

(Total: 2 Parts)

57:021 Principles of Design I (Fall 2003) Final Exam: 16 December 2003; Time: 2:15 to 4:15 PM

Name:

Section No. (check one) □ Arora 10:30 AM □ Choi 2:30 PM

Instructions:

- 1. TWO handwritten formula sheet is allowed.
- 2. If you need more space to answer a question, use **back** of that question sheet only.
- 3. The exam is divided into two parts. Submit each part separately.
- 4. Write your **name** and **section #** on each part.
- 5. Show all calculations and justify your answers. State all assumptions.

(Total: 2 Parts)

Part B

1. (10 points) An engineering design problem is formulated as follows:

Maximize $z = -2x_1 + 3x_2$ subject to

subject to

$$6-3x_1+2x_2 \ge 0$$

- $x_1 + x_2 - 4 \ge 0$
 x_1 is free in sign; $x_2 \ge 0$

(i) Transcribe the problem to the standard LP format.

$$\begin{array}{ll} \text{Minimize } f = 2\left(x_{1}^{+} - x_{1}^{-}\right) - 3x_{2}; & x_{1} = x_{1}^{+} - x_{1}^{-} \\ 3\left(x_{1}^{+} - x_{1}^{-}\right) - 2x_{2} + x_{3} = 6; & x_{3} = slack \ var \ iable \\ -\left(x_{1}^{+} - x_{1}^{-}\right) + x_{2} - x_{4} + x_{5} = 4; & x_{4} = surplus \ var \ iable \\ x_{1}^{+}, x_{1}^{-}, x_{2} \ge 0; & x_{5} = artificia; \ var \ iable \end{array}$$

(ii) Set up the initial tableau for the problem so that the Simplex method can be used to solve the problem. *DO NOT SOLVE THE PROBLEM*.

Artificial cost,
$$w = x_5 = 4 + x_1^+ - x_1^- - x_2^- + x_4^-$$

	x_1^+	\mathbf{x}_1	X ₂	X ₃	X 4	X 5	b
X3	3	-3	-2	1	0	0	6
X5	-1	1	1	0	-1	1	4
Cost	2	-2	-3	0	0	0	f - 0
Artificial cost	1	-1	1	0	1	0	w - 4

(iii) What are the initial values for the basic and nonbasic variables?

Basic: $x_3 = 6$, $x_5 = 4$; all others are nonbasic

Part B

(Total: 2 Parts)

2. (12 points) A linear design optimization problem is to be solved using the Simplex method. The initial tableau for the problem is given below, where x_3 is a slack variable, x_4 is a surplus variable, and x_5 is an artificial variable.

-						
	x ₁	x ₂	X 3	X 4	X 5	b
x3	-2	1	1	0	0	4
x5	1	1	0	-1	1	2
Cost	-4	-2	0	0	0	f - 0
Artificial cost	-1	-1	0	1	0	w - 2
x3	0	3	1	-2	2	8
x1	1	1	0	-1	1	2
Cost	0	2	0	-4	4	f+8
Art.	0	0	0	0	1	w-0

ANSWER THE FOLLOWING QUESTIONS.

(i) Identify basic and nonbasic variables for the initial tableau.

Basic: x3, x5; Nonbasic: x1, x2, x4

- (ii) Complete (ONLY) one iteration of the Simplex method to obtain the next tableau.
- (iii) Does your tableau give an optimum solution for the linear design problem? YES/NO
- (iv) Does <u>your tableau</u> indicate end of Phase I of the Simplex method? YES/NO
- (v) Does <u>your tableau</u> indicate the problem to be infeasible? YES/NO
- (vi) Does your tableau indicate the problem to be unbounded? YES/NO

Part B

(Total: 2 Parts)

2. (12 points) A linear design optimization problem is to be solved using the Simplex method. The initial tableau for the problem is given below, where x_3 is a slack variable, x_4 is a surplus variable, and x_5 is an artificial variable.

	x ₁	x ₂	X 3	X 4	X 5	b
x3	-2	1	1	0	0	4
x5	1	1	0	-1	1	2
Cost	-4	-2	0	0	0	f - 0
Artificial cost	-1	-1	0	1	0	w - 2
x3	-3	0	1	1	-1	2
x2	1	1	0	-1	1	2
Cost	-2	0	0	-2	2	f+2
Art	0	0	0	0	1	w-0

ANSWER THE FOLLOWING QUESTIONS.

(ii) Identify basic and nonbasic variables for the initial tableau.

Basic: x3, x5; Nonbasic: x1, x2, x4

(ii) Complete (ONLY) one iteration of the Simplex method to obtain the next tableau.

(vii) Does your tableau give an optimum solution for the linear design problem? YES/NO

- (viii) Does your tableau indicate end of Phase I of the Simplex method? YES/NO
- (ix) Does <u>your tableau</u> indicate the problem to be infeasible? YES/NO
- (x) Does <u>your tableau</u> indicate the problem to be unbounded? YES/NO

(Total: 2 Parts)

3. (10 points) A linear engineering design problem is formulated as follows:

Minimize $f = 10x_1 + 6x_2 + 2x_3 - 6x_4$ subject to $-x_1 + x_2 + x_3 - x_4 \ge 1$ $3x_1 + x_2 - x_3 - 3x_4 \ge 2$ $x_1, x_2, x_3, x_4 \ge 0$

The final Simplex tableau for the problem is given as follows:

	X ₁	x ₂	X3	X4	X5	x ₆	X7	X8	b
X ₂	0	1	0.5	-1.5	-0.75	-0.25	0.75	0.25	1.25
x ₁	1	0	-0.5	-0.5	0.25	-0.25	-0.25	0.25	0.25
Cost	0	0	4	8	2	4	-2	-4	f - 10
Artificial	0	0	0	0	0	0	1	1	w - 0

 x_5 and x_6 are surplus variables for constraint #1 and 2, respectively. x_7 and x_8 are artificial variables for constraint #1 and 2, respectively.

ANSWER THE FOLLOWING QUESTIONS.

i	x ₁ is a nonbasic variable	YES/NO
ii	Value of x_2 at the optimum point is 0.25	YES/NO
iii	Value of x ₆ is zero at the optimum point	YES/NO
iv	Value of the cost function at the optimum is 10	YES/NO
v	Constraint #1 is inactive at the optimum point	YES/NO
vi	Constraint #2 is active at the optimum point	YES/NO
vii	Lagrange multiplier for constraint #1 is 2	YES/NO
viii	Lagrange multiplier for constraint #2 is -4	YES/NO
ix	The problem has multiple optimum points	YES/NO
Х	Cost coefficient of x_3 can be increased to 4 without affecting the optimum cost function	YES/NO

Part B

(Total: 2 Parts)

- 4. (10 points) An engineering design problem is formulated in terms of the design variables x and y as follows: Minimize $f = x(\frac{1}{2}x - y^2)$
 - Minimize Subject to

$$h_1: y(x+4y) = 10$$

$$g_1: -2x^2 + \frac{1}{3}y \le 0$$

$$g_2: -y - 4 \le 0$$

(i) Evaluate cost and constraint functions at the point (2,3).

$$f = 2(\frac{1}{2} \times 2 - 3^2) = -16$$

$$h_1 := 3(2 + 4 \times 3) - 10 = 32$$

$$g_1 = -2 \times 2^2 + \frac{1}{3} \times 3 = -7$$

$$g_2 = -3 - 4 = -7$$

(ii) Evaluate gradients of the cost and constraint functions at the point (2,3).

$$\nabla f = \begin{bmatrix} x - y^2 \\ -2xy \end{bmatrix} = \begin{bmatrix} -7 \\ -12 \end{bmatrix}; \qquad \nabla h_1 = \begin{bmatrix} y \\ x + 8y \end{bmatrix} = \begin{bmatrix} 3 \\ 26 \end{bmatrix}$$
$$\nabla g_1 = \begin{bmatrix} -4x \\ 1/3 \end{bmatrix} = \begin{bmatrix} -8 \\ 1/3 \end{bmatrix}; \qquad \nabla g_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

(iii) Define the quadratic programming subproblem at the point (2,3).

Minimize

$$\bar{f} = -16 - 7d_1 - 12d_2 + \frac{1}{2}(d_1^2 + d_2^2)$$

subject to
$$32 + 3d_1 + 26d_2 = 0$$

$$-7 - 8d_1 + \frac{1}{3}d_2 \le 0$$

$$-7 - d_2 \le 0$$

Part B

(Total: 2 Parts)

5. (8 points) An engineering design problem is formulated in terms of the design variables x, y, and z as follows: Minimize $f = 2 r z^2$

Minimize subject to

$$g_{1}: (4 \times 10^{-4})(5zy + 2z^{2}) - 1 \le 0$$
$$g_{2}: 1 - 2.5 \times 10^{-5}(x + y)z^{2} \le 0$$

The quadratic programming subproblem has been defined and solved at the point (50, 10, 25). The Lagrange multipliers for the constraints are obtained as (20000, 70000). Using the initial value for the penalty parameter R_0 as 1, calculate the value of the descent function Φ at the given point.

 $f = 50 \times 25^{2} = 31250$ $g_{1} = (4 \times 10^{-4})(5 \times 25 \times 10 + 2 \times 25^{2}) - 1 = -0.9375$ $g_{2} = 1 - 2.5 \times 10^{-5}(50 + 10) \times 25^{2} = 0.85$ r = 20000 + 70000 = 90000 R = max(1,90000) = 90000 $V = max\{0; -0.9375, 0.85\} = 0.85$

 $\varPhi = f + RV = 31250 + 0.85 \times 90000 = 107750$