
AN965
Microchip Stack for the ZigBee™ Protocol
INTRODUCTION
ZigBee™ is a wireless network protocol specifically
designed for low data rate sensors and control net-
works. There are a number of applications that can
benefit from the ZigBee protocol: building automation
networks, home security systems, industrial control
networks, remote metering and PC peripherals are
some of the many possible applications.

Compared to other wireless protocols, the ZigBee
wireless protocol offers low complexity, reduced
resource requirements and most importantly, a stan-
dard set of specifications. It also offers three frequency
bands of operation along with a number of network
configurations and optional security capability.

If you are currently exploring alternatives to your existing
control network technologies, such as RS-422, RS-485
or proprietary wireless protocol, the ZigBee protocol
could be the solution you need.

This application note is specifically designed to assist
you in adopting the ZigBee protocol for your applica-
tion. You can use the Microchip Stack for the ZigBee
protocol provided in this application note to quickly
build your application. To illustrate the usage of the
Stack, several working demo applications are included.
You can use these demo applications as a reference or
simply modify and adopt them to your requirements.

Commonly asked questions about the Microchip Stack
and its usage, along with their answers, are provided at
the end of this document in “Answers to Common
Questions”.

ASSUMPTION
This document assumes that you are familiar with the
C programming language. This document uses
extensive terminology from the ZigBee protocol and
IEEE 802.15.4™ specifications and provides a brief
overview of the ZigBee protocol specification. You are
advised to read the ZigBee protocol and IEEE 802.15.4
specifications in detail.

FEATURES
The Microchip Stack for the ZigBee protocol is
designed to evolve with the ZigBee wireless protocol
specification. At the time this document was published,
the current ZigBee protocol specification version was
v1.0. This document applies to Microchip Stack
releases v1.0-3.5 and greater.

The Microchip Stack offers the following features:

• Based on version 1.0 of the ZigBee protocol
specifications

• Support for 2.4 GHz frequency band
• Support for all ZigBee protocol device types

(Coordinators, Routers and End devices)
• Implements nonvolatile storage for neighbor and

binding tables
• Portable across many of the PIC18 family of

microcontrollers
• RTOS and application independent

• Out-of-box support for Microchip MPLAB® C18
compiler

• Modular design and standard nomenclature aligns
with the nomenclature used in the ZigBee
protocol and IEEE 802.15.4 specifications

For the latest features and enhancements over previ-
ous releases, refer to the README file distributed with
the source code for the Microchip Stack for ZigBee™
protocol.

LIMITATIONS
Version 1.0-3.5 of the Microchip Stack contains security
feature limitations. Please note that Microchip is plan-
ning to add new features as time progresses. Refer to
the README file distributed with the source code for
current limitations.

Note: Please note that in order to distribute a
product that utilizes the Microchip Stack
for the ZigBee protocol, you must become
a ZigBee Adopter through the ZigBee
Alliance.

Author: David Flowers, Kim Otten
and Nilesh Rajbharti
Microchip Technology Inc.
© 2006 Microchip Technology Inc. DS00965B-page 1

AN965
CONSIDERATIONS
The ZigBee protocol specification leaves many higher
level decisions up to the developer. As such, the
Microchip Stack provides no explicit support for some
functions:

• Supports non-slotted networks only (no beacon
network support)

• Network addresses of nodes that have left the
network cannot be reassigned

• Automatic removal of nodes from the neighbor
table is not performed

• PAN ID conflict resolution is not supported
• Automatic route repair is not performed

• Alternate PAN coordinator capability

ZigBee PROTOCOL OVERVIEW
ZigBee is a standard wireless network protocol
designed for low data rate control networks. It is
layered on top of the IEEE 802.15.4 specification and
provides a standard methodology for functions,
including network formation, messaging and device
discovery.

IEEE 802.15.4
The ZigBee protocol uses the IEEE 802.15.4 specifica-
tion as its Medium Access Layer (MAC) and Physical
Layer (PHY). The IEEE 802.15.4 defines three
frequency bands of operations: 2.4 GHz, 915 MHz and
868 MHz. Each frequency band offers a fixed number
of channels. For example, the 2.4 GHz frequency band
offers 16 channels (channels 11-26), 915 MHz offers
10 channels (channels 1-10) and 868 MHz offers
1 channel (channel 0).

The bit rate of the protocol depends on the operational
frequency. The 2.4 GHz band provides 250 kbps,
915 MHz provides 40 kbps and 868 MHz provides a
20 kbps data rate. The actual data throughput will be
less than the specified bit rate due to the packet
overhead and processing delays.

The maximum length of an IEEE 802.15.4 MAC packet
is 127 bytes, including a 16-bit CRC value. The 16-bit
CRC value verifies the frame integrity. In addition, IEEE
802.15.4 optionally uses an Acknowledged data
transfer mechanism. With this method, all frames with
a special ACK flag set are Acknowledged by its
receiver. This makes sure that a frame is in fact deliv-
ered. If the frame is transmitted with an ACK flag set
and the Acknowledgement is not received within a
certain time-out period, the transmitter will retry the
transmission for a fixed number of times before declar-
ing an error. It is important to note that the reception of
an Acknowledgement simply indicates that a frame
was properly received by the MAC layer. It does not,
however, indicate that the frame was processed cor-
rectly. It is possible that the MAC layer of the receiving
node received and Acknowledged a frame correctly,
but due to the lack of processing resources, a frame
might be discarded by upper layers. As a result, the
upper layers may require additional Acknowledgement
response.

DEVICE TYPES
IEEE 802.15.4 defines two types of devices. These
devices types are shown in Table 1. Listed in Table 2
are the three types of ZigBee protocol devices as they
relate to the IEEE device types.

TABLE 1: IEEE 802.15.4 DEVICE TYPES

TABLE 2: ZigBee™ PROTOCOL DEVICE TYPES

Device Type Services Offered Typical Power Source
Typical Receiver

Configuration

Full Function Device (FFD) Most or all Mains On when Idle

Reduced Function Device (RFD) Limited Battery Off when Idle

ZigBee Protocol Device IEEE Device Type Typical Function

Coordinator FFD One per network. Forms the network, allocates network
addresses, holds binding table.

Router FFD Optional. Extends the physical range of the network. Allows
more nodes to join the network. May also perform monitoring
and/or control functions.

End FFD or RFD Performs monitoring and/or control functions.
DS00965B-page 2 © 2006 Microchip Technology Inc.

AN965
NETWORK CONFIGURATIONS
A ZigBee protocol wireless network may assume many
types of configurations. In all network configurations,
there are at least two main components:

• Coordinator node

• End device

The ZigBee protocol coordinator is a special variant of a
Full Function Device (FFD) that implements a larger set
of ZigBee protocol services. An end device may be an
FFD or a Reduced Function Device (RFD). An RFD is
the smallest and simplest ZigBee protocol node. It imple-

ments only a minimal set of ZigBee protocol services. A
third and optional component, the ZigBee protocol
router, is present in some network configurations.

Star Network Configuration

A star network configuration consists of one ZigBee
protocol coordinator node and one or more end
devices. In a star network, all end devices communi-
cate only with the coordinator. If an end device needs
to transfer data to another end device, it sends its data
to the coordinator. The coordinator, in turn, forwards
the data to the intended recipient.

FIGURE 1: STAR NETWORK CONFIGURATION

Cluster Tree Topology

Another network configuration is a cluster tree topology.
In this configuration, end devices may join either to the
ZigBee protocol coordinator or to the ZigBee protocol
routers. Routers serve two functions. One is to increase

the number of nodes that can be on a network. The other
is to extend the physical range of the network. With the
addition of a router, an end device need not be in radio
range of the coordinator. All messages in a cluster tree
topology are routed along the tree.

FIGURE 2: CLUSTER TREE TOPOLOGY

FFD

RFD

Legend

Coordinator

FFD

RFD

Router

Legend

Coordinator
© 2006 Microchip Technology Inc. DS00965B-page 3

AN965
Mesh Network

A mesh network is similar to a cluster tree configura-
tion, except that FFDs can route messages directly to
other FFDs instead of following the tree structure.

Messages to RFDs must still go through the RFD’s par-
ent. The advantages of this topology are that message
latency can be reduced and reliability is increased.

FIGURE 3: MESH NETWORK

The cluster tree and mesh topologies are also known
as multi-hop networks, due to their abilities to route
packets through multiple devices, while the star
topology is a single-hop network. A ZigBee protocol
network is a multi-access network, meaning that all
nodes in a network have equal access to the medium
of communication.

There are two types of multi-access mechanisms,
beacon and non-beacon. In a non-beacon enabled net-
work, all nodes in a network are allowed to transmit at
any time as long as the channel is Idle. In a beacon

enabled network, nodes are allowed to transmit in pre-
defined time slots only. The coordinator periodically
begins with a superframe identified as a beacon frame,
and all nodes in the network are expected to synchro-
nize to this frame. Each node is assigned a specific slot
in the superframe during which it is allowed to transmit
and receive its data. A superframe may also contain a
common slot during which all nodes compete to access
the channel. The current version of the Microchip Stack
supports only non-beacon networks.

FFD

RFD

Router

Legend

Coordinator
DS00965B-page 4 © 2006 Microchip Technology Inc.

AN965
ZigBee PROTOCOL TERMINOLOGY

A ZigBee protocol profile is simply a description of log-
ical components (devices) and their interfaces. There
is often no code associated with a profile. Each piece
of data that can be passed between devices, such as a
switch state or a potentiometer reading, is called an
attribute. Each attribute is assigned a unique identifier.
These attributes are grouped in clusters. Each cluster
is assigned a unique identifier. Interfaces are specified
at the cluster level, not the attribute level, though
attributes are transferred individually.

The profile defines the values of the Attribute IDs and
the Cluster IDs, as well as the format of each attribute.
For example, in the Home Control, Lighting profile, the
cluster OnOffDRC of the Dimmer Remote Control
(DRC) device contains one attribute, OnOff, which
must be an unsigned 8-bit value, with the value 0xFF
meaning “on”, the value 0x00 meaning “off” and the
value 0xF0 meaning “toggle output”.

The profile also describes which clusters are manda-
tory and which are optional for each device. In addition,
the profile may define some optional ZigBee protocol
services as mandatory.

The user can take these definitions and write his code
to use them. He can write the code any way he wants,
grouping the functions any way he wants as long as he
supports the mandatory clusters and services, and

uses the attributes as they are defined in the profile.
This way, one manufacturer’s switch will work with
another manufacturer’s load controller.

As an example, the Home Control, Lighting profile
specifies six devices. The Microchip Stack for the
ZigBee protocol provides support for this profile via a
header file with the following information:

• Profile ID

• Device IDs and Versions
• Cluster IDs
• Attribute IDs

• Attribute Data Types

Each functional block of code that supports one or
more clusters is called an endpoint. Different devices
communicate via their endpoints and the clusters they
support.

Figure 4 shows graphically how the various terms
relate to each other. The figure shows two devices from
the Home Control, Lighting profile. Each has only one
endpoint. The Switching Load Controller (e.g., a light)
has one input cluster on that endpoint. The Switch
Remote Control (e.g., a switch) has one output cluster
and one input cluster on its endpoint. The switch could
also be implemented such that the two clusters are on
separate endpoints. Data flow is at the cluster level.

FIGURE 4: ZigBee™ PROTOCOL PROFILE ARCHITECTURE

Switch Remote Control

Endpoint 7

OnOffSRC

OnOff

ProgramSRC

Override

Auto

FactoryDefault

Switch Load Controller

Endpoint 15

OnOffSRC

OnOff

Device
Description

Endpoint

Cluster

Attribute

Legend
© 2006 Microchip Technology Inc. DS00965B-page 5

AN965
Message Types and Binding

Devices can communicate with other devices on the
network if they know the network addresses of those
devices. These messages are called direct messages.
However, there is a great deal of overhead involved in
discovering and maintaining these destination
addresses. ZigBee protocol offers a feature called
“binding” to simplify messaging. The ZigBee protocol
coordinator can create a table of matches at the
cluster/endpoint level between the services and the
needs of the devices in the network. Each of these
pairs is called a “binding”. A binding can be requested
by the devices themselves, or it can be created by the
coordinator or another device. Once a binding is
created, two devices can communicate through the
coordinator. The source device sends its message to
the coordinator, which then relays the message to one
or more destination devices. These messages are
called indirect messages.

ZigBee Protocol Message Format

A ZigBee protocol message consists of up to 127 bytes
in the following fields:

• MAC Header – This header contains, with other
information, the source and destination addresses
of the message as it is currently being transmit-
ted. Note that it may not reflect the actual source
or the final destination of the message if the mes-
sage is being routed. The generation and use of
this header is transparent to the application code.

• NWK Header – This header contains, with other
information, the actual source and final destina-
tion of the message. The generation and use of
this header is transparent to the application code.

• APS Header – This header includes the Profile
ID, Cluster ID and destination endpoint of the cur-
rent message. The generation and use of this
header is transparent to the application code.

• APS Payload – This field contains the ZigBee
protocol frame for the application to process. The
application code is responsible for filling in the
APS Payload.

ZigBee Protocol Frame Formats

ZigBee protocol defines two frame formats, the Key
Value Pair (KVP) frame format and the Message
(MSG) frame format. Both frame formats are associ-
ated with a Cluster ID, but KVP frames are designed to
transfer one piece of information associated with an
attribute using a strict structure, while MSG frames
transfer information using a free form structure. The
profile for the application will specify what frame
formats should be used to transfer what information
and the format of any MSG frames. Due to the
difference in frame format, a cluster not may utilize both
KVP frames and MSG frames.

KVP Frames

A KVP frame contains the following information, in
order:

1. Transaction Count
2. Frame Type

3. Transactions
- Transaction Sequence Number
- Command Type and Attribute Data Type

- Attribute ID
- Error Code (optional)
- Attribute Data (variable size)

The Command Type indicates what the application is
supposed to do with the information. For example, the
command, “Set”, requires the recipient to set the value
of the attribute indicated by the Attribute ID to the value
in Attribute Data, and the command, “Get with
Acknowledge”, requires the recipient to send the value
of the attribute indicated by the Attribute ID.

MSG Frames

An MSG frame contains the following information, in
order:

1. Transaction Count
2. Frame Type

3. Transactions
- Transaction Sequence Number
- Transaction Length

- Transaction Data

Both the sending and the receiving devices need to be
aware of the transaction data format.

Addressing

Each node on a ZigBee protocol network will have two
addresses: a 64-bit MAC address and a 16-bit network
address. There are also two forms of message
addressing available.

IEEE Extended Unique Identifiers – EUI-64

Each and every device that communicates using
ZigBee protocol must have a globally unique, 64-bit
MAC address. This address is made up of a 24-bit
Organizationally Unique Identifier (OUI) plus 40 bits
assigned by the manufacturer. OUIs must be
purchased from IEEE to ensure global uniqueness.
You may obtain your own OUI number by applying at
the following web address:

https://standards.ieee.org/regauth/oui/forms/
OUT-form.shtml

If your organization already has an OUI for Ethernet
applications, you may use the same OUI for ZigBee
protocol applications. You may not use the Microchip
OUI for production devices.
DS00965B-page 6 © 2006 Microchip Technology Inc.

AN965
Network Addresses

Devices use their extended addresses to communicate
while they are in the process of joining a network. When
a device successfully joins a ZigBee protocol network, it
is assigned a 16-bit network address, which it then uses
to communicate with other devices on the network.

Unicast

In a unicast message, the address of the destination
node is provided in the MAC layer header of the packet.
Only the device who has that address receives the
message.

Broadcast

In a broadcast packet, the MAC layer destination
address is 0xFFFF. Any transceiver that is RX enabled
will receive the message. This form of addressing is
used when joining a network, discovering routes in the
network and performing other ZigBee protocol discovery
functions. ZigBee protocol implements a “passive-
acknowledge” of broadcast packets. What is meant by
passive-acknowledge is that when a device originates or
retransmits a broadcast packet, it will listen for all of its
known neighbors to retransmit the packet. If all
neighbors have not replicated the message within
nwkPassiveAckTimeout seconds, it will retransmit the
packet until it hears the retransmissions from all of its
known neighbors or the packet times out after
nwkNetworkBroadcastDeliveryTime seconds.

Data Transfer Mechanism

In a non-beacon network, when a device wants to send
a data frame, it simply waits for the channel to become
Idle. Upon detecting an Idle channel condition, the
device may transmit the frame.

If the destination device is an FFD, then its transceiver
is always on, and other devices may transmit to it at any
time. This capability allows for mesh networking. How-
ever, if the device is an RFD, then it may power down
its transceiver when it is Idle to conserve power. The
RFD will not be able to receive messages while it is in
this state. This condition is handled by requiring that all
messages to and from an RFD go through the RFD’s
FFD parent. When the RFD powers up its transceiver,
it requests messages from its parent. If the parent has
buffered a message for the child, it then forwards that
message to the child. This allows the RFD to conserve
power, but requires that the FFD have enough RAM to
buffer messages for all of its children. If the child does
not request messages within a certain time period
(macTransactionPersistenceTime), the message will
time out, and the parent will discard it.

Routing

The Microchip Stack has the ability to route messages.
Routing is done automatically by the Stack, without any
intervention from the end application. Routing allows
the range of the network to be extended by allowing
end devices beyond radio distance of the ZigBee
protocol coordinator to join the network through a
ZigBee protocol router.

The type of routing desired for a message is indicated
when the message is sent. There are three routing
options available:

1. SUPPRESS – If a discovered mesh route exists,
the message is routed along that route.
Otherwise, the message is routed along the
tree.

2. ENABLE – If a discovered mesh route exists,
the message is routed along that route. If a
mesh route has not been determined, the router
can initiate route discovery. When discovery is
complete, the message will be sent along the
calculated route. If the router does not have
route capacity, it will route the message along
the tree.

3. FORCE – If the router has route capacity, it will
initiate route discovery, even if a route already
exists. When discovery is complete, the mes-
sage will be sent along the calculated route. If
the router does not have route capacity, it will
route the message along the tree. This option
should be used sparingly, as it generates a great
deal of network traffic. Its primary use is to repair
a broken route.
© 2006 Microchip Technology Inc. DS00965B-page 7

AN965
Network Association

A new ZigBee protocol network is first established by a
ZigBee protocol coordinator. On start-up, a ZigBee pro-
tocol coordinator searches for other ZigBee protocol
coordinators operating on its allowed channels. Based
on the channel energy and number of networks found
on each allowed channel, it establishes its own network
and selects a unique 16-bit PAN ID. Once a new
network is established, ZigBee protocol routers and
end devices are allowed to join the network.

Once a network is formed, it is possible that due to the
physical changes, more than one network may overlap
and a PAN ID conflict may arise. In that situation, a
coordinator may initiate a PAN ID conflict resolution
procedure and one of the coordinators would change
its PAN ID and/or channel. The affected coordinator
would instruct all of its child devices to make the
necessary changes. The current version of the
Microchip Stack does not support PAN ID conflict
resolution.

ZigBee protocol devices store information about other
nodes in the network, including parent and child nodes,
in an area of nonvolatile memory called a neighbor table.
On power-up, if a child device determines through its
neighbor table that it once was part of a network, it may
execute an orphan notification procedure to locate its
previously associated network. Devices that receive the
orphan notification will check their neighbor tables and
see if that device is one of their children. If so, the parent
device will inform the child device of its place in the net-
work. If orphan notification fails or the child device has
no parent entry in its neighbor table, then it will try to join
the network as a new device. It will generate a list of
potential parents and try to join an existing network at the
optimal depth.

Once on a network, a device can disassociate from the
network either by being requested to leave the network
by its parent or by requesting disassociation itself.

The amount of time that a device spends determining
the channel energy and available networks on each
channel is specified by the ScanDuration parameter.
Refer to “ZigBee Protocol Timing” for details on how
this parameter is derived. For the 2.4GHz frequency
band, the scanning time in seconds is calculated by the
equation:

0.01536 * (2ScanDuration + 1)

For the Microchip Stack, ScanDuration may be
between 0 and 14, giving a scan time of 0.031 seconds
to 4.2 minutes per channel. If ScanDuration is set
to 8 and all 16 channels are specified, a device will
spend over one minute performing each required scan.
ZigBee protocol routers and end devices perform one
scan to determine available networks, but ZigBee
protocol coordinators perform two scans, one to
sample channel energy and one to determine existing
networks. The specified scan duration needs to
balance the time needed to adequately perform each
scan on the specified channels with the amount of time
allocated for system start-up.
DS00965B-page 8 © 2006 Microchip Technology Inc.

AN965
STACK ARCHITECTURE

The Microchip Stack is written in the C programming
language, and is designed to run on Microchip’s
PIC18F family of microcontrollers. The Microchip Stack
uses internal Flash program memory to store many
parameters, including MAC address, neighbor table
and binding table. Consequently, you must use a self-
programmable Flash memory microcontroller. If
required, you may modify the Nonvolatile Memory
(NVM) routines to support any other type of NVM and
not use a self-programmable microcontroller. In
addition, the Stack is targeted to run on the
PICDEM™ Z Demonstration Board. However, it can be
easily ported to any hardware equipped with a
compatible microcontroller.

The Microchip Stack was designed to follow the ZigBee
protocol and IEEE 802.15.4 specifications, with each
layer in its own source file. Terminology is copied as
closely as possible from the specifications. The
primitives defined in the two specifications are used to
interface with the Stack through a single function call,
using the parameter list defined for the primitives in
the specifications. Refer to “Interfacing with the
Microchip Stack for the ZigBee Protocol” for
detailed descriptions of typical primitive flow. Refer to
the ZigBee protocol and IEEE 802.15.4 specifications
for detailed descriptions of the primitives and their
parameter lists.

FIGURE 5: ZigBee™ PROTOCOL STACK ARCHITECTURE

SSP –

Application (APL) Layer

Device Mgmt.

Binding Mgmt.

Security Mgmt.

NWK Mgmt.

Application Framework (AFG) ZDO – ZigBee™ Protocol Device Objects

Application
Object

Application
Object

Z
D

O
 P

ub
lic

In

te
rf

ac
e

Endpoint
240

Endpoint 1 Endpoint 0

APSDE – SAP APSME

– SAP

ZDO
Mgmt.
Plane

S
S

P
 In

te
rf

ac
e

Security
Service
Provider

APS Message APS Security
Management Management

Routing NWK NWK Security
Management Management Management

A
P

S
M

E
 –

 S
A

P
N

LM
E

 –
 S

A
P

NLME

– SAP

MLME – SAP

PLME – SAP

NLDE – SAP

MCPS – SAP

PD – SAP

2.4 GHz 868/915 MHz

Endpoint Multiplexing

Application Support Sublayer (APS)

NWK – Network Layer

MAC (IEEE 802.15.4)

PHY (IEEE 802.15.4)
© 2006 Microchip Technology Inc. DS00965B-page 9

AN965
TYPICAL ZigBee PROTOCOL NODE
HARDWARE

To create a typical ZigBee protocol node using the
Microchip Stack, you need, at a minimum, the following
components:

• One Microchip microcontroller with an SPI
interface

• One RF transceiver (see the README file for
supported transceivers) with required external
components

• An antenna – may be PCB trace antenna or
monopole antenna

As shown in Figure 6, the controller connects to the RF
transceiver via the SPI bus and a few discrete control
signals. The controller acts as an SPI master and the RF
transceiver acts as a slave. The controller implements
the IEEE 802.15.4 MAC layer and ZigBee protocol
layers. It also contains application-specific logic. It uses
the SPI bus to interact with the RF transceiver. The
Microchip Stack provides a fully integrated driver, which
relieves the main application from managing RF trans-
ceiver functions. If you are using a Microchip reference
schematic for a ZigBee protocol node, you may start
using the Microchip Stack without any modifications. If

required, you may relocate some of the non-SPI control
signals to other port pins to suit your application hard-
ware. In this case, you will have to modify the interface
definitions to include the correct pin assignments.

The Microchip reference design for the ZigBee protocol
implements both a PCB trace antenna and a monopole
antenna design. Depending on your choice of antenna,
you will have to remove and solder a few components.
Refer to the “PICDEM™ Z Demonstration Kit User’s
Guide” for more information (see “References”).

The Microchip reference design uses a 3.3V supply for
both the controller and the RF transceiver. Depending
on your requirements, you may either use mains or a
battery power supply. Typically, ZigBee protocol coordi-
nators and routers would operate on mains power
supply and end devices would operate on a battery.
When using a battery power supply, you must make
sure that you operate the transceiver within the
specified voltage range.

Refer to the “PICDEM™ Z Demonstration Kit User’s
Guide” for a Microchip reference design for a ZigBee
protocol node.

Refer to the README file for more information about
supported transceivers.

FIGURE 6: TYPICAL ZigBee™ PROTOCOL NODE HARDWARE (CONTROL SIGNALS ADDED)

P
IC

m
ic

ro
®

RF
XCVR

ANTENNA

SPI

CONTROL

M
C

U

DS00965B-page 10 © 2006 Microchip Technology Inc.

AN965
ZENA™ ANALYZER – MICROCHIP’S
ZigBee PROTOCOL STACK
CONFIGURATION TOOL AND
WIRELESS NETWORK ANALYZER

To assist in the development of ZigBee protocol
applications, Microchip provides a low-cost network
analyzer software called ZENA. The ZENA PC
software also contains a tool to create application-
specific configuration files and linker scripts for ZigBee
protocol applications. The ZENA demo software is
provided free as part of the Microchip Stack for the
ZigBee protocol installation and is located in the
MpZBee directory. Refer to the “ZENA™ Wireless
Network Analyzer User’s Guide” for more information
on using this tool.

The demo version of ZENA software provides the
capability of creating application-specific source files to
support the Microchip Stack and analyzing previously
captured wireless network traffic. The full-featured
version of ZENA software, which includes the ability to
capture real-time wireless network activity, is available
as a separate kit and includes an RF sniffer that can be
connected to a PC through a USB port.

INSTALLING SOURCE FILES

The complete Microchip Stack source code is available
for download from the Microchip web site. The source
code is distributed in a single Windows® operating
system installation file. Perform the following steps to
complete the installation:

1. Execute the installation file. A Windows operating
system installation wizard will guide you through
the installation process.

2. Before the software is installed, you must accept
the software license agreement by clicking
“I Accept”.

3. If you wish to install the GERBER files for the
PICDEM Z Demonstration Board, you must
accept a second license agreement. If you
choose not to accept this agreement, you can
still install the Stack software.

4. After completion of the installation process, you
should see the “Microchip Software Stack for
ZigBee” protocol program group. The complete
source code will be copied in the MpZBee
directory in the root drive of your computer.

5. Refer to the README file distributed with the
source code for the list of enhancements and
limitations of the installed version.Note: When ZENA software is used to configure a

ZigBee protocol application, it will create
three files for the application, zigbee.def,
myZigBee.c and zLink.lkr. The
zigbee.def and myZigBee.c files
contain information critical to the
configuration of the Stack. The
zLink.lkr is the linker script for the
application. It is highly recommended that
you use ZENA software to generate these
files, rather than editing the files manually,
since the files are interdependent.
© 2006 Microchip Technology Inc. DS00965B-page 11

AN965
SOURCE FILE ORGANIZATION

The Microchip Stack consists of multiple source files.
For compatibility with other Microchip applications, files
that are common to multiple application notes are

stored in a single directory. ZigBee protocol Stack
specific files are stored in another directory. Each demo
application is stored in its own directory. Table 3 shows
the directory structure:

TABLE 3: SOURCE FILE DIRECTORY STRUCTURE

The Stack files contain logic for all supported types of
ZigBee protocol applications; however, only one set of
logic will be enabled based on the preprocessor
definitions in the zigbee.def file created by ZENA
software. You may develop multiple ZigBee protocol
node applications using the common set of Stack
source files, but individual zigbee.def files. For
example, each of the demonstration applications has
its own zigbee.def file (and myZigBee.c file) in its
respective directory.

This approach allows the development of multiple
applications using common source files and generates
unique hex files depending on application-specific
options. This approach requires that when compiling an
application project, you provide search paths to include
files from the application, Common, and ZigBeeStack
source directories. The demo application projects
supplied with this application note include the
necessary search path information.

Directory Name Contents

Common Source files common to the Microchip Stack for the ZigBee™ protocol and other Microchip
application notes.

DemoCoordinator Source code for a demonstration ZigBee protocol coordinator application, plus a template
for creating other ZigBee protocol coordinator applications.

DemoRFD Source code for a demonstration ZigBee protocol RFD application, plus templates for
creating other ZigBee protocol RFD and FFD end device applications.

DemoRouter Source code for a demonstration ZigBee protocol router application, plus a template for
creating other ZigBee protocol router applications.

Documentation Microchip Stack for ZigBee protocol documentation.

TempDemoCoord Source code for a demonstration ZigBee protocol coordination application utilizing the
PICDEM™ 2 Demonstration Board’s temperature sensor.

TempDemoRFD Source code for a demonstration ZigBee protocol RFD application utilizing the
PICDEM 2 Demonstration Board’s temperature sensor.

ZigBeeStack Microchip Stack for the ZigBee protocol source files.

Note: When working with multiple projects, take
care when switching between projects. If the
projects’ Intermediates directories have
not been altered, the object files for the
Microchip Stack for the ZigBee protocol will
be stored in the ZigBeeStack directory.
These files may not be considered “out of
date” when performing a project “Make”, and
erroneous capabilities may be linked in.
Symptoms of this problem include unusual,
unhandled primitives being returned to the
application layer. To ensure that the Stack
files have been compiled correctly for the
current project, store the object files in a
project unique directory by selecting
Project>Build Options>Project from the
main menu. Change the Intermediates
directory to a unique directory for the project.
The demo application projects supplied with
this application note already specify unique
Intermediates directories.
DS00965B-page 12 © 2006 Microchip Technology Inc.

AN965
DEMO APPLICATIONS

Version 1.0-3.5 of the Microchip Stack includes three
primary demonstration applications:

• DemoCoordinator – Demonstrates a typical
ZigBee protocol coordinator device application.

• DemoRFD – Demonstrates a typical ZigBee
protocol RFD device application.

• DemoRouter – Demonstrates a typical ZigBee
protocol router device application.

Two secondary demo applications are also included:

• TempDemoCoord – Demonstrates a ZigBee
protocol coordinator that requests information
from an RFD.

• TempDemoRFD – Demonstrates a ZigBee protocol
RFD that supplies temperature information on
request.

Demo Application Features

The demo applications implement the following features:

• Targeted for use with the PICDEM Z demo board.
• Demonstrates low-power functionality using

system Sleep and Watchdog Timer functionality.

• RS-232 terminal output to view device operation.
• Operates as a simple remote control switch and

LED (“light”) application on one node.
• Configurable at compile time to demonstrate

either binding or device discovery (direct or
indirect messaging).

One PICDEM Z Demonstration Board must be
programmed as a ZigBee protocol coordinator, using
either the DemoCoordinator, or TempDemoCoord
project. A second board must be programmed as an
end device using the corresponding RFD project. If
more PICDEM Z Demonstration Boards are available,
they can be programmed either as more end devices,
or as routers, using the DemoRouter project. Note that
the router project has neither the “switch” nor “light”
capability. Instead, its function is to extend the radio
range of the network.

Demo Applications Project and
Source Files

The following seven tables list the source files required
to implement the Microchip Stack for the ZigBee protocol
and the demo applications. Note that additional files may
be provided in the ZigBeeStack directory as additional
transceivers are supported.

TABLE 4: MICROCHIP STACK SOURCE FILES IN ZigBeeStack SUBDIRECTORY

TABLE 5: MICROCHIP COMMON SOURCE FILES IN Common SUBDIRECTORY

File Name Description

SymbolTime.c, .h Performs timing functions for the Microchip Stack for the ZigBee™ protocol.

zAPL.h Application level interface header file for the Stack. This is the only file that the
application code needs to include.

zAPS.c, .h ZigBee protocol APS layer.

zHCLighting.h ZigBee protocol’s Home Control, Lighting profile information.

zigbee.h Generic ZigBee protocol constants.

ZigBeeTasks.c, .h Directs program flow through the Stack layers.

zMAC.h Generic IEEE 802.15.4 MAC layer header file.

zMAC_CC2420.c, .h IEEE 802.15.4 MAC layer for the Chipcon CC2420 transceiver.

zNVM.c, .h Performs nonvolatile memory storage functions.

zNWK.c, .h ZigBee protocol NWK layer.

zPHY.h Generic IEEE 802.15.4 PHY layer header file.

zPHY_CC2420.c, .h IEEE 802.15.4 PHY layer for the Chipcon CC2420 transceiver.

zZDO.c, .h ZigBee protocol’s ZDO (ZDP) layer.

File Name Description

Compiler.h Compiler specific definitions.

Console.c, .h USART interface code (optional).

Generic.h Generic constants and type definitions.

MSPI.c, .h SPI interface code

sralloc.c, .h Dynamic memory allocation (heap) code.
© 2006 Microchip Technology Inc. DS00965B-page 13

AN965
TABLE 6: ZigBee™ PROTOCOL COORDINATOR DEMO IN DemoCoordinator SUBDIRECTORY

TABLE 7: ZigBee™ PROTOCOL ROUTER DEMO IN DemoRouter SUBDIRECTORY

TABLE 8: ZigBee™ PROTOCOL END DEVICE DEMO IN DemoRFD SUBDIRECTORY

TABLE 9: TEMPERATURE DEMO (COORDINATOR) IN TempDemoCoord SUBDIRECTORY

TABLE 10: TEMPERATURE DEMO (RFD) IN TempDemoRFD SUBDIRECTORY

File Name Description

Coordinator Template.c Template for creating ZigBee protocol coordinator applications.

Coordinator.c Main application source file.

DemoCoordinator.mcp Project file.

myZigBee.c Generated by ZENA™ software. Contains application-specific information.

zigbee.def Generated by ZENA software. Contains application-specific information.

zLink.lkr Generated by ZENA software. Project linker script.

File Name Description

DemoRouter.mcp Project file.

myZigBee.c Generated by ZENA™ software. Contains application-specific information.

Router Template.c Template for creating ZigBee protocol router applications.

Router.c Main application source file.

zigbee.def Generated by ZENA software. Contains application-specific information.

zLink.lkr Generated by ZENA software. Project linker script.

File Name Description

DemoRFD.mcp Project file.

FFD End Device Template.c Template for creating FFD end device applications.

myZigBee.c Generated by ZENA™ software. Contains application-specific information.

RFD Template with ACKs.c Template for creating RFD applications when the RFD requests APS level
Acknowledges.

RFD Template.c Template for creating RFD applications when the RFD does not request APS
level Acknowledges.

RFD.c Main application source file.

zigbee.def Generated by ZENA software. Contains application-specific information.

zLink.lkr Generated by ZENA software. Project linker script.

File Name Description

myZigBee.c Generated by ZENA™ software. Contains application-specific information.

TempDemoCoord.c Main application source file.

TempDemoCoord.mcp Project file.

zigbee.def Generated by ZENA software. Contains application-specific information.

zLink.lkr Generated by ZENA software. Project linker script.

File Name Description

myZigBee.c Generated by ZENA™ software. Contains application-specific information.

TempDemoRFD.c Main application source file.

TempDemoRFD.mcp Project file.

zigbee.def Generated by ZENA software. Contains application-specific information.

zLink.lkr Generated by ZENA software. Project linker script.
DS00965B-page 14 © 2006 Microchip Technology Inc.

AN965
Building Primary Demo Applications

The following is a high-level procedure for building demo
applications. This procedure assumes that you are
familiar with MPLAB® IDE and will be using MPLAB IDE
to build the applications. If not, refer to your MPLAB IDE
application-specific instructions to create, open and
build a project.

1. Make sure that the source files for the Microchip
Stack for the ZigBee protocol are installed. If not,
please refer to “Installing Source Files”.

2. Launch MPLAB IDE and open the appropriate
project file: DemoCoordinator\Demo-
Coordinator.mcp for the demo ZigBee
protocol coordinator application, DemoRFD\
DemoRFD.mcp for the demo RFD application or
DemoRouter\DemoRouter.mcp for the demo
ZigBee protocol router application.

3. Use MPLAB IDE menu commands to build the
project. Note that the demo application projects
are created to work correctly when the source
files are located in the MpZBee directory in the
root directory of the hard drive. If you have
moved the source files to another location, you
must recreate or modify existing project settings
to build.

4. The build process should finish successfully. If
not, make sure your MPLAB IDE and compiler
are set up properly, and your project options are
correct.

Programming Primary Demo
Applications

To program a target with either of the two demo
applications, you must have access to a Microchip pro-
grammer. The following procedure assumes that you
will be using MPLAB ICD 2 as a programmer. If not,
please refer to your specific programmer instructions.

1. Connect MPLAB ICD 2 to the PICDEM Z demo
board or your target board.

2. Apply power to the target board.
3. Launch MPLAB IDE.
4. Select the Microchip device of your choice

(required only if you are importing a hex file
previously built).

5. Enable MPLAB ICD 2 as a programmer and
select the Connect option from the MPLAB ICD 2
programmer menu to connect to MPLAB ICD 2
and perform a self-test.

6. If you have just rebuilt the project as described
above, proceed to the next step. If you want to
use a previously built hex file, import the
DemoCoordinator\DemoCoordinator.hex
file, the DemoRFD\DemoRFD.hex file or the
DemoRouter\DemoRouter.hex file. In order
to simplify identification of the demo coordinator
and demo RFD nodes (if you are using
PICDEM Z boards), it is recommended that you
program the DemoCoordinator.hex file into
the controller with the “COORD...” label, and the
DemoRFD.hex file into the controller with the
“RFD...” label. If you are programming your cus-
tom hardware, make sure that you use some
identification method to identify the different
nodes.

7. All demo application files contain necessary
configuration options required for the PICDEM Z
demo board. If you are programming another
type of board, make sure that you select the
appropriate oscillator mode from the
MPLAB ICD 2 configuration settings menu.

8. Select the Program menu option from the
MPLAB ICD 2 programmer menu to begin
programming the target.

9. After a few seconds, you should see the mes-
sage, “Programming successful”. If not,
double check your board and MPLAB ICD 2
connection. Refer to MPLAB IDE on-line help for
further assistance.

10. Remove power from the board and disconnect
the MPLAB ICD 2 cable from the target board.

Running the Primary Demo Applications

Before trying to run the demo, ensure that both nodes
are configured to demonstrate the same capability.
The nodes can demonstrate end device binding by
uncommenting the #define USE_BINDINGS defini-
tion in each main demo source file. The nodes can
demonstrate device discovery by commenting out the
#define USE_BINDINGS definition in each source
file. Ensure that both nodes are configured the same
way.

Note: Each device may be configured to act as a
“switch” or a “light” through the use of the
I_AM_LIGHT and I_AM_SWITCH defini-
tions. By default, each of these capabilities
is enabled in both nodes.
© 2006 Microchip Technology Inc. DS00965B-page 15

AN965
To run the demo, program one PICDEM Z demo board
as a ZigBee protocol coordinator, and the other as an
RFD, using the demo applications provided. To view
node operation, it is recommended that you connect
the RS-232 connector on each demo board to a serial
port on a PC, and use HyperTerminal or another serial
interface software to communicate with the PICDEM Z
demo board. Configure the port with the following
settings: 19200 bps, 8 data bytes, 1 Stop bit, no parity
and no flow control.

Apply power to the coordinator node. You should see
the following message on the HyperTerminal window:

Microchip ZigBee(TM) Stack - v1.0-3.5
ZigBee Coordinator

The coordinator will then automatically try to find an
available wireless channel and form a new network. If
successful, it will display the following message:

Trying to start network...
PAN #### started successfully.

Where #### is a four-digit hexadecimal number,
indicates the PAN ID of the network it has successfully
formed. It will then enable joining of the network by
other nodes and display the following message:

Joining permitted.

At this point, other nodes may join the network.

Apply power to the RFD node. You should see the
following message on the corresponding HyperTerminal
window:

Microchip ZigBee(TM) Stack - v1.0-3.5
ZigBee RFD

The RFD will then try to find a network to join. If it is
successful, it will display the following message:

Trying to join network as a new device...
Network(s) found. Trying to join ####.
Join successful!

The coordinator will recognize that the new node has
joined by displaying the following message:

Node #### just joined.

Where #### is the assigned short address of the new
node.

Since the RFD conserves power by turning off its
transceiver and putting the microcontroller into Sleep
mode, all incoming messages are buffered by its parent
node. When the RFD wakes up, it must request mes-
sages from its parent. If its parent has messages, the
parent will send them; otherwise, the RFD is free to go
back to Sleep. This operation is displayed on the RFD’s
HyperTerminal window:

Requesting data...
No data available.

At this point, the RFD has successfully joined the net-
work and is polling for messages. Further operation
depends on the configuration of the nodes.

Demonstrating End Device Binding

If both nodes have #define USE_BINDINGS uncom-
mented, they will demonstrate end device binding. In this
configuration, the “switch” nodes send their messages to
one or more “light” nodes through the use of bindings
and indirect messages. Refer to “Message Types and
Binding” for a more detailed description of bindings.

Before a “switch” can send an indirect message to a
“light”, a binding must be created. The RB5 button on
the PICDEM Z is used to send the end device bind
request to the ZigBee protocol coordinator. Press the
RB5 button on the coordinator node. The following
message will be displayed:

Trying to perform end device binding.

Then press the RB5 button on the RFD node. If the
button is not pressed within approximately 5 seconds,
the end device bind request on the coordinator will time
out and the process must be repeated. If successful,
the following message will be displayed on the RFD’s
terminal window:

Trying to send END_DEVICE_BIND_req.
End device bind/unbind successful!

The following message will then appear on the ZigBee
protocol coordinator’s terminal window:

End device bind/unbind successful!

The “switch” can now send indirect messages to the
“light”.

Note 1: If both nodes are configured to operate as
both a “switch” and a “light”, two bindings
are actually created with the single end
device bind request and each node can
send messages to the other.

2: The end device bind process is a toggle
function; if the process is repeated, the
binding will be removed. The status
returned by the end device bind does not
indicate if the binding was created or
removed, only that the process was
successful.
DS00965B-page 16 © 2006 Microchip Technology Inc.

AN965
Demonstrating Device Discovery

If both nodes have #define USE_BINDINGS com-
mented out, they will demonstrate device discovery. In
this configuration, the “switch” nodes send their
messages to one “light” node through the use of direct
messages to a known network address. Refer to
“Message Types and Binding” for a more detailed
description of message types.

Before a “switch” can send a direct message to a
“light”, the “switch” must determine the network
address of the “light”. To simplify the demonstration, we
assume that the “switch” knows the MAC address of
the “light” it wishes to talk to. The RB5 button on the
PICDEM Z is used to broadcast the network address
request message. Press the RB5 button on the ZigBee
protocol coordinator node. The following message will
be displayed:

Trying to send NWK_ADDR_req.

The lower layers of the RFD will see and respond to this
message without any support from the application
layer. When the coordinator receives the RFD’s
response, it will display the following message:

Receiving NWK_ADDR_rsp.

The coordinator can now act as a “switch” and send
messages to the “light”. If both nodes are configured to
operate as both a “switch” and a “light”, press RB5 on
the RFD PICDEM Z demo board. That node will then
get the network address of the ZigBee protocol
coordinator. Each node can then send messages to the
other.

Demonstrating Messages

After either the bindings have been created, or the
network addresses have been discovered, the “switch”
node can send messages to the “light” node to toggle
its LED. Press RB4 on one of the PICDEM Z demo
boards that has been configured as a “switch”. It will
display the following message:

Trying to send light switch message.

If direct messages are used, the application will be
notified when the Stack receives a MAC Acknowledge
for the transmission. If indirect messages are used, the
application will be notified when the Stack buffers the
message for later transmission. When the application
receives this notification, it will display the following
message:

Message sent successfully.

When the “light” node receives the transmission, it will
display the following message:

Toggling light.

The “light” node will then toggle the state of the RA1
LED.

Temperature Demo

Two additional demo applications are provided to show
the ZigBee protocol’s request/response mechanism
and to demonstrate the use of the TC77 temperature
sensor on the PICDEM Z demo board. To run this
demo, follow the procedures above for building a
project and programming the PICDEM Z demo board,
using the project, TempDemoCoord, as the ZigBee
protocol coordinator, and the project, TempDemoRFD,
as the RFD. In this demo, only TempDemoCoord needs
to be configured for direct or indirect messaging;
TempDemoRFD will automatically respond correctly.

After configuring the demo, programming the PICDEM Z
demo boards and forming the network, perform the
same end device binding or device discovery as
described above. Then, press RB4 on the coordinator
node to request the temperature from the RFD. The
coordinator will display the following message:

Requesting Temperature ...

When the RFD receives the message, it will obtain the
temperature from the TC77, convert it to an ASCII
string and send it back to the coordinator:

24.0000 C trying to send temperature
message.

When the coordinator receives the message, it will
display:

Received 24.0000 C

Note: Since bindings are unidirectional, two
bindings must be created during end
device binding; one for the request mes-
sage and one for the response message.
This is done by listing the temperature
cluster as both an input and output cluster
for both devices.
© 2006 Microchip Technology Inc. DS00965B-page 17

AN965
USING THE MICROCHIP STACK FOR
THE ZigBee PROTOCOL

To design a ZigBee protocol system, you must do the
following:

1. Obtain an OUI (see “IEEE Extended Unique
Identifiers – EUI-64”).

2. Determine the radio needed based on data rate
and geographical market needs.

3. Select a suitable Microchip MCU.
4. Develop the ZigBee protocol application using

the Stack provided with AN965, “Microchip
Stack for the ZigBee™ Protocol”.

5. Perform all RF compliance certifications.
6. Perform ZigBee protocol interoperability

compliance certification.

Follow these basic steps to develop a ZigBee protocol
application:

1. Determine the profile that the system will use.
2. Determine the endpoint structure that each

device will use.
3. Create a new project directory. Place all

application-specific source files and project
files in this directory.

4. Use ZENA software to generate configuration files
based on the device type, device configuration
and endpoint structure.

5. Obtain the appropriate template file from one of
the demo directories and use it as the basis for
the application code.

6. Add code to the template as directed in the
template, including extra initialization, any
required ZDO response handling, endpoint
message reception and transmission, and any
non-protocol processing and interrupt handling.

Interfacing with the Microchip Stack for
the ZigBee Protocol

The application source code must include the header
file, zAPL.h , to access the ZigBee protocol functions.

#include “zAPL.h”

A ZigBee protocol coordinator application will need to
have one support variable to keep track of the current
primitive being executed by the Stack.

ZIGBEE_PRIMITIVE currentPrimitive;

A ZigBee protocol router or end device will also need to
keep track of the current primitive; but in addition, it will
need two other support variables to assist in network
discovery and joining.

NETWORK_DESCRIPTOR * currentNetworkDescriptor;
ZIGBEE_PRIMITIVE currentPrimitive;
NETWORK_DESCRIPTOR * NetworkDescriptor;

Next, the application must configure all pins required to
interface with the transceiver. The ZENA analyzer will
create several labels that may be used to access the
required LAT and TRIS bits. Refer to the README file
for the labels created for the supported transceivers.

Before the Stack can be used, it must be initialized.
Interrupts must then be enabled:

ZigBeeInit();

IPEN = 1;
GIEH = 1;

The application now interfaces with the Stack through
the primitives defined in the ZigBee protocol and
IEEE 802.15.4 specifications. Stack operation is trig-
gered by calling the function, ZigBeeTasks(). Stack
operation will continue until the requested primitive
path is complete or an application-level primitive needs
to be processed.

Note: Refer to the ZigBee protocol and
IEEE 802.15.4 specifications for the
complete list of primitives and their
parameters.
DS00965B-page 18 © 2006 Microchip Technology Inc.

AN965
Since only one primitive can be processed at one time,
a single data structure (a union) is used to hold all the
primitive parameters. This structure can be viewed in
the file, ZigBeeTasks.h. Take care when accessing
this structure that you do not overwrite a parameter
before using it. After processing a primitive, it is critical
that the current primitive be set to the next primitive to
execute (or NO_PRIMITIVE) to avoid an infinite loop

(see Example 1). Refer to the “Primitive Summary”
section for a list of the common primitives used by the
application layer.

Default processing for most primitives is included in the
template files. Two primitives will require additional
application-specific code: APSDE_DATA_indication
and NO_PRIMITIVE.

EXAMPLE 1: THE BASIC STRUCTURE OF THE APPLICATION

while (1)
{
 CLRWDT();
 ZigBeeTasks(¤tPrimitive);

 switch (currentPrimitive)
 {
 // Include cases for each required primitive.
 // Be sure to update currentPrimitive!

 default:
 currentPrimitive = NO_PRIMITIVE;
 break;
 }
}

© 2006 Microchip Technology Inc. DS00965B-page 19

AN965
Forming or Joining a Network

The process of forming or joining a network is included
in the template files. The process is initiated in the
NO_PRIMITIVE primitive handling. If the device is a
ZigBee protocol coordinator, and if it has not formed
a network, then it will begin the process of trying
to form a network by issuing the
NLME_NETWORK_FORMATION_request primitive.

If the device is not a ZigBee protocol coordinator and it
is not currently on a network, it will try to join one. If the
device has determined that it was previously on a
network, then it will try to join as an orphan by issuing
the NLME_JOIN_request with the RejoinNetwork
parameter set to TRUE. If that fails, or if the device was
not previously on a network, then it will try to join
as a new node. It will first issue the
NLME_NETWORK_DISCOVERY_request primitive to
discover what networks are available. The application
code will then select one of the discovered networks
and try to join it by issuing the NLME_JOIN_request
with the RejoinNetwork parameter set to FALSE.
See “ZigBee Protocol Timing” for timing requirements
used during this process.

Receiving Messages

The Stack notifies the application of received
messages through the APSDE_DATA_indication
primitive. When this primitive is returned, the
APSDE_DATA_indication primitive parameters are
populated with information about the message and the
received message resides in a buffer. Use the function,
APLGet(), to extract each byte of the message from
the buffer.

The DstEndpoint parameter indicates the destina-
tion endpoint for the message. If it is a valid endpoint,
the message can be processed (see Example 2).

EXAMPLE 2: RECEIVING MESSAGES

Note 1: A case for the ZDO endpoint (endpoint 0)
must be included to handle responses to
all ZDO messages sent by the application.

2: After the message is processed, it must
be discarded using the APLDiscard()
function. Failure to discard the message
will result in no further messages being
processed.

case APSDE_DATA_indication:
{
 // Declare variables used by this primitive.

 currentPrimitive = NO_PRIMITIVE; // This may change during processing.
 frameHeader = APLGet();

 switch (params.APSDE_DATA_indication.DstEndpoint)
 {
 case EP_ZDO:
 // Handle all ZDO responses to requests we sent.
 break;

 // Include cases for all application endpoints.
 }
 APLDiscard();
 }
 break;
DS00965B-page 20 © 2006 Microchip Technology Inc.

AN965
Sending Messages

The Microchip Stack for the ZigBee protocol allows one
outgoing message in the application layer at a time.
Messages are sent by implementing the following:

1. Verify that the application layer is ready for a new
outgoing message by confirming that
ZigBeeReady() is TRUE.

2. Lock the system with ZigBeeBlockTx() so
subsequent calls to ZigBeeReady() will return
FALSE.

3. Load the message payload into the array
TxBuffer, using TxData to index through the
array. When complete, TxData must point to the
first location after the message (i.e., TxData
equals the length of the data).

4. Load the APSDE_DATA_request primitive
parameters.

5. Set currentPrimitive to
APSDE_DATA_request and call ZigBeeTasks().

Messages are typically sent by the application in two
places:

• In APSDE_DATA_indication processing, in
response to a received message.

• In NO_PRIMITIVE processing, in response to an
application event.

The process of sending a message is identical for both
locations. Example 3 shows how to send a direct
message to a known destination device and endpoint
to toggle a light.

EXAMPLE 3: SENDING AN OUTGOING MESSAGE

Note the following about Example 3:

• Each APS frame must have a unique Transaction
Identifier. This is obtained from the Stack by
calling APLGetTransID().

• TxData must point to the next available location,
so TxBuffer is loaded using post-increment
addressing.

• The destination endpoint has already
been determined and is stored in
destinationEndpoint.

• The 16-bit network address of the destination
device has already been determined and is stored
in destinationAddress.

• We are requesting that the message be routed, if
possible.

The status of the transmitted message will be returned
via the APSDE_DATA_confirm primitive. Note that if the
message fails to transmit, the Stack will automatically
handle retrying the message, apscMaxFrameRetries
times.

if (ZigBeeReady())
{
 if (bLightSwitchToggled)
 {
 bLightSwitchToggled = FALSE;
 ZigBeeBlockTx();

 TxBuffer[TxData++] = APL_FRAME_TYPE_KVP | 1; // KVP, 1 transaction
 TxBuffer[TxData++] = APLGetTransId();
 TxBuffer[TxData++] = APL_FRAME_COMMAND_SET | (APL_FRAME_DATA_TYPE_UINT8<< 4);
 TxBuffer[TxData++] = OnOffSRC_OnOff & 0xFF; // Attribute ID LSB
 TxBuffer[TxData++] = (OnOffSRC_OnOff >> 8) & 0xFF; // Attribute ID MSB
 TxBuffer[TxData++] = LIGHT_TOGGLE;

 params.APSDE_DATA_request.DstAddrMode = APS_ADDRESS_16_BIT;
 params.APSDE_DATA_request.DstEndpoint = destinationEndpoint;
 params.APSDE_DATA_request.DstAddress.ShortAddr = destinationAddress;

 params.APSDE_DATA_request.ProfileId.Val = MY_PROFILE_ID;
 params.APSDE_DATA_request.RadiusCounter = DEFAULT_RADIUS;
 params.APSDE_DATA_request.DiscoverRoute = ROUTE_DISCOVERY_ENABLE;
 params.APSDE_DATA_request.TxOptions.Val = 0;
 params.APSDE_DATA_request.SrcEndpoint = EP_SWITCH;
 params.APSDE_DATA_request.ClusterId = OnOffSRC_CLUSTER;

 currentPrimitive = APSDE_DATA_request;
 }
}

© 2006 Microchip Technology Inc. DS00965B-page 21

AN965
Requesting and Receiving Data
on an RFD

Since RFDs normally power off their transceiver when
they are Idle to conserve power, they must request
messages when their transceiver is on by issuing the
NLME_SYNC_request primitive. Example 4 demon-
strates a typical sequence for going to Sleep, and
waking back up using the Watchdog Timer, or a button
press to wake-up. We can Sleep if all of the following are
true:

• There is no ZigBee protocol primitive ready to be
processed.

• The Stack is not performing background tasks.
• The previous data request is complete.

• All application-specific processes are complete.

EXAMPLE 4: REQUESTING AND RECEIVING DATA ON AN RFD

// If we don't have to execute a primitive, see if we need to request
// data from our parent, or if we can go to sleep.
if (currentPrimitive == NO_PRIMITIVE)
{
 if (!ZigBeeStatus.flags.bits.bDataRequestComplete)
 {
 // We have not received all data from our parent. If we are
 // not waiting for an answer from a data request, send a data
 // request.
 if (!ZigBeeStatus.flags.bits.bRequestingData)
 {
 if (ZigBeeReady())
 {

 // Our parent still may have data for us.
 params.NLME_SYNC_request.Track = FALSE;
 currentPrimitive = NLME_SYNC_request;

 }
 }
 }
 else
 {
 if (!ZigBeeStatus.flags.bits.bHasBackgroundTasks &&
 myProcessesAreDone())
 {

 // We do not have a primitive to execute, we've extracted
 // all messages that our parent has for us, the stack has
 // no background tasks, and all application-specific
 // processes are complete. Now we can go to sleep. Make
 // sure that the UART is finished, turn off the transceiver,
 // and make sure that we wakeup from key press.
 while (!ConsoleIsPutReady());
 APLDisable();
 RBIE = 1;
 SLEEP();
 NOP();

 // We just woke up from sleep. Turn on the transceiver and
 // request data from our parent.
 APLEnable();
 params.NLME_SYNC_request.Track = FALSE;
 currentPrimitive = NLME_SYNC_request;

 }
 }
}

DS00965B-page 22 © 2006 Microchip Technology Inc.

AN965
After waking from Sleep, the RFD must request data
from its parent using the NLME_SYNC_request prim-
itive. The RFD will receive one of the following
responses from issuing an NLME_SYNC_request:

• If RFD’s parent has messages buffered for the
device, it will send one, and the RFD will generate
an APSDE_DATA_indication primitive.

• If the parent device does not have any buffered
messages for the RFD, the RFD will generate an
NLME_SYNC_confirm primitive with a status of
SUCCESS.

• If the RFD receives no response from its parent,
the RFD will generate an NLME_SYNC_confirm
primitive with a status of NWK_SYNC_FAILURE.

Primitive Summary

The application layer communicates with the Stack
primarily through the primitives defined in the ZigBee
protocol and IEEE 802.15.4 specifications. Table 11
describes the primitives that are commonly issued by
the application layer and their response primitive. Not
all devices will issue all of these primitives.

TABLE 11: TYPICAL APPLICATION PRIMITIVES AND RESPONSES

Application Issued Primitive Response Primitive Description

APSDE_DATA_request APSDE_DATA_confirm Used to send messages to other devices.

APSME_BIND_request APSME_BIND_confirm Force the creating of a binding. Can be used only
on devices that support binding.

APSME_UNBIND_request APSME_UNBIND_confirm Force the removal of a binding. Can be used only
on devices that support binding.

NLME_NETWORK_DISCOVERY_
request

NLME_NETWORK_DISCOVERY_
confirm

Discover networks available for joining. Not used
by ZigBee™ protocol coordinators.

NLME_NETWORK_FORMATION_
request

NLME_NETWORK_FORMATION_
confirm

Start a network on one of the specified channels.
ZigBee protocol coordinators only.

NLME_PERMIT_JOINING_
request

NLME_PERMIT_JOINING_
confirm

Allow other nodes to join the network as our
children. ZigBee protocol coordinators and routers
only.

NLME_START_ROUTER_
request

NLME_START_ROUTER_
confirm

Start routing functionality. Routers and FFD end
devices only.

NLME_JOIN_request NLME_JOIN_confirm Try to rejoin or join the specified network. Not used
by ZigBee protocol coordinators.

NLME_DIRECT_JOIN_
request

NLME_DIRECT_JOIN_
confirm

Add a device as a child device. ZigBee protocol
coordinators and routers only.

NLME_LEAVE_request NLME_LEAVE_confirm Leave the network or force a child device to leave
the network.

NLME_SYNC_request NLME_SYNC_confirm Request buffered messages from the device’s
parent. RFDs only.

ZDO_END_DEVICE_BIND_req APSDE_DATA_indication Can be used only on devices that support binding.
© 2006 Microchip Technology Inc. DS00965B-page 23

AN965
Some primitives that are received by the application
layer are generated by the Stack itself, not as a
response to an application primitive. The application
layer must be able to handle these primitives as well.

Table 12 shows all the primitives that can be returned
to the application layer. Default processing for most of
the primitives is included in the application templates.

TABLE 12: PRIMITIVE HANDLING REQUIREMENTS

Primitive
ZigBee™ Protocol

Coordinator
ZigBee™

Protocol Router
FFD End
Device

RFD End
Device

APSDE_DATA_confirm X X X X

APSDE_DATA_indication X X X X

APSME_BIND_confirm X(6) X(4,6)

APSME_UNBIND_confirm X(6) X(4,6)

NLME_DIRECT_JOIN_confirm X(6) X(5)

NLME_GET_confirm (Note 2) (Note 2) (Note 2) (Note 2)

NLME_JOIN_confirm X X X

NLME_JOIN_indication X X

NLME_LEAVE_confirm X(1) X(1) X(1) X(1)

NLME_LEAVE_indication X X X X

NLME_NETWORK_DISCOVERY_confirm X X X

NLME_NETWORK_FORMATION_confirm X

NLME_PERMIT_JOINING_confirm X X

NLME_RESET_confirm X X X

NLME_SET_confirm (Note 2) (Note 2) (Note 2) (Note 2)

NLME_START_ROUTER_confirm X X

NLME_SYNC_confirm X

NLME_SYNC_indication (Note 3)

NO_PRIMITIVE X X X X

Note 1: Required if application will issue an NLME_LEAVE_request to another node.

2: These primitives are not used. Stack attribute manipulation is done directly.
3: Not used by non-beacon networks.
4: Required if binding is supported.

5: Required if application will issue an NLME_DIRECT_JOIN_request.
6: Required if application issues the corresponding BIND/UNBIND_request.
DS00965B-page 24 © 2006 Microchip Technology Inc.

AN965
Microchip Stack for the ZigBee Protocol Macros and Functions

Syntax

void APLDisable(void);

Description

This function disables the transceiver.

Inputs

None

Outputs

None

Notes

Typically, this function is used only by RFDs to conserve power while in Sleep.

Syntax

void APLDiscard(void);

Description

This function discards the current received message. It should be called when processing of the current message is
complete.

Inputs

None

Outputs

None

Notes

Failure to call this function will result in the Stack being unable to process, and ultimately, receive messages. Refer to
the template files for typical usage of this function.

Syntax

void APLEnable(void);

Description

This function enables the transceiver.

Inputs

None

Outputs

None

Notes

Typically, it is used only by RFDs when they wake-up from Sleep. It is not necessary to call this function in any other
location.
© 2006 Microchip Technology Inc. DS00965B-page 25

AN965
Syntax

BYTE APLGet(void);

Description

This function retrieves a byte from the current received message.

Inputs

None

Outputs

The next byte of the current received message.

Notes

If this function is called after all message bytes have been retrieved, this function will return 0x00.

Syntax

BYTE APLGetTransId(void);

Description

This function retrieves the next APS Transaction Identification value to use in an outgoing message.

Inputs

None

Outputs

The next Transaction ID value.

Notes

None

Syntax

void ZigBeeInit(void);

Description

This function initializes the Stack. It must be called before any other Stack functions. All hardware pin configuration and
directioning must be performed before this function is called.

Inputs

None

Outputs

None

Notes

None
DS00965B-page 26 © 2006 Microchip Technology Inc.

AN965
Syntax

void ZigBeeBlockTx(void);

Description

This function locks the transmit buffer.

Inputs

None

Outputs

None

Notes

After calling ZigBeeReady() to confirm that the transmit buffer (TxBuffer) is ready for use, this function should be
called so that subsequent calls to ZigBeeReady() will return FALSE.

Syntax

BOOL ZigBeeReady(void);

Description

This function indicates whether or not the Stack is ready to initiate an outgoing message.

Inputs

None

Outputs

TRUE – A new outgoing message may be loaded into TxBuffer.

FALSE – An earlier message is still being processed and TxBuffer is still in use.

Notes

None

Syntax

BOOL ZigBeeTasks(ZIGBEE_PRIMITIVE *primitive);

Description

This function triggers Stack operation. The current primitive to execute must be passed in *primitive. If no primitive
is required to execute, set *primitive to NO_PRIMITIVE. The function will continue until a user primitive is generated
(including NO_PRIMITIVE). On exit, it will return TRUE if the Stack still has background tasks to execute. This function
must be called on a regular basis in order for the Stack to function properly, even if it returns FALSE. Message reception
from the transceiver is triggered by an interrupt which requests a background task.

Inputs

*primitive – Pointer to the value of the next primitive to execute.

Outputs

TRUE – The Stack still has background tasks to execute.

FALSE – The Stack does not have background tasks to execute.

*primitive – Pointer to the value of the next primitive to execute.

Notes

None
© 2006 Microchip Technology Inc. DS00965B-page 27

AN965
Microchip Stack for the ZigBee Protocol
Status Flags

The Stack has several status flags that may be viewed
by the application. The application must not modify
these files or Stack operation will be corrupted. All flags
are located in the ZigBeeStatus.flags.bits
structure.

TABLE 13: STACK STATUS FLAGS

Configuration Parameters

The Microchip Stack for the ZigBee protocol is highly
configurable using the ZENA Wireless Network
Analyzer stack configuration tool. Most of the configu-
ration items are straightforward, such as the MAC
address of the device. The following items are used to
configure the size and performance of the Stack itself.
Depending on the selected device type, not all of these
options will be available.

MAX FRAMES FROM APL LAYER

Every message sent down from the APL layer using the
APSDE_DATA_request primitive must be buffered so
it can be retransmitted on failure. Additional information
must also be stored so the message confirmation can
be sent back to the APL layer via the
APSDE_DATA_confirm primitive. The Stack requires
2 bytes of RAM for each frame. Additional heap space
will also be allocated when a message is sent down.

MAX APS ACK FRAMES GENERATED

If the application receives messages requesting APS
level Acknowledgement, the Stack will automatically
generate and send the Acknowledge.

Like the APL layer frames, these must be buffered for
transmission in case of failure. Enter the number of
APS level Acknowledge frames that may be buffered
concurrently. The Stack requires two bytes of RAM for
each frame. Additional heap space will also be
allocated when a frame is generated.

Flag Description

bTxFIFOInUse Indicates that the Stack is currently in the process of transmitting an outgoing
message. Use the macros, ZigBeeReady() to check, and ZigBeeBlockTx() to
set, this flag.

bRxOverflow Indicates that the receive buffer has overflowed and messages have been dropped.
Must be cleared by the application.

bHasBackgroundTasks Updated by ZigBeeTasks(). Indicates if the Stack still has background tasks in
progress.

bNetworkFormed ZigBee™ protocol coordinator only. Indicates that the device has successfully formed
a network.

bTryingToFormNetwork ZigBee protocol coordinator only. Indicates that the device is in the process of trying
to form a network.

bNetworkJoined ZigBee protocol routers and end devices. Indicates that the device has successfully
joined a network.

bTryingToJoinNetwork ZigBee protocol routers and end devices. Indicates that the device is in the process of
trying to join a network.

bTryOrphanJoin ZigBee protocol routers and end devices. Indicates that the device was once part of a
network and should try to join as an orphan.

bRequestingData RFD end devices only. Indicates that the device is in the process of requesting data
from its parent.

bDataRequestComplete RFD end devices only. Indicates that the current request for data is complete and the
device may be able to go to Sleep.
DS00965B-page 28 © 2006 Microchip Technology Inc.

AN965
MAX APS ADDRESSES

Although all normal messaging between nodes is done
using 16-bit network addresses, the ZigBee protocol
specification allows the APSDE_DATA_request primi-
tive to be invoked with a 64-bit MAC address as the
message destination. If so, the APS layer searches an
APS address map for the 16-bit address of the specified
node. This table is stored in nonvolatile memory and
must be maintained by the application. Use of this table
is optional. If this value is set to ‘0’, the table is not
created; no code is created to search the table and
APSDE_DATA_request calls with 64-bit addressing will
fail. If this value is not set to ‘0’, the Stack requires
10 bytes of nonvolatile memory for each entry, plus
2 bytes of RAM.

MAX BUFFERED INDIRECT MESSAGES

If a device supports bindings (ZigBee protocol coordi-
nators, and optionally, ZigBee protocol routers), then it
must buffer all received indirect transmissions so they
can be forwarded to one or more destinations. The
Stack requires 2 bytes of RAM for each message
specified. Additional heap space will also be allocated
when an indirect message is received.

BINDING TABLE SIZE

If a device supports bindings (ZigBee protocol coordi-
nators, and optionally, ZigBee protocol routers), then it
must possess a binding table. The Stack requires
5 bytes of nonvolatile memory for each binding table
entry. Note that minimum binding table size is dictated
by the Stack profile.

NEIGHBOR TABLE SIZE

All devices keep track of other nodes on the network by
using a neighbor table. End devices require a neighbor
table to record potential parents. ZigBee protocol coor-
dinators require a neighbor table to record children.
ZigBee protocol routers require a neighbor table for
both functions. The Stack requires 15 bytes of non-
volatile memory for each neighbor table entry. Note that
minimum neighbor table size is dictated by the Stack
profile.

MAX BUFFERED BROADCAST MESSAGES

When FFDs generate or receive a broadcast message,
they must buffer the message while they check for pas-
sive Acknowledges in case they must rebroadcast the
message. The Stack may be configured as to how many
broadcast messages may be buffered in the system at
one time. It is recommended that this value be at least
two, since a typical discovery sequence is a broadcast
NWK_ADDR_req, followed soon by a broadcast route
request. The system requires 2 bytes of RAM for each
buffered broadcast message specified. Additional heap
space will also be allocated when a broadcast message
is received or generated.

ROUTE DISCOVERY TABLE SIZE

The ZigBee protocol specification requires that FFDs
use a route discovery table during the route discovery
process. Since these entries are required for only a
short time, they are stored in heap memory. The
system requires 2 bytes of RAM for each table entry
specified. Additional heap space will also be allocated
when route discovery is underway. Note that the mini-
mum route discovery table size is dictated by the Stack
profile.

ROUTING TABLE SIZE

The ZigBee protocol specification requires that FFDs
maintain a routing table to route messages to other
nodes in the network. The system requires 5 bytes of
nonvolatile memory for each entry specified. Note that
the minimum routing table size is dictated by the Stack
profile.

RESERVED ROUTING TABLE ENTRIES

The ZigBee protocol specification requires that FFDs
reserve a portion of the routing table for use during
route repair. Note that the minimum reserved table
entries are dictated by the Stack profile.

MAX BUFFERED ROUTING MESSAGES

If an FFD receives a message that needs to be routed,
and the FFD does not have a route for the required
destination, it must buffer the received message and
perform route discovery (if possible) for the required
destination. The system requires 10 bytes of RAM for
each buffered message specified. Additional heap
space will also be allocated when a message is
received.

CHANNEL ENERGY THRESHOLD

When a ZigBee protocol coordinator selects a channel
for a new network, it first scans all of the available chan-
nels and eliminates those whose channel energy
exceeds a specified limit.

MINIMUM JOIN LQI

When a ZigBee protocol router or end device joins a
new network, it examines the link quality of the beacon
it received from each possible parent. If the link quality
is below this specified minimum, the device will
eliminate that device as a potential parent.

TRANSACTION PERSISTENCE

ZigBee protocol coordinators and routers are required
to buffer messages for their children whose transceiv-
ers are off when they are Idle. This parameter is the
amount of time in seconds that the parent device must
buffer the messages before it may discard them.
© 2006 Microchip Technology Inc. DS00965B-page 29

AN965
HEAP SIZE

The Microchip Stack uses dynamic memory allocation for
many purposes, including those listed in Table 14. RFD
end devices may be able to have as little as one bank of
heap space. FFDs should have as much space as possi-
ble. FFDs with child devices whose transceivers are off
when Idle are required to be able to buffer one or more

messages for each child. Refer to the appropriate Stack
profile for the exact requirement. Heap space will also be
required based on the settings above. The selected heap
size should take all of these items into consideration, and
is therefore, very application dependent.

TABLE 14: HEAP USAGE

Description Layer
ZigBee™
Protocol
Coord.

ZigBee™
Protocol
Router

FFD End
Device

RFD End
Device

Checking for descriptor matching ZDO X X X X

Checking for end device bind matching ZDO X X(1)

Buffering messages received from the APL APS X X X X

Buffering received indirect messages for retransmission APS X X(1)

Buffering route requests for rebroadcast NWK X X X

Buffering other broadcast messages for rebroadcast NWK X X X

Buffering channel information on network formation NWK X

Buffering network information on network join NWK X X X

Route discovery table entries NWK X X X

Buffering messages that require routing NWK X X X

Buffering messages for RFD children in Sleep MAC X X

Buffering a received message PHY X X X X

Nonvolatile memory manipulation NVM X X X X

Note 1: If binding is supported.
DS00965B-page 30 © 2006 Microchip Technology Inc.

AN965
STACK SIZE (PIC18)

The Microchip Stack requires only one bank of stack
space. If your application requires more, ZENA software
can generate the appropriate linker script, but be sure to
change the project’s memory model to use a multi-bank
stack. In MPLAB IDE, select Project>Build
Options>Project, MPLAB C18 tab. Change Category to
Memory Model and select the appropriate Stack
Model.

LINKER SCRIPTS

ZENA software generates linker scripts for a small
subset of devices. To modify the generated linker script
for a different device, change the following items:

FILES [device].lib – Change this to the required device
name.

CODEPAGE Sections – Change these to match those
of the required device and environment (MPLAB ICD 2
or production release build).

ACCESSBANK Sections – Change these to match
those of the required device.

HEAP Area – Make sure there is enough room on the
required device for the heap size specified. DO NOT
MODIFY the START or END parameters of this section.
If the size of the heap needs to be changed, regenerate
all Stack configuration files using ZENA software.

RX_BUFFER – Make sure this section is specified. DO
NOT MODIFY the START or END parameters of this
section.

Other DATABANK Sections – Make sure to copy the
SFR and debug areas (if needed) of the required device.

ZigBee Protocol Timing

The data rate for 2.4 GHz operation is 250 kbps. Four
data bits are transferred during each symbol period. A
symbol period is, therefore, 16 microseconds. Internal
Stack timing is based off of the symbol period.

Both beacon and non-beacon networks have timings that
are based off of superframes, even though the superframe
is not used in non-beacon networks. The superframe dura-
tion (aBaseSuperframeDuration) is the number of symbols
that form a superframe slot (aBaseSlotDuration, 60)
multiplied by the number of slots contained in a superframe
(aNumSuperframeSlots, 16). The scan duration required
by the NLME_NETWORK_DISCOVERY_request,
NLME_NETWORK_FORMATION_request, and
NLME_JOIN_request primitives is (aBaseSuperframe-
Duration * (2n + 1)) symbols, where n is the value of the
ScanDuration parameter. For the Microchip Stack,
ScanDuration can be between 0 and 14, making the
scan time between 0.031 seconds and 4.2 minutes.

For other frequency bands, refer to the IEEE specifica-
tions for the data rate. The other times can be
calculated from that.

CONCLUSION

The Microchip Stack for the ZigBee protocol provides a
modular, easy-to-use library that is application and
RTOS independent. It is specifically designed to sup-
port more than one RF transceiver with minimal
changes to upper layer software. Applications can be
easily ported from one RF transceiver to another. It is
targeted for the MPLAB C18 C compiler, but it can be
easily modified to support other compilers.

REFERENCES

• “ZigBee™ Protocol Specification”
http://www.zigbee.org

• “PICDEM™ Z Demonstration Kit User’s Guide”
(DS51524)
http://www.microchip.com

• “IEEE 802.15.4 Specification”
http://www.ieee.org

• “ZENA™ Wireless Network Analyzer User’s
Guide” (DS51506)
http://www.microchip.com

SOURCE CODE

The complete source code, including demo applica-
tions, is available for download as a single archive file
from the Microchip corporate web site at:

www.microchip.com.
© 2006 Microchip Technology Inc. DS00965B-page 31

AN965
ANSWERS TO COMMON QUESTIONS

Q: Is the Microchip Stack for the ZigBee protocol a
ZigBee protocol compliant platform?

A: No. The current version of the Microchip Stack is
not a ZigBee protocol compliant platform. The
Stack follows the ZigBee protocol specification
with the exception that security features are not
yet supported. When they are added, Microchip
plans to proceed with the certification process.

Q: I want to use a wireless protocol, but I do not
want all of the ZigBee protocol features. May I
modify the Microchip Stack for my own use
without receiving any further permissions?

A: No. Microchip has the relevant license rights to
distribute this Stack. However, you must be a
member of the Zigbee Alliance and have a
current license to the Microchip Stack for the
Zigbee protocol in order to distribute products
using the Microchip Stack. Neither Zigbee
Alliance nor Microchip allows modifications to be
made to the Microchip Stack.

Q: How do I get the source code for the Microchip
Stack for the ZigBee protocol?

A: You may download it from the Microchip web site
(www.microchip.com), from either the AN965,
“Microchip Stack for the Zigbee™ Protocol” or
the “PICDEM™ Z Demonstration Kit User’s
Guide” page.

Q: How do I get target hardware design files?
A: You may download it from the “PICDEM™ Z

Demonstration Kit User’s Guide” page on the
Microchip web site.

Q: What tools do I need to develop a ZigBee
protocol application using the Microchip Stack?

A: You would need:
• At least one PICDEM Z demo kit or at least

two of your own ZigBee protocol nodes
• Complete source code for the Microchip Stack

for the ZigBee protocol for PIC18 branded
products

• The MPLAB C18 C compiler
• MPLAB IDE software

• A device debugger and programmer, such as
MPLAB ICD 2

Q: How much program and data memory does a
typical ZigBee protocol node require?

A: The exact program and data memory require-
ments depend on the type of node selected. In
addition, the sizes may change as new features
and improvements are added. Please refer to
the README file for more detail.

Q: What is the minimum processor clock requirement
for running the different devices?

A: Normally, ZigBee protocol coordinators and
routers should run at higher speeds as they must
be prepared to handle packets from multiple
nodes. The required clock speed depends on the
number of nodes in the network, the types of
nodes and the frequency at which the end
devices request data. The demo coordinator
uses 16 MHz (4 MHz with 4x PLL) and can
support multiple child devices. We have not
performed extensive characterization, since
there are so many possible configurations. An
end device does not have to run as fast as a
coordinator or router. A simple end device may
be run at just 4 MHz.

Q: Can I use the internal RC oscillator to run the
Microchip Stack?

A: Yes, you may use the internal RC oscillator to
run the Microchip Stack. If your application
requires a stable clock to perform time-sensitive
operations, you must make sure that the internal
RC oscillator meets your requirement or you may
periodically calibrate the internal RC oscillator to
keep it within your desired range.

Q: What is the typical radio range for PICDEM Z
demo boards?

A: The exact radio range depends on the type of RF
transceiver and the type of antenna in use. A
2.4 GHz-based node with a well designed
antenna could reach as high as 100 meters line-
of-sight. When placed inside a building, the
typical internal range is about 30 meters, but the
actual range may be greatly reduced due to
walls and other structural barriers.

Q: I have an existing application that uses a wired
protocol, such as RS-232, RS-485, etc. How do
I convert it to a ZigBee protocol-based
application?

A: You would need to develop one ZigBee protocol
coordinator and one more ZigBee protocol end
device application. The coordinator is required to
create and manage a network. If your existing net-
work has one main controller and multiple end
devices or sensor devices, your main controller
would become a ZigBee protocol coordinator and
sensor devices would become ZigBee protocol
end devices. If the existing devices are already
mains powered, you may want to consider
making the end devices FFDs rather than RFDs.
FFDs do not generate as much network traffic and
can easily be converted to routers in case one or
more of your devices is out of radio range of the
coordinator. You must make sure that the radio
range offered by a specific RF transceiver is
acceptable to your application.
DS00965B-page 32 © 2006 Microchip Technology Inc.

AN965
Q: How do I obtain the ZigBee protocol and
IEEE 802.15.4 specification documents?

A: Both specifications are freely available on the
internet. The IEEE 802.15.4 specification
is available at http://standards.ieee.org/
getieee802/download/802.15.4-2003.pdf. The
ZigBee protocol specification is available at
www.zigbee.org.

Q: I have an application that I have built with an
earlier version of the Microchip Stack. How do I
port my application to the new Stack?

A: The interface to the v1.0-3.5 Stack architecture
is much simpler than the interface to the old
Stack. Study the template file for the device type
you need. The places to insert application-
specific code are indicated by large comment
blocks:

• Application-Specific Initialization: Insert
any initialization required by the application
before the Stack is started.

• Received ZDO Responses: Insert code here
to handle responses to ZDO requests that the
application issues. If the application does not
issue any ZDO requests, this section will be
empty.

• Messages Received for User-Defined
Endpoints: The new architecture handles
endpoints differently. There is no need to
“open” or “close” an endpoint. Each endpoint
is simply a case of a switch statement. Note
that the APLDiscardRx() function is called
after the switch statement, so the individual
endpoints do not need to call it.

• Application Processing that can Generate
ZigBee Protocol Messages: A new outgoing
message can only be started if the current
primitive is NO_PRIMITIVE and another
outgoing message is not already waiting
(ZigBeeReady() returns TRUE). Place all
message generation processing from all end-
points here. Note that no code is required to
retry the message in case it fails to transmit or
receive an APS level Acknowledge. That is
now handled automatically by the Stack. Also,
the Stack now automatically handles all
message routing.

• Non-Related ZigBee Protocol Processing:
If the application has any other processing
that does not relate at all to the ZigBee proto-
col, place that code here. Make sure that this
processing does not lock the system for long
periods of time or the Stack will miss incoming
messages.

• Hardware Initialization: The required
hardware initialization for the PICDEM Z
demo board is included in the template files. If
your hardware requirements are different,
modify this function appropriately. Note that
this function must properly configure all pins
required to interface with the transceiver and
must be called before ZigBeeInit().

Network formation and association are provided by the
templates. You may wish to change some of the param-
eters of these primitives, but the basic structure will
remain unchanged.
© 2006 Microchip Technology Inc. DS00965B-page 33

AN965
REVISION HISTORY

Rev A Document (12/2004)

Original version of this document.

Rev B Document (04/2006)

This document is a complete rewrite of Rev A.
DS00965B-page 34 © 2006 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip devices in life support and/or safety
applications is entirely at the buyer’s risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights.
© 2006 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and Zena are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2006, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00965B-page 35

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00965B-page 36 © 2006 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

02/16/06

	Introduction
	Assumption
	Features
	Limitations
	Considerations
	ZigBee Protocol Overview
	IEEE 802.15.4
	Device Types
	TABLE 1: IEEE 802.15.4 Device Types
	TABLE 2: ZigBee™ Protocol Device Types

	Network Configurations
	Star Network Configuration
	FIGURE 1: Star Network Configuration

	Cluster Tree Topology
	FIGURE 2: Cluster Tree Topology

	Mesh Network
	FIGURE 3: Mesh Network

	ZigBee Protocol Terminology
	FIGURE 4: ZigBee™ Protocol Profile Architecture
	Message Types and Binding
	ZigBee Protocol Message Format
	ZigBee Protocol Frame Formats
	KVP Frames
	MSG Frames
	Addressing
	IEEE Extended Unique Identifiers – EUI-64
	Network Addresses
	Unicast
	Broadcast
	Data Transfer Mechanism
	Routing
	Network Association

	Stack Architecture
	FIGURE 5: ZigBee™ Protocol Stack Architecture

	Typical ZigBee Protocol Node Hardware
	FIGURE 6: Typical ZigBee™ Protocol Node Hardware (Control Signals Added)

	ZENA™ Analyzer – Microchip’s ZigBee Protocol Stack Configuration Tool and Wireless Network Analyzer
	Installing Source Files
	Source File Organization
	TABLE 3: Source File Directory Structure

	Demo Applications
	Demo Application Features
	Demo Applications Project and Source Files
	TABLE 4: Microchip Stack Source Files in ZigBeeStack Subdirectory
	TABLE 5: Microchip Common Source Files in Common Subdirectory
	TABLE 6: ZigBee™ Protocol Coordinator Demo in DemoCoordinator Subdirectory
	TABLE 7: ZigBee™ Protocol Router Demo in DemoRouter Subdirectory
	TABLE 8: ZigBee™ Protocol End Device Demo in DemoRFD Subdirectory
	TABLE 9: Temperature Demo (Coordinator) in TempDemoCoord Subdirectory
	TABLE 10: Temperature Demo (RFD) in TempDemoRFD Subdirectory

	Building Primary Demo Applications
	Programming Primary Demo Applications
	Running the Primary Demo Applications
	Demonstrating End Device Binding
	Demonstrating Device Discovery
	Demonstrating Messages
	Temperature Demo

	Using the Microchip Stack for the ZigBee Protocol
	Interfacing with the Microchip Stack for the ZigBee Protocol
	EXAMPLE 1: The Basic Structure Of The Application

	Forming or Joining a Network
	Receiving Messages
	EXAMPLE 2: Receiving Messages

	Sending Messages
	EXAMPLE 3: Sending an Outgoing Message

	Requesting and Receiving Data on an RFD
	EXAMPLE 4: Requesting and Receiving Data on an RFD

	Primitive Summary
	TABLE 11: Typical Application Primitives and Responses
	TABLE 12: Primitive Handling Requirements

	Microchip Stack for the ZigBee Protocol Macros and Functions
	Microchip Stack for the ZigBee Protocol Status Flags
	TABLE 13: Stack Status Flags

	Configuration Parameters
	MAX Frames From APL Layer
	MAX APS ACK Frames Generated
	MAX APS Addresses
	MAX Buffered Indirect Messages
	Binding Table Size
	Neighbor Table Size
	MAX Buffered Broadcast Messages
	Route Discovery Table Size
	Routing Table Size
	Reserved Routing Table Entries
	MAX Buffered Routing Messages
	Channel Energy Threshold
	Minimum Join LQI
	Transaction Persistence
	Heap Size
	TABLE 14: Heap Usage

	Stack Size (PIC18)
	Linker Scripts

	ZigBee Protocol Timing

	Conclusion
	References
	Source Code
	Answers to Common Questions
	Revision History
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Arnprior
 /Batang
 /Baveuse
 /Berylium
 /Berylium-BoldItalic
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BurnstownDam
 /CarbonBlock
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /EarwigFactory
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HurryUp
 /Impact
 /INCONTROL
 /Kartika
 /Kredit
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /Map-Symbols
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MT-Extra
 /MVBoli
 /Neuropol
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlanetBenson2
 /Pupcat
 /Raavi
 /Shruti
 /SimSun
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

