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Background: For the investigation of the molecular mechanisms involved in neurite outgrowth and
differentiation, accurate and reproducible segmentation and quantification of neuronal processes is a
prerequisite. To facilitate this task, we developed a semiautomatic neurite tracing technique. This
paper describes the design and validation of the technique.

Methods: The technique was compared to fully manual delineation. Four observers repeatedly traced
selected neurites in 20 fluorescence microscopy images of cells in culture, using both methods. Ac-
curacy and reproducibility were determined by comparing the tracings to high-resolution reference
tracings, using two error measures. Labor intensiveness was measured in numbers of mouse clicks re-
quired. The significance of the results was determined by a Student t-test and by analysis of variance.

Results: Both methods slightly underestimated the true neurite length, but the differences were not
unanimously significant. The average deviation from the true neurite centerline was a factor 2.6 smaller
with the developed technique compared to fully manual tracing. Intraobserver variability in the respec-
tive measures was reduced by a factor 6.0 and 23.2. Interobserver variability was reduced by a factor
2.4 and 8.8, respectively, and labor intensiveness by a factor 3.3.

Conclusions: Providing similar accuracy in measuring neurite length, significantly improved accuracy
in neurite centerline extraction, and significantly improved reproducibility and reduced labor intensive-
ness, the developed technique may replace fully manual tracing methods.

Keywords: Cell culture, neurite outgrowth, fluorescence microscopy, neurite tracing, interactive seg-
mentation, pattern recognition, computer-assisted image analysis, software validation.

INTRODUCTION

The development of the nervous system is an intricate process involving many different factors (1). The
molecular mechanisms regulating neurite outgrowth, differentiation, synapse formation and plasticity
are still being vigorously studied. In order to cope with the ever increasing amount of image data gen-
erated for such studies, accurate and user-friendly image analysis tools are indispensable. Of particular
importance is the ability, prior to morphometric analysis, to make accurate representations of the neu-
ronal processes present in the images. Early attempts to automate this task were not very successful,
and since then neurite tracing has been done primarily by the labor-intensive process of manual delin-
eation (2). In the past decade, despite the considerable progress in computer technology, only a handful
of renewed efforts towards automated neurite tracing have been published. Notable techniques devel-
oped recently are those based on vectorial tracking (3)—reminiscent of earlier techniques for tracing
chromosomes (4), or retinal vasculature (5)—and multiscale feature analysis (6). Both techniques were
developed for application to 3D confocal microscopy image stacks.

In this paper we are concerned with the problem of accurately detecting and tracing individual neu-
rites in 2D fluorescence microscopy images of cells in culture. Whereas the computational cost of digital
image processing techniques for this task can be expected to be smaller in 2D than in 3D, from a morpho-
logical perspective the problem is in fact more complicated. The reason for this, inherent to 2D imaging



A TOOL FOR NEURITE TRACING AND ANALYSIS 2

of 3D structures, is that the images may contain ambiguities regarding the branching or crossing of neu-
rites. In addition, the neurites may sometimes be out of focus, have very low contrast, or even contain
large gaps. And when composed of several scans to increase the field of view, the images may show dis-
continuities in background intensity, as illustrated in Fig. 1. It is clear that automated procedures based
on intensity thresholding and skeletonization (7–10) would fail to yield correct results for such images.
Several authors have abandoned tracing altogether and have resorted to heuristic approaches to estimate
the morphometric features of interest (11–13). An alternative, vectorial-tracking technique, published
just before completion of our paper, was successfully applied to images of retinal explants (14), but does
not address the just mentioned problems seen in our type of images.

Because of the complexity of the problem it is not surprising that in practice nothing much has
changed since the early days, as our recent literature survey revealed. A search in the PubMed database
(National Library of Medicine, Bethesda, MD) for papers published from 2001 till present containing,
in the title, the keyword ‘outgrowth’ combined with any of ‘neuron’, ‘neurite’, ‘axon’, ‘dendrite’, or
their adjectives, yielded 190 responses. Of these 190 papers we studied 102 that were electronically
accessible through our library and in which it was stated explicitly that neurite length was measured. In
64 of these, no details whatsoever were given as to how the measurements were carried out or what image
analysis tools were used, and it seems reasonable to suspect that neurites were traced fully manually. In
20 cases, use was made of commercial image analysis software tools—in total, 10 different tools were
mentioned. In the remaining 18 cases, use was made of personally developed or public domain image
analysis software, with NIH-Image (National Institutes of Health, Bethesda, MD) and its variants being
by far most popular. To our knowledge, none of the reported software tools, whether commercial or not,
provides an automated and scientifically validated neurite tracing facility.

Based on this observation and our own experiences with the burden and poor reproducibility of
fully manual approaches, we conclude that there is still a great need for image analysis tools facilitating
neurite tracing and possibly leading to more accurate and more consistent measurements. It will be
clear, from what has just been said, that the design of fully automated techniques for our purpose will
remain a difficult problem and it seems likely that some form of user interaction will always be required
to resolve ambiguities. Accepting this fact and attempting to meet at least part of the needs, we have
developed an interactive neurite tracing technique. It exploits the expertise of the user in resolving
ambiguities but greatly simplifies the task of tracing long stretches of manifest neurites. In this paper
we describe the design of our technique and present the results of validation experiments revealing
the potential improvement in accuracy and reproducibility and the reduction in user interaction of the
technique compared to fully manual delineation.

MATERIALS AND METHODS

Tracing Technique

Neurite tracing using our technique consists of (i) a detection phase, in which every individual pixel
in the image is assigned a value indicating its likelihood of belonging to a neurite, and (ii) the actual
tracing phase, in which consecutive pixels that are most likely to represent the centerlines of the neurites
are linked together to constitute the tracings. The former is a preprocessing step and is carried out fully
automatically, the latter requires user interaction. Here we outline the respective algorithms developed
for performing the two tasks. Details are given in the Appendix.

Our approach to detection is based on the observation that in fluorescence microscopy images, neu-
rites are bright, elongated structures superimposed on a dark, noisy background. When representing
images as gray-level landscapes, such structures manifest themselves as ridges. It is known (15–18) that
ridge-like image structures are well detected by means of second-order differential operators. Specifi-
cally, the local principal ridge directions at any point in an image are given by the eigenvectors of the
second-derivative matrix computed from the intensity values around that point. Due to the symmetry of
this matrix, the eigenvectors are orthogonal, with the eigenvector corresponding to the smaller absolute
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eigenvalue pointing in the longitudinal direction of the ridge. Comparing the eigenvalue magnitudes,
the algorithm computes for each pixel in the image a measure of “neuriteness”. In addition, it stores
for each pixel the local ridge orientation as indicated by the mentioned eigenvector. The output of this
detector when applied to the image in Fig. 1 is shown in Fig. 2.

Our approach to linking of consecutive ridge pixels derives from the so-called live-wire segmentation
paradigm (19–22). It consists in the selection of a starting point by the user followed by the application
of a search algorithm to find the optimal paths from that point to all other points in the image, where
‘optimal’ means having a globally minimal cumulative cost according to a predefined function. Once
computed and stored, the paths can be displayed in real time as the user moves the cursor towards the
end of the neurite of interest, until the presented path starts to deviate too much from what is considered
the optimal tracing by the user. The tracing can then be fixed up to that point by a single mouse click,
after which the algorithm proceeds by presenting optimal paths from that point. The process is iterated
until the entire neurite has been traced and can be repeated to trace multiple neurites. In cases where the
user is not completely satisfied with the paths presented, which may sometimes occur in regions with
very low neurite contrast, it is possible to switch to manual delineation.

Cell Images

The images used for the validation of our neurite tracing technique were taken from a previously pub-
lished study (23) into the involvement of the neuronal sec1, or murine unc18a (nSec1/Munc18a) protein
in neurite formation. In brief, this study was carried out in culture by overexpression of nSec1/Munc18a
and of Munc18b in PC12 cells followed by nerve growth factor differentiation, and in primary hippocam-
pal neurons prepared from postnatal day-zero rats. For details regarding the experimental procedures we
refer to the mentioned paper. Fluorescence images of the cells after immunostaining for the transfected
proteins (in the case of GFP-tagged proteins, their intrinsic fluorescence was used) were acquired by
using a 10× objective on an Axioplan microscope (Carl Zeiss, Germany) in combination with a DC100
digital camera (Leica Microsystems, Germany). For many cells, to increase the field of view, multiple
images were taken to capture all of the cell’s outgrowth. In these cases, composite images were created
by matching the individual images visually, using Photoshop (Adobe Systems Inc., San Jose, CA). From
the total of about 170 cell images, we selected, prior to our validation experiments, 20 representative
sample images, one of which is shown in Fig. 1. Per image we selected a single neurite or neurite seg-
ment of interest. The neurites were chosen to include all potential sources of tracing errors, such as
varying noise and contrast, background intensity discontinuities, and complexities in shape.

Validation Setup

The neurite tracing technique was implemented in the Java programming language (Sun Microsystems
Inc., Santa Clara, CA) in the form of a plugin for ImageJ (National Institutes of Health, Bethesda, MD),
the computer-platform independent public domain image analysis program inspired by NIH-Image. Af-
ter initial, visual experimentation with the technique applied to a small number of cell images, not
included in the sample set used for the validation, the different parameters of the detection and tracing
algorithms were fixed to the values given in Table 1. As a representative instance of the fully manual
tracing methods encountered in the literature we used the “segmented line selections” tool of ImageJ.
Similar to our semiautomatic technique, this tracing tool requires indicating points on the neurite of
interest. Contrary to our technique, however, the points are connected simply by straight lines.

Four observers (two expert cell biologists and two expert computer scientists) participated in the
validation experiments, which consisted of three sessions. The sessions were carried out separately and
independently by the four observers. In the first session the observers traced the neurites of interest by
means of the usual fully manual method. The start and end positions of the neurites were indicated by
crosshair pointers, the coordinates of which were loaded automatically along with the images. Upon
completion, the tracings were stored automatically along with information on the amount of user inter-
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action required. The session was carried out three times to allow for variability analyses. In the second
session, also carried out in triple, the observers repeated the experiments, but now using the described
semiautomatic neurite tracing technique. For both sessions, the observers were asked to minimize user
interaction, as measured by the number of mouse clicks, while at the same time attaining a sufficient
degree of tracing accuracy, according to their own visual judgment.

In order to obtain accurate reference tracings, required for the quantitative analyses described here-
after, high-resolution versions of the original images were generated by scaling up with a factor of 10
using a high-quality interpolation method: cubic spline interpolation (24, 25). In the third session, the
observers were asked to perform fully manual tracing once again to delineate the neurites of interest in
these high-resolution images. The motto for this session was to be as accurate as possible, regardless of
the amount of interaction required. After completion of this session the resulting tracings were mapped
back to the original images to yield reference tracings with a precision of 1/10th of a pixel. It will be
clear that this approach to neurite tracing is infeasible in practice due to the 100-fold increase in the
required storage capacity as well as a substantial increase in user interaction. For this study, however,
the extra efforts allowed us to obtain very precise reference tracings, which we believe may reliably be
taken as the “gold standard” in the quantitative analyses.

Quantitative Analyses

The accuracy of the tracings from the first two sessions was determined by comparison with the corre-
sponding reference tracings from the third session, using two different error measures. As a first measure
we used the difference in length between the tracing and the actual neurite, as given by the reference
tracing, divided by the length of the latter. A value larger or smaller than zero for this ratio indicates,
respectively, an over- or underestimation of the true length. While relevant for studies measuring neurite
length only, this measure does not, however, give an indication of how well the tracings really follow the
neurite, since any two tracings may have the same length and yet be completely different. As a second,
complementary measure, therefore, we used the average deviation of the tracing from the neurite, as
given by the reference tracing, over the full length. Specifically, this measure was computed by adding
the areas spanned by the segments of the tracing and the reference tracing between any two subsequent
intersections of the tracings, and dividing by the length of the reference tracing.

For each of the 480 tracings (4 observers × 2 sessions × 3 rounds × 20 neurites), the values for
the two error measures were computed by comparing the tracing to each of the observers’ reference
tracing for the corresponding neurite. For each of the two measures, the resulting four error values were
averaged to yield a consensus error. The variability in the consensus errors was computed both per
observer and between observers. Denoting by ε(o, s, r, n) the consensus error (either length difference
ratio, εL, or average deviation, εD) for any observer (o), session (s), round (r), and neurite (n), we
computed the intraobserver variability from the three rounds as

VARε
intra(o, s, n) =

1
3

3∑

i=1

3∑

j=i+1

|ε(o, s, ri, n) − ε(o, s, rj , n)|.

The interobserver variability was computed by comparing the consensus errors (again, either length
difference ratios or average deviations) from the three rounds of all four observers as

VARε
inter(s, n) =

1
54

4∑

k=1

4∑

l=k+1

3∑

i=1

3∑

j=1

|ε(ok, s, ri, n) − ε(ol, s, rj , n)|.

The labor intensiveness of semiautomatic versus fully manual tracing was analyzed by comparing the
number of mouse clicks required per tracing.
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Finally, the statistical significance of the outcome of each comparison of the two techniques was
determined by means of a two-sided paired Student t-test (26). Specifically, for each of the measures
separately, the test was applied to the corresponding 20 pairs of figures resulting from the 20 neurites
(n) traced in each of the two sessions (s). Except for the interobserver variability, which combines the
effects of all observers, the test was carried out separately for each observer (o). For the accuracy and
labor intensiveness measures, the figures per neurite were first averaged over the three rounds (r). The
null hypothesis for the test was that the two techniques would give similar results. The probability of
this hypothesis being true was analyzed at levels p < 0.05, p < 0.01, and p < 0.001. In order to
assess the overall significance of the different factors involved, we applied a full-factorial univariate
analysis of variance (ANOVA), with ‘sessions’ as fixed factor (corresponding to the two techniques
being compared) and ‘observers’, ‘rounds’, and ‘neurites’ as random factors. The analyses were carried
out using the statistical software package SPSS (SPSS Inc., Chicago, IL).

RESULTS

The results of the validation experiments are presented graphically in Fig. 3. The graphs show, for each
measure of comparison and for each of the observers, the full range and the mean of the observed values,
as well as the statistical significance of the differences between the results of fully manual tracing and our
semiautomatic tracing technique according to the paired t-test. From the results with the length differ-
ence ratio measure, shown in the top-left graph, it follows that both techniques tend to underestimate the
true neurite length—our semiautomatic technique even slightly more so than the fully manual method.
Averaging over all observers, we found that the deviation from the true length was about −1.0% for the
fully manual method and about −1.5% for our semiautomatic technique. The differences between the
two techniques were, however, not unanimously significant, which suggests that overall, our technique
performs comparable to fully manual tracing when it comes to measuring lengths only. Indeed, the re-
sults of ANOVA indicated that the factor ‘sessions’ was not significant (p > 0.05) for this measure. Nor
were any of the other main factors significant. We did, however, find a significant interaction between
‘sessions’ and ‘observers’ (p < 0.01) and between ‘sessions’ and ‘neurites’ (p < 0.001), which suggests
that the accuracy of length measurements with our technique is dependent on the user and also on the
shape of the neurites being traced, as was to be expected.

All other measures of comparison yielded values larger than or equal to zero, in accordance with
their definitions, with smaller values indicating better performance. From the results with these mea-
sures, presented in the remaining graphs of Fig. 3, it follows that our semiautomatic technique outper-
forms the fully manual method. In virtually all cases the differences between the two techniques were
found to be very significant (p < 0.001) according to the paired t-test. This is in agreement with the
results of the ANOVA, which indicated that with the average deviation and labor intensiveness mea-
sures, the factor ‘sessions’ had a very significant effect (p < 0.001) on the outcome. Here too, we found
significant interactions between ‘sessions’ and ‘observers’ (p < 0.05) and between ‘sessions’ and ‘neu-
rites’ (p < 0.001). In addition, with the latter measure, we found a significant effect for the main factors
‘observers’ (p < 0.05) and ‘neurites’ (p < 0.001), as well as for the three-way interaction between
‘sessions’, ‘observers’, and ‘neurites’ (p < 0.001), which confirms that with our technique, the amount
of interaction required depends on the user and on the neurites being traced.

The improvement ratio per measure and per observer can be deduced from the mean values indicated
in the graphs. Alternatively, computing the ratios on a per-neurite basis and then taking averages over
all observers, we found that the reduction in errors with our semiautomatic tracing technique compared
to fully manual tracing was a factor 2.6 for the average deviation measure, a factor 6.0 and 23.2 for
the intraobserver variability of, respectively, the length difference and average deviation measure, and
a factor 2.4 and 8.8 for the interobserver variability of the respective measures. User interaction was
reduced by a factor 3.3. To compare: the interaction was a factor 15.5 less than what was required for
creating the high-resolution reference tracings.
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DISCUSSION

From the validation results we conclude that the semiautomatic neurite tracing technique described in
this paper yields a significant improvement over fully manual tracing methods in terms of true neurite
centerline representation, reproducibility, and user interaction. In terms of length measurement, how-
ever, it follows that overall, the differences between the two are not significant. Analyzing the tracings
afterwards we found that the underestimation of length may be ascribed to the fact that both techniques
tend to shortcut strongly wiggling or sharply bending neurites. With fully manual tracing, shortcutting is
inevitable when trying to limit the amount of user interaction. With our semiautomatic technique, short-
cutting occurs mainly when the contrast is relatively low, which causes shorter routes to have a lower
cumulative cost. In both cases, the influence on the results is user controllable. The results suggest,
therefore, that the observers were not biased towards either technique in performing the experiments:
while showing significantly larger variability, the results with fully manual tracing were on average
quite accurate. Notice that, incidentally, this latter observation seems to justify the use of fully man-
ual tracing methods in studies involving large numbers of neurite measurements—a result that, to our
knowledge, has never been demonstrated before in the literature.

Because our technique employs a so-called global optimization algorithm and second-order image
feature analysis, it is very robust against noise, varying or discontinuous background intensities, and
varying or even locally diminishing neurite contrast, as illustrated by the sample tracings in Fig. 4. As
a result, it can be applied to a wide range of images without changing its parameters. The number of
parameters to be set by the user is very small. More importantly, the parameters do not in any way rep-
resent hard thresholds—the algorithms are free of user-controllable binary decisions. A disadvantage of
the technique is that it still requires user interaction, which limits its applicability to images containing
manageable amounts of neurites only. Although, for reasons mentioned in the introduction, it seems
impossible to eliminate all user interaction, it remains a challenge to further automate the technique and
to investigate its potential for other applications. One possibility to reduce the number of mouse clicks,
for example, would be to automatically compute landmarks to serve as input for the optimization algo-
rithm. Since the algorithm appears to have no problems with tracing neurite segments whose orientation
changes only gradually from point to point, a logical approach would be to choose high-curvature and
branch points for this purpose. This will be a topic for future research.

To facilitate the use of our technique, we have worked the algorithms into a full-fledged software
tool. Due to our choice for the specific programming language and image processing environment
described earlier, the tool is in principle computer-platform independent. By optimizing the implemen-
tation of the algorithms we have been able to achieve acceptable processing speeds, even when using a
normal personal computer: for an image or region of size 800 × 800 pixels, the preprocessing time re-
quired for detecting the neurites and computing their orientations, and the time required for recomputing
optimal paths after each mouse click, are both in the order of 1 second with a 2.4GHz Intel Pentium IV
processor. By analogy with its hosting application, we have named our tool ‘NeuronJ’. Apart from
implementing the necessary ways and means to interact with the mentioned algorithms, the tool also
provides the possibility to label and color tracings, to store them to and load them from disk, and to
compute and display the dimensions of individual tracings as well as the statistics of measurements on
selected or all tracings. In our institutes, NeuronJ has been received very positively and has replaced the
labor intensive fully manual tracing tools. The software is freely available for non-commercial purposes
from http://www.imagescience.org/meijering/software/neuronj/.
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APPENDIX

Details of the Neurite Detection and Tracing Algorithms

In the implementation of our neurite detector, the required second-order image derivatives are computed
by convolution with the second-order derivatives of the Gaussian kernel (27). Mathematically this means
that if f denotes the image and G the normalized Gaussian, we compute

fij(x) = (f ∗ Gij)(x), with Gij(x) �
(

∂2

∂i∂j
G

)
(x),

where ‘∗’ denotes spatial convolution, x = (x, y) denotes the pixel position, and the derivative directions
i and j can be x or y. The eigenvectors and eigenvalues are computed in our algorithm, not from the
standard second-derivative matrix, but from the slightly modified matrix given by

H′
f (x) =

[
fxx(x) + αfyy(x) (1 − α)fxy(x)

(1 − α)fxy(x) fyy(x) + αfxx(x)

]
,

where α is a parameter whose optimal value will be given in the sequel. Denoting the normalized
eigenvectors of this matrix by v′i(x) and the eigenvalues by λ′i(x), we compute them as

{
v′

1(x) = v1(x)

v′
2(x) = v2(x)

and

{
λ′

1(x) = λ1(x) + αλ2(x),

λ′
2(x) = λ2(x) + αλ1(x),

where the vi(x) and λi(x) are, respectively, the normalized eigenvectors and the eigenvalues of the
standard second-derivative matrix, or Hessian (28), at pixel position x.
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The suitability of the matrix H′
f for neurite detection can be appreciated by analyzing the filter

implicitly used in the computations. It is a fact from linear algebra (28) that λi = vT
i ·Hf ·vi, where the

right-hand side is equal to f ∗(vi ·∇)2G, the second-order image derivative in the direction vi. From the
relations just given and the orthogonality of the eigenvectors, it follows that, implicitly, the eigenvalues
are computed as λ′i = f ∗ h′

i, where the h′
i are instances of the filter h′ =

{
(r · ∇)2 + α(r⊥ · ∇)2

}
G

corresponding to r = vi, which are the directions of maximum and minimum response. The parameter
α is chosen in our algorithm such that h′, which happens to be a steerable filter (29), is maximally flat
in its longitudinal direction. This translates into the criterion

lim
x→0

(r⊥ · ∇)2 h′(x) = 0.

Working out the details, we find that the left-hand side of this equation is equal to (1 + 3α)‖r‖4/σ4,
with σ the standard deviation of the Gaussian kernel, from which it follows that the optimal value for
the free parameter is α = −1/3. Visual impressions of the shape of the filter are given in Fig. 5.

Based on the just described eigenvalue analysis, the algorithm assigns to each pixel in the image a
measure of “neuriteness” according to the formula

ρ(x) =

{
λ(x)/λmin if λ(x) < 0,

0 if λ(x) ≥ 0,

where λ is the larger in magnitude of the two eigenvalues and λmin denotes the smallest λ over all
pixels, which in practice will always be smaller than zero. In addition, the algorithm stores for each pixel
the local ridge orientation as indicated by v, the normalized eigenvector corresponding to the smaller
absolute eigenvalue. Notice that dark line-like structures, for which λ ≥ 0, are ignored by the detector.
Also notice that since we are using a second-order detector, responses to first-order structures, such as
background intensity discontinuities, are suppressed. Moreover, since the Gaussian kernel involved in
the computations is a scalable function, with scale parameter σ, the detector can be tuned to neurites of
specific width, while at the same time suppressing noise.

In our implementation of the live-wire segmentation algorithm, the function used for computing the
cost of moving from any pixel x to an eight-connected neighboring pixel y is computed as

C(x,y) = γCλ(y) + (1 − γ)Cv(x,y),

where γ ∈ [0, 1] is a user-defined parameter determining the relative weight of the two normalized cost
components, Cλ and Cv. The former of these is computed from the eigenvalues at y as

Cλ(y) = 1 − ρ(y).

The second component is computed from the eigenvectors at x and y as

Cv(x,y) = 1
2

{√
1 − ϕ(x,y) +

√
1 − ϕ(y,x)

}
,

where ϕ(x,y) = |v(x) · d(x,y)|, with d(x,y) = (y − x)/‖y − x‖ the unit “link vector” from x
to y. By taking the absolute values of the inner products, the algorithm ignores the actual directions
of the eigenvectors and considers only their orientations. Optimal paths based on this cost function are
computed by a version of Dijkstra’s shortest-path algorithm (30) based on a discretization of the cost
values and the use of a circular priority queue (19, 20, 22). The placing of starting points is facilitated
by applying “local snapping”, which implies that the cursor is always moved to the locally lowest cost
point in a small window, of size w×w pixels, around the actual cursor position. The smoothness of the
paths computed by the algorithm is improved by application of a uniform postfilter, of size 2p+1, to the
subsequent coordinates of the path pixels, after which they are subsampled with a factor s.



A TOOL FOR NEURITE TRACING AND ANALYSIS 10

FIGURES AND TABLES

FIG. 1. Representative example of the type of images aimed at in this paper. The image shows a hippocampal
neuron in culture and was compiled from multiple fluorescence microscopy scans to capture all of the neuron’s
outgrowth. Typical features include ambiguities regarding the branching or crossing of neurites (as in the regions
indicated by the letter ‘A’), discontinuities in background intensity (as in the regions indicated by ‘B’), and varying
neurite contrast (compare the segments indicated by ‘C’). The former problem makes it virtually impossible to
develop fully automated approaches to neurite tracing for such images. Problems such as noise and varying neurite
contrast and background intensity are tackled by the technique described in this paper.
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FIG. 2. Output of the neurite detection algorithm applied to the image in Fig. 1. The top image shows, for every
pixel, the “probability” of belonging to a neurite, as computed by the algorithm, where bright and dark values
correspond to a high and a low probability, respectively. The bottom image shows a zoom of a region in the middle-
lower part of the top image, superimposed with the local neurite orientations (white dashes) computed by the
algorithm. The algorithm is designed to suppress dark line-like structures and background intensity discontinuities.
Moreover, it is tunable to neurites of specific width while it also reduces noise.
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FIG. 3. Graphical presentation of the results of the validation experiments comparing fully manual tracing (solid
bars) and our semiautomatic tracing technique (dotted bars). The graphs show, from top left to bottom right, the
length difference ratio (εL), the average deviation (εD), the intraobserver variability for εL and εD, the interobserver
variability for εL and εD, and the amount of user interaction required (see the main text for details on these
measures). The bars show the full range of observed values for each of the observers, with the black circle around
the middle of each bar indicating the mean value. The four observers (denoted by O1, O2, O3, and O4, where the
first two were cell biologists and the latter two computer scientists) are indicated at the bottom of the graphs. The
asterisks on top of each graph indicate for each observer the probability for the null hypothesis of equivalence to
be true based on the paired t-test applied to the data presented. The different levels of probability considered are
p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), and any probability larger than 0.05 (no asterisk).
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FIG. 4. Representative sample neurite tracings (red curves) from the validation experiments, illustrating the per-
formance of our technique in the case of high (top left) or low (top right) neurite contrast, background intensity
discontinuities (middle left), very low neurite contrast and the nearby presence of bright spots (middle right), and
wiggling (bottom left) or sharply bending (bottom right) neurites. In the latter two type of cases the tracing algo-
rithm has the tendency to shortcut, resulting in an underestimation of the true neurite length. The problem may
be reduced to some extent by decreasing the parameters pertaining to the path coordinates smoothing filter (the
last two rows of Table 1). Alternatively, the problem can be avoided simply by additional user input. The magenta
crosshairs in the top-left and middle-right images are examples of the pointers used in the experiments to indicate
the start and end positions of the neurites of interest.
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FIG. 5. Visual impressions of the steerable convolution filter implicitly used in our neurite detection algorithm.
On the left, the filter is displayed in vertical orientation and at arbitrary scale as an image, in which the intensity
at the borders corresponds to zero, brighter intensities correspond to positive and darker intensities to negative
values. The graph on the right depicts the same filter as an inverted landscape. The filter is more elongated than
the filter normally found in the literature on detection of line-like image structures.

Parameter Value Description

σ 2.0 Gaussian smoothing scale

γ 0.7 Cost components weight factor

w 9 Snapping window size

p 5 Path coordinates postfilter size

s 5 Path coordinates subsampling factor

TABLE 1. Parameters of the neurite detection and tracing algorithms and their values as used in the validation
experiments. The parameters are listed in the order of their first appearance in the Appendix.


