Object-Oriented Design

Objective: Develop logical solution that
fulfills the requirements
— define the classes that will be implemented in
an object-oriented programming language.
— Assign responsibilities to software components
— ldentify and apply design patterns.

Artifacts of Analysis/Architectural

Modeling
Conceptual Model
— Static Structure diagram(s)
— Sequence diagrams
— Glossary
— Other models and documents?
Architectural Model
— Stakeholder Needs
— Architectura views

Larman’s Approach to Design

Develop real use cases

Create interaction diagrams

Develop design class diagrams

Key issues:

— Allocation of responsibility

— |dentification/application of design pattens

Design--Real Use Cases

» Real use cases describe user interaction
with the system in concrete terms.
— User interactions with system interface(s)
— System interaction with interfaces
» Requires some definition of interface
details.
* Remember, the “user” may be another
software system or a hardware system
rather than a human.

Design--Modeling System
|nteractions
* Interaction diagrams
— sequence diagrams
— collaboration diagrams

» Show the time-ordered interactions among
system objects

* If contracts have been specified for system
operations during analysi /architectural
modeling, these provide agood starting
point.

Sequence Diagrams

User ATM Consortium Bank
I nsertcad
2 Tequest password |
—3enter password—]
4 verify account—; _
rSverify card w. ek,
6 hankaccount OK—]
7 accounnt O
| —8—Fequest-type—
—fa:—seleet—tuwae—>
‘-10:—r-equespamount—
—tienteramount—;
%pree%banle#ans:
EIEZGFS%EEEHEJ QK o
‘—LG:—dispense-cash—‘

Collaboration Diagrams

:Elevator

" 1: Goup

:Cabin ~3: Close

2. Turn ork\ :Door

Elements of Collaboration Diagrams

Classes/Objects/Actors:
Classname :Classname cl.Classname E%
A class Aninstance A named instance An actor

of class Classname of class Classname

Links:

:classl :class2

r"

Denotes an instance of an association
between classl and class2

Collaboration Diagram Elements--
Continued

M essages:

:classl :class2

n:mesage_name(params) —_—

Sequential order Directior!w of
of this message. message flow

May also designate areturn value:

n:return_value=message _name(params)

Collaboration Diagrams--Continued
» Additional Elements (see Chapter 17 of
Larman for syntax and examples:
— iterative messages
— conditional messages
— alternative paths
— multiobjects

Collaboration Diagram Example

edisplay() - ind]
%M :Controller e ‘Window

<<parameter>>window

J Ldi splayPositions(window)

11.1.3.1:add(self)
wire
JL2*[i=1.n]: draNSegmer& ontenis{new}
wire:Wire :Line{ new}
1.2:create(r0,rl) —
<<self>>1 4 | | j [L13display(window) —»
J 1.1.1ar0:=position() J 1.1.1b:r1:=position()

left:Bead right:Bead

Design of Collaborations

» During the design of collaborations,
important design decisions must be made.
— Methods assigned to classes
* Operation
e parameters
* return values

— Internal data (state) of objectsisidentified
— Interactions among classes are identified.
— Internal flow-of-control of objectsisidentified.

Using Patterns to Build
Collaborations

» Design pattern: capture standard solutions
(structures) that have evolved over time and
have been successfully applied to previous
problems.

* Why use patterns.

—reuse
— faster/more robust design
— improved communication

Larman’s Design Patterns
» GRASP--General Responsibility
Assignment Patterns
— Expert)
— Creator
—High Cohesion > Basic Patterns
— Low Coupling
— Controller D
— Polymorphism
— Pure fabrication Advanced
— Indirection Patterns
— Don't Talk to Strangers

“Gang of Four” Petterns

» Design Patterns--Elements of Reusable
Object Oriented Software, by Gamma,

helm, Johnson, and Vlissides

— Creational Patterns
 Abstract Factory

» Builder

* Factory Method
* Prototype
 Singleton

“Gang of Four” Patterns--Continued

— Structura Patterns

e Adapter
 Bridge

» Composite
» Decorator
» Facade

* Fyweight
* Proxy

— Behavioral Patterns
 Chain of Responsibility
» Command
* Interpreter
* |terator
* Mediator
* Memento
» Observer
o State
o Strategy
» Template Method
» Visitor

Overview of the GRASP Patterns

o Expert
— Assign aresponsibility to the information
expert--ie. The classthat has the necessary
information to carry out the responsibility.
— Basicidex
» To what class or object should a given responsibility

be allocated--e.g. responsibility for authorizing an
ATM transaction?

* |dentify the class that has the necessary information.

» Assign amethod to this classto carry out the
responsibility.

Expert Pattern Example

ATM Transaction Authorization: Who is responsible?

[S5)
Consists | A coniint
. ro—of | Hotds| balance
Consortium Bank |79 |credit limit | 90 Lict
T L Acresses— name
ONCErnsS auress
Employs
Own :
owns Cashier Has
TIATIE Con_
Owns Entered| cerng
by - Card
Cashier Cashlq AL st zation
Srariom | ENtered | — password
otarort date-time Tt
on amount dontifioc
ATTTO IJ\ollLlllw
Remote Cash
ATM Troncnction -~
Entered on Enabled
caeh on hand date-time bank-code
di y amount by card-cod
GrSPERSEa lin rar oot

Expert pattern Example--Continued

:CardAuthorization

- r

authori zati on: =authori ze(passwd,acct) password

limit

authorize(passwd,acct)

Expert Pattern--Benefits and
Liabilities
» Benefits:

— Low coupling among obj ects--objects use their
own information to carry out responsiblities

— High cohesion--behavior is distributed across
classes that have the required information.

o Liabilities:
— May ignore higher-level structuring issues

— Could result in “over-distribution” of
responsiblities.

10

GRA SP Patterns--Continued

» Creator Pattern: Assign class B the
responsibility to create instances of class A
under any of the following circumstances:

— B aggregates objects of class A.

— B contains objects of classA

— B records instances of class A objects

— B closely uses objects of classA.

— B hasinitializng data for class A objects..

Creation Pattern Example
Who should create CardAuthorizaton objects?

| CreateAuthorization(...)

v

:Bank

1:Create ()
- =

CreateAuthorizaton()

name —CardAuthorization{ new}

11

Creator Pattern--Benefits and
Liabilities
» Benefits:

— Low Coupling--since creator aready has
associations with created class

 Liabilities:
— No real drawbacks--thisis just common sense.
— Choice of creator may not always be unique.

GRA SP Patterns--Continued

» Low Coupling Pattern: Assign

responsibility so that coupling remains low.

» Coupling: degree of interaction among
objects
 (Potential) advantages of low coupling:
— reduced complexity
— more opportunities for reuse
— easier to modify

12

GRA SP Patterns--Continued

» High Cohesion Pattern: Assign
responsibilities so that cohesion is high.

» Cohesion: The degree of interaction
(relatedness) among responsibilities within
as class.

 (Potential) advantages of high cohesion:

— Good “packaging” of functionality
— Enhances reuse.
— Enhances maintainability

More About Coupling and Cohesion

» An analogy: Consider the design of a
computer to be partitioned across three
chips.

» Approach 1: Chip 1 Chip 2

Registers | | ALU

Chip 2

» Shifter

13

Design of a 3-Chip CPU--Second Approach:

AND
Gates :><::;;; OR

33 Gates

NOT Gates

Which approach makes more sense? Why?

Cohesion

» MeyersDefined Seven Levels of Cohesion

— 7. Functiona Cohesion

— 7 Informational Cohesion

— 5. Communicational Cohesion
— 4. Procedura Cohesion

— 3. Tempora Cohesion

— 2. Logical Cohesion

— 1. Coincidental Cohesion

(GOOD)
A

v
(BAD)

14

Types of Cohesion
» Coincidental
— module performs multiple, unrelated actions
— This amounts to arbitrary modularization
» Logical
— module performs a set of related actions, one of
which is selected by the calling module.

— E.g, amodule performing all input/output functions
for acomplex system.

e Temporal
— module performs a series of actions related in time.

— E.g., module containing al system initialization
actions.

Types of Cohesion--Continued
* Procedural

— module performs a set of weakly-connected
actions corresponding to the sequence of steps
IN some operation

— E.g., dl of the operationsinvolved in an ATM
transaction

e Communicational

— module performs a sequence of steps, related to
some operation, which operate on the same
data.

— E.g., update a database, record update to audit
trail, print the update.

15

Types of Cohesion--Continued

e |Informational

— module performs a set of independent actions,
all of which operate on the same data strucure

— E.g., implementation of an Abstract Data Type
» Functional Cohesion

— module performs one coherent action or
achieves a single objective
— E.g., “calculate salescommision.”

A Cohesion Example

Compute average
daily temperatures

Dbt

Initialize sums Create new Store Closefilesand
and temperature temperature print average
FaYal loc roenral rocord tomnoratiLiroc
UlJ\.all LLLAY:"] T LAY] Ib\/].llu L\IIIIIJbI AT VI
Read in site, Store record
time, and for specific
tomn atrirn cto
|) I|J\.4 TALUT U ™ B8
Edit site, time,
or temperature
field

16

Coupling

» Fivelevelsof coupling:

— 5. DataCoupling (GOOD)
— 4. Stamp Coupling]

— 3. Control Coupling

— 2. Common Coupling (BAD)

Types of Coupling

» Content Coupling

— one module directly references the content of
the other.

— E.g. module A branchesto alocal 1abel of
module B.

« Common Coupling

— two modules share access to the same global
data

— E.g., modules use global variablesto pass
arguments

17

Types of Coupling--Continued

 Control Coupling

— one module explicitly controls the logic of
another

— E.g. acontrol switch is passed as an argument
« Stamp Coupling

— adata structure is passed as an argument but
called module only operates on some individual
components of the data structure

— E.g., an employee record is passed to a module
which only needs the salary field.

Data Coupling

» Data Coupling

— all data exchanged by modules are
homogeneous data items.

— |.e., either ssimple data values or data structures
in which all elements are used by the called
module,

18

Coupling Example

Aircraft P List of parts
type
/QL

flag

Function code

umber Part
r name

Database
Part

A Manu-
number W \
update upate

t

—h

GRA SP Patterns--Continued

« Controller Pattern
— Assign responsibility for handling a system

event to one of the following controller classes:

* One representing the overall “ system”, business, or
organization
— fagade controller
* One that represents an active real-world entity that
might be responsible for the task
— role controller
* Onethat represents an artificial hander of al system
events associated with some collaboration
— use-case controller

19

Controller Pattern--Continued

» System event--generated by external actor
— associated with system operations.
— E.g. user selecting afunction on ATM screen.
» Controller--object responsible for handling
a system event.
» Possible choicesfor ATM transaction
— System or ATM--fagade controller
— Teller--role controller
— ATMTransactonHandler--use-case controller

Controller Classes--Which Type to Use:

» Facade controller
— places all system event handling in asingle class
— may become too complex and incohesive if the number
and range of system eventsis high.
* Role controller
— attempts to mimic behavior of a human agent
— may suffer from imperfect or awkward analogy

» Use-case controller
— alocates controller responsibility on a per-collaboration
basis
— best choice if system has many events spread across
several operations.

20

Controller Pattern Example

A Compiler:
| Scanner |-+ Token |«———
Parser Symbol
SUZ';m ProgramNodeBuilder---- ProgranNod
[BytecodeStream St.r.r.1tNo dle
CodeGenerator ExpressionNode
$: | VariableNode

StackM achineCodeGenerator | | RISCCodeGenerator

Controller Classes--Additional Issues

» Separation of presentation (interface
objects) from event-handling responsibility
— E.g. GUI objects shouldn’t process user input
events.

— GUI object may select the appropriate
controller classto handle agiven event.

21

