1. Vector of variables: \(x \in \mathbb{R}^n \)

2. Scalar function: \(f(x) \)

3. Vector function: \(g(x), x \in \mathbb{R}^n, g \in \mathbb{R}^m \)

4. **Gradient and Hessian of a function**: Gradient is a column vector of first partial derivatives of \(f \) with respect to \(x \), and Hessian is symmetric matrix of second partial derivatives:
 \[
 \nabla f(x), \text{ or } \frac{\partial f(x)}{\partial x} = \left\{ \frac{\partial f}{\partial x_i} \right\}_{n \times 1} ; \quad \text{Hessiam matrix: } \nabla^2 f = \left[\frac{\partial^2 f}{\partial x_i \partial x_j} \right]_{n \times n}
 \]

5. **Gradient matrix** of a vector function: Let \(g_i \) be the \(i \)th component of vector \(g(x) \). Then according to the above definition, gradient vector for the \(i \)th function is written as
 \[
 \nabla g_i(x), \text{ or } \frac{\partial g_i(x)}{\partial x} = \left\{ \frac{\partial g_i}{\partial x_k} \right\}_{n \times 1}
 \]
 Let \(a^{(i)} = \nabla g_i \). Then the gradient matrix is given as
 \[
 \frac{\partial g}{\partial x} = \left[a^{(1)} \quad a^{(2)} \quad \cdots \quad a^{(m)} \right]. \text{ Or, it can be written as matrix}
 \[
 A_{n \times m} = \left[\frac{\partial g_j}{\partial x_i} \right] ; \text{ each column of A is the gradient of a component of } g(x)
 \]

6. Let \(f(x) \) and \(g(x) \) be \(m \) dimensional functions of \(x \in \mathbb{R}^n \). Then
 \[
 \frac{\partial}{\partial x} (f \cdot g) = \frac{\partial f}{\partial x} g + \frac{\partial g}{\partial x} f ; \text{ This is an } n \times 1 \text{ vector}
 \]

7. Let \(f(x) \) be the quadratic form
 \[
 f(x) = \frac{1}{2} x \cdot Ax ; \quad x \in \mathbb{R}^n ; \quad A_{n \times n}
 \]
 \[
 \frac{\partial f}{\partial x} = \frac{1}{2} \left(A + A^T \right) x \quad \text{Hessian matrix: } \frac{\partial^2 f}{\partial x^2} = \frac{1}{2} \left(A + A^T \right) \]