. If a copy is detected, a zero score will be assigned to all papers in question. You are advised to obtain help from the instructor or the TA.

- Unless appropriate reason(s) is (are) given, late submission will not be accepted.

B. Examination Policy

- There will be two examinations (Examinations 1 and 2) in this course. Both will be closed-book examinations. The tentative schedules for the examinations are:

 Examination 1: 1:30-2:20 pm, March 10, 2017, Fri at 4030 SC
 Examination 2: 1:30-2:20 pm, May 05, 2017, Fri at 4030 SC

(The exact date/time/place will be confirmed or revised during the semester)

- If any of these examinations is missed, the instructor will use his discretion in choosing alternative means to evaluate student's performance. This can be a make-up examination, oral examination, or both.

C. Grading Policy

- A student must turn in all HW/CP solutions to receive a passing grade.

- The letter grade for this course will be based on the student’s overall performance on homework assignments and computer projects; midterm; and final examinations. The distribution of points is as follows:

 1. Homework Assignments 25 percent
 2. Computer Projects 25 percent
 3. Examination 1 25 percent
 4. Examination 2 25 percent

- The final grade will be posted on the web at the end of the semester.
<table>
<thead>
<tr>
<th>Wk.</th>
<th>Mtg. (Lec.)</th>
<th>Date</th>
<th>Topics/Reading<sup>(a)</sup></th>
<th>HW/CP</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (1)</td>
<td>Jan 18, Wed</td>
<td>Introduction (1-12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (2)</td>
<td>Jan 20, Fri</td>
<td>Review of Elasticity Theory (88-91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 (3)</td>
<td>Jan 23, Mon</td>
<td>Review of Elasticity/Yield Criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (4)</td>
<td>Jan 25, Wed</td>
<td>Stress Concentration</td>
<td>HW1</td>
<td>Feb 06, Mon</td>
</tr>
<tr>
<td></td>
<td>5 (5)</td>
<td>Jan 27, Fri</td>
<td>FEM – 2D Elasticity Problems (554-556)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6 (6)</td>
<td>Jan 30, Mon</td>
<td>CP1 – Stress Concentration (27-28)</td>
<td>CP1</td>
<td>Feb 13, Mon</td>
</tr>
<tr>
<td></td>
<td>7 (7)</td>
<td>Feb 01, Wed</td>
<td>CP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 (8)</td>
<td>Feb 03, Fri</td>
<td>CP1/HW1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 (9)</td>
<td>Feb 06, Mon</td>
<td>Stress Analysis of Cracks (42-48, 72-75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 (10)</td>
<td>Feb 08, Wed</td>
<td>SIFs for Fracture Specimens (48-53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 (11)</td>
<td>Feb 10, Fri</td>
<td>Singular Finite Elements (587-591)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12 (12)</td>
<td>Feb 13, Mon</td>
<td>Numerical Evaluation of SIFs (558-586)</td>
<td>HW2</td>
<td>Feb 24, Fri</td>
</tr>
<tr>
<td></td>
<td>14 (14)</td>
<td>Feb 17, Fri</td>
<td>CP2 – 2D Mode-I Fracture Analysis</td>
<td>CP2</td>
<td>Mar 03, Fri</td>
</tr>
<tr>
<td>6</td>
<td>15 (15)</td>
<td>Feb 20, Mon</td>
<td>CP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 (16)</td>
<td>Feb 22, Wed</td>
<td>CP2/HW2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 (17)</td>
<td>Feb 24, Fri</td>
<td>Principle of Superposition (54-57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18 (18)</td>
<td>Feb 27, Mon</td>
<td>Applications – Aircraft Industry</td>
<td>HW3</td>
<td>Mar 08, Wed</td>
</tr>
<tr>
<td></td>
<td>19 (19)</td>
<td>Mar 01, Wed</td>
<td>Mixed-mode Fracture (80-85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 (20)</td>
<td>Mar 03, Fri</td>
<td>CP3 – 2D Mixed-Mode Fracture Analysis</td>
<td>CP3</td>
<td>Mar 22, Wed</td>
</tr>
<tr>
<td>8</td>
<td>21 (21)</td>
<td>Mar 06, Mon</td>
<td>CP3/HW3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Mar 08, Wed</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Mar 10, Fri</td>
<td>Examination 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Spring Break (Mar 14-18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>24 (22)</td>
<td>Mar 20, Mon</td>
<td>Fracture Process Zone (61-71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 (23)</td>
<td>Mar 22, Wed</td>
<td>EFM, J-integral, HRR (103-133)</td>
<td>HW4</td>
<td>Mar 31, Fri</td>
</tr>
<tr>
<td></td>
<td>26 (24)</td>
<td>Mar 24, Fri</td>
<td>Pipe Fracture Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 (26)</td>
<td>Mar 29, Wed</td>
<td>Limit-Load Analysis/HW4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 (27)</td>
<td>Mar 31, Fri</td>
<td>CP4 – 3D Pipe Crack Analysis</td>
<td>CP4</td>
<td>Apr 10, Mon</td>
</tr>
<tr>
<td>12</td>
<td>30 (28)</td>
<td>Apr 03, Mon</td>
<td>CP4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 (29)</td>
<td>Apr 05, Wed</td>
<td>CP4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 (30)</td>
<td>Apr 07, Fri</td>
<td>CP4/HW5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>33 (31)</td>
<td>Apr 10, Mon</td>
<td>Crack-Opening-Area Analysis</td>
<td>HW5</td>
<td>Apr 17, Mon</td>
</tr>
<tr>
<td></td>
<td>34 (32)</td>
<td>Apr 12, Wed</td>
<td>Crack-Opening/NRC LBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 (33)</td>
<td>Apr 14, Fri</td>
<td>Design Example based NRC LBB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>36 (34)</td>
<td>Apr 17, Mon</td>
<td>Fatigue Crack Propagation (451-457)</td>
<td>HW6</td>
<td>Apr 24, Mon</td>
</tr>
<tr>
<td></td>
<td>37 (35)</td>
<td>Apr 19, Wed</td>
<td>Fatigue Life Prediction (451-459)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38 (36)</td>
<td>Apr 21, Fri</td>
<td>Crack Closure, etc./HW6 (457-459)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>39 (37)</td>
<td>Apr 24, Mon</td>
<td>CP5 – Fatigue Crack Growth Analysis</td>
<td>CP5</td>
<td>May 01, Mon</td>
</tr>
<tr>
<td></td>
<td>40 (38)</td>
<td>Apr 26, Wed</td>
<td>CP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 (39)</td>
<td>Apr 28, Fri</td>
<td>CP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>42 (40)</td>
<td>May 01, Mon</td>
<td>Experimental Fracture (Video)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>May 03, Wed</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>May 05, Fri</td>
<td>Examination 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Parenthetical values are page nos. of the Anderson book; HW = homework; CP = computer project
Regulations Dealing with Academic Misconduct
August 1980

The College of Engineering endorses the policies and rights of students as printed in the "Policies and Regulations Affecting Students" of The University of Iowa. Under Section 1 in the Code of Student Life, which appears in the above publication and has been adopted by the College of Engineering Faculty, the College has the authority to handle acts of academic misconduct, which are defined in Section 1 as:

"Academic dishonesty, including the acquisition of honors, awards, certification or professional endorsements, degrees, academic credits, or grades by means of cheating, plagiarism, or falsification with respect to any examination, paper, project, application, recommendation, transcript, or test, or by any other dishonest means whatsoever, or aiding or abetting another student to do so."

The following regulations provide a procedure for dealing with students who are alleged to have committed an act of academic misconduct:

1. Guidelines for Disciplinary Action by an Instructor
Exams: In cases of cheating on hourly or final exams, it is recommended that the instructor reduce the student’s grade, including the assignment of the grade of “F” in the course. When a course grade has been reduced to an “F”, the student may not drop the course, nor use the Second Grade Option procedure to eliminate the failing grade from semester and cumulative GPA values that appear on the permanent record card (i.e., the grade transcript.) It is recommended that cheating on quizzes be considered as serious a violation as on exams and that the penalty be similar. The instructor shall send a written report of any disciplinary action to the Office of the Dean and the report shall be placed in the student’s file.

Homework, Lab Reports, etc.: Each instructor shall announce at the beginning of each course the acceptable policies on student collaboration in each of the graded course requirements. When the policy is clearly violated, a zero shall be assigned for the total portion of the course grade allocated to the requirement in which the violation occurred (e.g., a zero for all homework assignments if cheating occurred on a homework assignment.) A written report of this action shall be sent by the instructor to the Office of the Dean and placed in the student’s file.

2. Student Appeal
When a written report of disciplinary action by an instructor is received by the Office of the Dean, the student shall be notified in writing of the action. If the student feels that the finding of cheating is in error or the penalty is unjust, the student may request a hearing by notifying in writing the associate dean of the College, who will in turn appoint a committee to review the incident. If the student is not satisfied with the results of the hearing, the student may request a review by the Office of the Vice President for Academic Affairs.

3. Disciplinary Action by the Dean
In cases of flagrant or a second offense, the dean of the College may impose the following or other penalties as the offense may warrant: cancellation of the student’s registration, disciplinary probation, suspension from the College, or recommendation of expulsion from the University by the President. If the student feels that the penalty imposed by the dean is unjust, the student may request a review by the Office of the Vice President for Academic Affairs.

4. Record of Disciplinary Action
Reports of academic misconduct received by the Office of the Dean shall be placed in the involved student’s file maintained in the Office of the Dean. The Office of the Dean shall notify the student of each report and the right of the student to request a hearing for review of the case. The reports shall be destroyed when the student graduates or within two years after the student leaves the University.

(These regulations are based on the recommendations of the Ad-Hoc Committee on Student Academic Conduct which were approved by the Faculty on April 29, 1980.)