
1

Object-Oriented Design

• Objective:  Develop logical solution that
fulfills the requirements
– define the classes that will be implemented in

an object-oriented programming language.
– Assign responsibilities to software components
– Identify and apply design patterns.

Artifacts of Analysis/Architectural
Modeling

• Conceptual Model
– Static Structure diagram(s)
– Sequence diagrams
– Glossary
– Other models and documents?

• Architectural Model
– Stakeholder Needs
– Architectural views



2

Larman’s Approach to Design

• Develop real use cases
• Create interaction diagrams
• Develop design class diagrams
• Key issues:

– Allocation of responsibility
– Identification/application of design pattens

Design--Real Use Cases
• Real use cases describe user interaction

with the system in concrete terms.
– User interactions with system interface(s)
– System interaction with interfaces

• Requires some definition of interface
details.

• Remember, the “user” may be another
software system or a hardware system
rather than a human.



3

Design--Modeling System
Interactions

• Interaction diagrams
– sequence diagrams
– collaboration diagrams

• Show the time-ordered interactions among
system objects

• If contracts have been specified for system
operations during analysis/architectural
modeling, these  provide a good starting
point.

Sequence Diagrams
User ATM Consortium Bank

1: insert card
2: request password

3: enter password
4: verify account

5:  verify card w. bank

6:  bank account OK
7: account OK

8: request type

9: select type

10: request amount

11: enter amount
12: process transaction

13: process bank trans.

14: bank trans. OK
15: transaction OK

16: dispense cash

Etc. 



4

Collaboration Diagrams

:Elevator

:Cabin

:Light

:Door

1: Go up

2: Turn on

3: Close

Elements of Collaboration Diagrams
Classes/Objects/Actors:

Classname

A class

:Classname

An instance
of class Classname

c1:Classname

A named instance
of class Classname

An actor

Links:

:class1 :class2

Denotes an instance of an association 
between class1 and class2



5

Collaboration Diagram Elements--
Continued

Messages:

:class1 :class2

n:message_name(params)

Sequential order
of this message.

Direction of
message flow

May also designate a return value:

n:return_value=message_name(params)

Collaboration Diagrams--Continued
• Additional Elements (see Chapter 17 of

Larman for syntax and examples:
– iterative messages
– conditional messages
– alternative paths
– multiobjects



6

Collaboration Diagram Example

:Controller :Window
redisplay()

wire:Wire :Line{new}

i-1 i

left:Bead right:Bead

wire

window

1:displayPositions(window)

1.1*[i:=1..n]:drawSegment(i)

<<self>>

1.1.1a:r0:=position() 1.1.1b:r1:=position()

contents{new}

1.1.3.1:add(self)

<<parameter>>window

1.1.2:create(r0,r1)
1.1.3:display(window)

Design of Collaborations
• During the design of collaborations,

important design decisions must be made.
– Methods assigned to classes

• operation
• parameters
• return values

– Internal data (state) of objects is identified
– Interactions among classes are identified.
– Internal flow-of-control of objects is identified.



7

Using Patterns to Build
Collaborations

• Design pattern:  capture standard solutions
(structures) that have evolved over time and
have been successfully applied to previous
problems.

• Why use patterns:
– reuse
– faster/more robust design
– improved communication

Larman’s Design Patterns
• GRASP--General Responsibility

Assignment Patterns
– Expert
– Creator
– High Cohesion
– Low Coupling
– Controller
– Polymorphism
– Pure fabrication
– Indirection
– Don’t Talk to Strangers

Basic Patterns

Advanced
Patterns



8

“Gang of Four” Patterns

• Design Patterns--Elements of Reusable
Object Oriented Software, by Gamma,
helm, Johnson, and Vlissides
– Creational Patterns

• Abstract Factory
• Builder
• Factory Method
• Prototype
• Singleton

“Gang of Four” Patterns--Continued
– Structural Patterns

• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight

• Proxy

– Behavioral Patterns
• Chain of Responsibility
• Command
• Interpreter
• Iterator
• Mediator
• Memento

• Observer
• State
• Strategy
• Template Method
• Visitor



9

Overview of the GRASP Patterns
• Expert

– Assign a responsibility to the information
expert--ie. The class that has the necessary
information to carry out the responsibility.

– Basic idea:
• To what class or object should a given responsibility

be allocated--e.g. responsibility for authorizing an
ATM transaction?

• Identify the class that has the necessary information.
• Assign a method to this class to carry out the

responsibility.

Expert Pattern Example
ATM Transaction Authorization: Who is responsible? 

Consortium Bank

Cashier
Station

Remote
Transaction

Cash
Card

ATM

Cashier
Transaction

Cashier

Customer

AccountConsists
of

Owns
Owns

Entered on Enabled
by

Holds Has

Has

Accesses
Concerns

Employs

Owns Entered
by

Entered
on

Con-
cerns

Card
Authorization

Issues

cash on hand
dispensed

name

name
address

name

balance
credit limit

type

date-time
amount

kind

date-time
amount

kind

password
limit

bank-code
card-code

serial number

Identifies



10

Expert pattern Example--Continued

:CardAuthorization

password
limit

authorize(passwd,acct)

authorization:=authorize(passwd,acct)

 Expert Pattern--Benefits and
Liabilities

• Benefits:
– Low coupling among objects--objects use their

own information to carry out responsiblities
– High cohesion--behavior is distributed across

classes that have the required information.

• Liabilities:
– May ignore higher-level structuring issues
– Could result in “over-distribution” of

responsiblities.



11

GRASP Patterns--Continued
• Creator Pattern: Assign class B the

responsibility to create instances of class A
under any of the following circumstances:
– B aggregates objects of class A.
– B contains objects of class A
– B records instances of class A objects
– B closely uses objects of class A.
– B has initializing data for class A objects..

Creation Pattern Example
Who should create CardAuthorizaton objects?

:Bank

name

CreateAuthorizaton()

CreateAuthorization(…)

1:Create (…)

:CardAuthorization{new}



12

Creator Pattern--Benefits and
Liabilities

• Benefits:
– Low Coupling--since creator already has

associations with created  class

• Liabilities:
– No real drawbacks--this is just common sense.
– Choice of creator may not always be unique.

GRASP Patterns--Continued

• Low Coupling Pattern:  Assign
responsibility so that coupling remains low.

• Coupling: degree of interaction among
objects

• (Potential) advantages of low coupling:
– reduced complexity
– more opportunities for reuse
– easier to modify



13

GRASP Patterns--Continued
• High Cohesion Pattern:  Assign

responsibilities so that cohesion is high.
• Cohesion:  The degree of interaction

(relatedness) among responsibilities within
as class.

• (Potential) advantages of high cohesion:
– Good “packaging” of functionality
– Enhances reuse.
– Enhances maintainability

More About Coupling and Cohesion
• An analogy: Consider the design of a

computer to be partitioned across three
chips.

• Approach 1:

Registers ALU

Shifter

Chip 1 Chip 2

Chip 2



14

Design of a 3-Chip CPU--Second Approach:

AND
Gates OR

Gates

NOT Gates

Which approach makes more sense?  Why?

Cohesion
• Meyers Defined Seven Levels of Cohesion

– 7.  Functional Cohesion
– 7  Informational Cohesion
– 5.  Communicational Cohesion
– 4.  Procedural Cohesion
– 3.  Temporal Cohesion
– 2.  Logical Cohesion
– 1.  Coincidental Cohesion

(GOOD)

(BAD)



15

Types of Cohesion
• Coincidental

– module performs multiple, unrelated actions
– This amounts to arbitrary modularization

• Logical
– module performs a set of related actions, one of

which is selected by the calling module.
– E.g , a module performing all input/output functions

for a complex system.

• Temporal
– module performs a series of actions related in time.
– E.g., module containing all system initialization

actions.

Types of Cohesion--Continued
• Procedural

– module performs a set of weakly-connected
actions corresponding to the sequence of steps
in some operation

– E.g., all of the operations involved in an ATM
transaction

• Communicational
– module performs a sequence of steps, related to

some operation, which operate on the same
data.

– E.g., update a database, record update to audit
trail, print the update.



16

Types of Cohesion--Continued
• Informational

– module performs a set of independent actions,
all of which operate on the same data strucure

– E.g., implementation of an Abstract Data Type

• Functional Cohesion
– module performs one coherent action or

achieves a single objective
– E.g., “calculate sales commision.”

A Cohesion Example
Compute average
daily temperatures

at various sites.

Initialize sums
and

open files

Create new
temperature

record

Store 
temperature 

record

Close files and
print average
temperatures

Read in site,
time, and 

temperature

Store record 
for specific 

site

Edit site, time,
or temperature

field



17

Coupling

• Five levels of coupling:
– 5.  Data Coupling
– 4.  Stamp Coupling
– 3.  Control Coupling
– 2. Common Coupling

(GOOD)

(BAD)

Types of Coupling

• Content Coupling
– one module directly references the content of

the other.
– E.g. module A branches to a local label of

module B.

• Common Coupling
– two modules share access to the same global

data
– E.g., modules use global variables to pass

arguments



18

Types of Coupling--Continued
• Control Coupling

– one module explicitly controls the logic of
another

– E.g. a control switch is passed as an argument

• Stamp Coupling
– a data structure is passed as an argument but

called module only operates on some individual
components of the data structure

– E.g., an employee record is passed to a module
which only needs the salary field.

Data Coupling
• Data Coupling

– all data exchanged by modules are
homogeneous data items.

– I.e., either simple data values or data structures
in which all elements are used by the called
module.



19

Coupling Example
p

q
s

u

r

t

Aircraft
type

Status
flag

List of parts

Function code

Database
Part 
number

Manu-
facturer

Part
number Part

name

List of parts

update

update
upate

GRASP Patterns--Continued
• Controller Pattern

– Assign responsibility for handling a system
event to one of the following controller classes:

• One representing the overall “system”, business, or
organization

– façade controller

• One that represents an active real-world entity that
might be responsible for the task

– role controller

• One that represents an artificial hander of all system
events associated with some collaboration

– use-case controller



20

Controller Pattern--Continued
• System event--generated by external actor

– associated with system operations.
– E.g. user selecting a function on ATM screen.

• Controller--object responsible for handling
a system event.

• Possible choices for ATM transaction
– System or ATM--façade controller
– Teller--role controller
– ATMTransactonHandler--use-case controller

Controller Classes--Which Type to Use:
• Façade controller

– places all system event handling in a single class
– may become too complex and incohesive if the number

and range of system events is high.

• Role controller
– attempts to mimic behavior of a human agent
– may suffer from imperfect or awkward  analogy

• Use-case controller
– allocates controller responsibility on a per-collaboration

basis
– best choice if system has many events spread across

several operations.



21

Controller Pattern Example
A Compiler:

StackMachineCodeGenerator

stream

BytecodeStream

CodeGenerator

RISCCodeGenerator

...

Scanner Token

Parser Symbol

ProgramNodeBuilder ProgramNode

StmtNode

ExpressionNode

VariableNode

... ...

Controller Classes--Additional Issues
• Separation of presentation (interface

objects) from event-handling responsibility
– E.g. GUI objects shouldn’t process user input

events.
– GUI object may select the appropriate

controller class to handle a given event.


