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    Abstract— We introduce a novel algorithm to address the 

challenges in magnetic resonance (MR) spectroscopic imaging. In 

contrast to classical sequential data processing schemes, the 

proposed method combines the reconstruction and post 

processing steps into a unified algorithm. This integrated 

approach enables us to inject a range of prior information into 

the data processing scheme, thus constraining the reconstructions. 

We use high resolution, 3-D estimate of the magnetic field 

inhomogeneity map to generate an accurate forward model, while 

a high resolution estimate of the fat/water boundary is used to 

minimize spectral leakage artifacts. We parameterize the 

spectrum at each voxel as a sparse linear combination of spikes 

and polynomials to capture the metabolite and baseline 

components, respectively. The constrained model makes the 

problem better conditioned in regions with significant field 

inhomogeneity, thus enabling the recovery even in regions with 

high field map variations. To exploit the high resolution MR 

information, we formulate the problem as an anatomically 

constrained total variation optimization scheme on a grid with the 

same spacing as the MRI data. We analyze the performance of the 

proposed scheme using phantom and human subjects. 

Quantitative and qualitative comparisons indicate a significant 

improvement in spectral quality and lower leakage artifacts. 

 

Index Terms— 0B  inhomogeneity compensation, 1� -

minimization, fat leakage, field map, magnetic resonance 

spectroscopic imaging (MRSI), sparsity, total variation. 

 

I. INTRODUCTION 

AGNETIC resonance spectroscopic imaging (MRSI) 

is an in vivo molecular imaging scheme that provides the 

concentration distribution of various brain metabolites. It is 

emerging as a useful technique for the diagnosis of various 

diseases including cancer [26], epilepsy [10], and multiple 

sclerosis [11].  

The classical MRSI reconstruction and quantification 

scheme relies on a sequential data-processing pipeline [24], 
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[36], which consists of inverse fast Fourier transform (IFFT), 

lipid extrapolation, peak alignment, baseline removal, and 

apodization. The IFFT-based reconstruction of low resolution 

MRSI data results in broad and overlapping spatial point-

spread functions. This can lead to line shape distortions and 

noise-like artifacts in regions with large variations in the static 

magnetic field, often experienced in MRI. Specifically, the 

combination of spectra with different off-resonance shifts 

results in blurring and cross-talk between the signals at 

adjacent voxels. In addition, the cross talk from the extra-

cranial lipid signals that are several orders of magnitude 

stronger than the metabolites can corrupt the spectra; this is 

often referred to as lipid leakage artifact. The current schemes 

that process each voxel independently will not be able to 

address the cross-talk between voxels, thus limiting their 

ability to correct the artifacts. Current MRSI schemes rely on 

inversion recovery [4] or spatial saturation techniques to 

suppress extra-cranial fat leakage [31]. However, these 

approaches attenuate the metabolite signal, provide insufficient 

fat suppression, or prevent the observation of spectra from 

brain regions that are close to the skull. 

Several constrained reconstruction schemes were proposed 

to minimize the above-mentioned problems [1], [17], [22], 

[39]. All of these algorithms exploit the spatial information 

derived from high-resolution MRI scans. However, since they 

parameterize the MRSI signal as a linear combination of few 

spatial basis functions, they are too constrained to be applied 

in an in vivo setting. In addition, they ignore off-resonance 

effects and spatial variations along the slice thickness, limiting 

their ability to correct such distortions. The effect of field map 

variations were considered in [2] and [21]. Since these 

schemes involve the inversion of large systems of equations, 

the number of spatial basis functions that can be handled with 

them is limited, restricting their use in practical applications. 

The proposed method is a significant improvement over the 

previous algorithm [20] proposed by Jacob et al., where they 

constrained the reconstructions using MRI priors. The use of 

the 2-D anatomical information and low resolution field map, 

obtained from water reference data, limited the ability of the 

previous scheme. Furthermore, no spectral constraints were 

used in this approach, which restricted the algorithm capability 

in reconstructing the signal in regions with high field 

inhomogeneity.  
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The main novelty of the proposed scheme is the 

combination of the reconstruction and post-processing steps 

into a single unified algorithm. This enables us to consistently 

exploit a range of prior information, thus overcoming several 

artifacts and minimizing the noise. The highlights of the 

proposed method are 

• We exploit the high resolution estimates of the field 

map from 3-D Dixon scans to constrain the 

reconstructions in order to minimize line shape 

distortions. As mentioned previously, the field map varies 

significantly within the standard MRSI voxel dimensions 

( 30.7 0.7 1cm≈ × × ). These variations are especially 

significant in the cortical and extra-cranial fat regions; 

ignoring these effects will result in considerably distorted 

spectra. We use the high resolution field map to develop 

an accurate forward model, thus making the 

reconstructions consistent to the physics of the 

acquisition. To exploit the high resolution field map and 

anatomical information, we recover the MRSI data on a 

fine grid, with the same spacing as the MRI data. 

• Using the anatomical information (fat/water boundary), 

estimated from high resolution Dixon scans, we formulate 

the reconstruction problem as an anatomically-constrained 

total variation (TV) minimization scheme. This enables us 

to make the recovery of the MRSI data on the fine grid 

from low resolution data well-posed, while minimizing the 

cross talk between spatial regions with distinct spectral 

properties. This approach is more flexible and easy to 

implement than the piecewise band-limited model that is 

used in [20]. In contrast to the standard scheme of first 

reconstructing the data and then smoothing the images, the 

proposed scheme removes the noise in the data while 

being consistent with the measurements. The smoothness 

of the reconstructions is controlled by the regularization 

parameter; its choice is similar to that of choosing the 

width of the Gaussian window in standard MRSI schemes. 

The total variation scheme is known to preserve edges in 

the data unlike the standard Tikhonov regularization 

schemes [34]. This enables us to preserve the brain 

structures in the metabolite images without 

oversmoothing. Preliminary results using this method 

were presented in the earlier conference publication [19]. 

• We model the spectral signal as a sparse linear 

combination of spikes and polynomials to exploit our 

prior knowledge of the spectra. The spikes capture the 

metabolite peaks, while the polynomials account for the 

smooth baseline due to macromolecules and residual 

water leakage. This constrained model makes the problem 

well-posed and therefore, improves the reconstruction of 

the spectral lines in regions with significant field 

inhomogeneity. In addition, the integration of the baseline 

suppression scheme with the entire algorithm ensures 

consistency with the data while performing the 

baseline/metabolite decomposition. This is especially 

important in regions where the metabolite peaks are too 

blurred. 

We use the echo-planar spectroscopic imaging (EPSI) 

sequence [28] to acquire the data, in contrast to the chemical 

shift imaging (CSI) scheme used in [20]. As a result, we can 

improve the k-space coverage to minimize the truncation 

artifacts. We compare our reconstruction method with 

“standard” data processing pipeline (denoted as standard 

scheme in this paper), which consists of IFFT, PG algorithm 

(used for in vivo data), inhomogeneity correction using peak 

alignment, baseline removal, and apodization [24]. 

Comparisons with phantom and in vivo data in Section V show 

a significant reduction in field-inhomogeneity-induced line 

shape distortions and losses, as well as artifacts due to fat 

leakage.  

The rest of the paper is organized as follows. In the next 

section we will discuss the MRSI image formation and the 

extraction of the prior information from Dixon MRI scans. In 

Section III we introduce the proposed reconstruction scheme, 

followed by its efficient implementation explained in Section 

IV. We provide our experimental results in Section V and 

conclude the paper in Section VI. 

Notations: In the discrete domain we denote spatial indices 

by ( , , )x y zn n n=n  and the frequency index as fn  

corresponding to ( , , )x y z=r  and f  in the continuous 

domain. We denote the corresponding k -space indices as 

( , , )x y zk k k=k  and fk  (or k  and t  in the continuous 

domain), where fk  corresponds to the discrete time index. By 

default, we assume a signal is in the spatial-spectral domain, 

thus, we represent the MRSI signal as [ , ]fs nn  in the spectral 

and ( )[ , ]
fn fs kn  in the time domain, where ( )f fn ns s= F . In 

general, we indicate the indices in the k -space by a subscript; 

e.g. ( )[ , , , ]
xn x y z fs k n n n  is the DFT of s  along xn  

( ( )x xn ns s= F ), and so on. We also adopt the simpler notation 

of ŝ  to represent a signal in the k -space  

( , )ˆ [ , , , ]
fn x y z fs s k k k k= n .  

 

II. MODEL OF IMAGE FORMATION IN MRSI 

In this section we briefly explain the image formation in 

MRSI and the estimation of priors from MRI data. 

A. Image Formation  

We model the image formation as 

 
3

2 ( ) 2 ( )ˆ( , ) ( , ) j t fts t f e e df dπβ πρ − − += ∫ ∫
r k rk r ri

� �
,  

                                                                   ( , )t ∈Γk  (1) 

 ( )3

2 ( ), ( ) ftf e df dπρ β − += −∫ ∫
k rr r ri

� �
, (2) 

where Γ  denotes the set of sampling locations in t−k  space. 

We assume the line broadening due to the 2T  relaxation of the 

metabolites to be included in the spatial spectral signal 

( , )fρ r . The change in Larmor frequency at the spatial 
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location r  is denoted by 02 ( )Bπβ γ= ∆ r .  The gyromagnetic 

ratio is denoted as γ  and 0 0 ( )B B+ ∆ r  is the magnetic field at 

r . Equation (2) implies that the measured signal is the Fourier 

transform of the distorted signal ( ), ( )fρ β−r r  rather than of 

ρ . 

As mentioned previously, we use the EPSI sequence to 

acquire the k -space samples on a rectangular grid [6]. Here, 

we assume the time elapsed to acquire each xk  line (readout 

duration) to be zero. In a scan time of approximately 10.7  

minutes, this sequence provides a water-suppressed MRSI 

matrix of size 32 32 1 256x y z fM M M M× × × = × × ×  with 9  

averages along with a water-unsuppressed MRSI data. The 

water-unsuppressed data is used to correct the standard 

reconstruction. While the spectral coverage is better than 

conventional phase-encoded CSI, the k -space coverage is still 

considerably lower than common MRI acquisitions. The 

reconstruction of this data using FFT results in broad point 

spread functions (PSF). And the weighted averaging of 

( ), ( )fρ β−r r  by the PSF leads to significantly distorted 

lines. Moreover, the overlap of the PSFs will also result cross-

talk between spatial regions of drastically different spectral 

properties, thus causing spectral leakage. 

B. Representation Using Voxel Basis Functions 

It is common practice to represent the spatial spectral signal 

as 

 model ,
( , ) [ , ] ( ) ( )

f
f fn

f v n f nρ φ ψ= − −∑n
r n r n , (3) 

where ( )φ r  and ( )fψ  are basis functions along space and 

frequency, respectively. Box shaped voxel functions are often 

used for simplicity [38]. Substituting for ρ  in (1) and 

performing a change of variables ′ = −r r n  and ff f n′ = − , 

we obtain 
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  (4) 

In the second step, we split the frequency shift term as 

( ) [ ] ( )β β β+ = + ∆ nr n n r ; here [ ]β n  is the mean frequency 

shift in the n th voxel and ( )β∆ n r  is the variation of the 

frequency from the mean value. 

If the variation of the field map within a voxel can be 

neglected, (i.e., ( ) 0β∆ →n r ), then ˆ( , ) ( )tφ φ≈n k k�  ( , t∀n ), 

where ˆ( )φ k  is the Fourier transform of ( )φ r . However, this 

assumption will only hold for very small MRI voxels. Hence, 

we model its effect as an exponential decay [23]: 

 
*
2/ [ ] ˆ( , ) ( )t Tt eφ φ−≈ n

n k k� . (5) 

Clearly, the accuracy of this approximation is dependent on 

the size of the voxels, specified by ( )φ r .  

If the voxels are sufficiently small for the approximation 

specified by (5) to be accurate, we can simplify (4) as the 

discrete sum 

 
2 ( )( )

model

,

ˆ ˆˆ ( , ) ( ) ( ) [ , ] f

f

j tnt
f

n

v

s t t v n e e
παφ ψ

− +−= ∑
k nn

n

k k n

A

i

�����������������

, (6) 

where *
2[ ] 1 [ ] 2 [ ]T jα πβ= +n n n . We denote this summation 

as the application of the forward model on v , denoted by vA . 

For the above approximation to hold, we recover the MRSI 

data on a fine spatial grid.  

C. Estimation of Field Map and Spatial Priors from MRI 

Data 

We propose to use the forward model, specified by (6), to 

compensate for the field inhomogeneity induced distortions. 

Moreover, we plan to use the spatial locations of the fat and 

brain regions to minimize the spectral leakage artifacts. 

Classical MRSI schemes estimate the magnetic field 

inhomogeneity map and spatial support of fat regions from 

water reference scans [36], [25]. However, since these 2-D 

scans are acquired at the same resolution as the water 

reference data, the ability of these schemes to minimize the 

distortions is rather limited. 

We propose to estimate the field map and spatial priors 

from high resolution MRI scans. We will estimate these 

quantities from spin echo images, acquired with different 

delays (Dixon-like scans) and denote the delays between the 

center of the readout and the echo time as 1 2, , , Md d d… . In 

contrast to the autoshim method [35] that uses only two scans, 

Dixon scan [9], [18] uses multiple scans. While it makes the 

estimates more robust to measurement noise, it enables an 

arbitrary choice of delay durations and is also robust to *
2T  

decay. 

We acquire the MRI scans with a matrix size of 

64 64 4x y zN N N× × = × × . We model the Dixon-like MR 

images as 

 ( )fat2 [ ]
water fat

[ , ]

[ , ] [ ] [ ]
j d d

p d

q d e e
π αρ ρ − ∆ −= + n

n

n n n
�������������

. (7) 

Here, water [ ]ρ n  and fat [ ]ρ n  are the concentrations of water 

and fat, respectively and d  is the delay of the center of the 

readout from the echo time. fat∆  is the chemical shift 

frequency between the water and fat resonances. We have 

lumped the off-resonance effects as well as *
2T  relaxation of 

fat and water into a single complex parameter α . Although, a 

more general model (with separate *
2T  terms) may be 

estimated by using more delays, we found the model (7) to be 

sufficient for our needs. Moreover, it is a better approximation 
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than standard methods that ignore relaxation effects [33], [15]. 

We propose to use the following two-step iterative 

algorithm to estimate the concentrations and α . The steps of 

the algorithm are 

1) Assuming *
21/ 2T jα πβ= +  to be specified, we derive 

the unknown concentrations by solving the linear system of 

equations 
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 . (8) 

2) Assuming the concentrations to be specified, we solve for 

[ ]α n  as 

 
2

[ ]
est

1

[ ] arg min [ , ] [ , ]m

M
d

m m

m

d e q d
α

α

α ρ −

=

= −∑ n
n n n . (9) 

We use the steepest descent algorithm to derive the 

minimum of this non-quadratic criterion [ ]α n . This two-step 

algorithm, specified by (8) and (9), is iterated until 

convergence. We initialize this scheme by setting [ ] 0α =n . 

This approach is similar to the VARPRO formulation, used by 

[15]. The main differences are 1) the inclusion of the decay 

term in α , which enables us to consider larger delays and 2) 

the use of more delay terms to improve the estimates. Note that 

if the decay term is ignored, the model (representation of the 

signal as a linear combination of sinusoids) is invalid for large 

delays due to *
2T  decay. Classical schemes work around this 

issue by choosing small delays, which often results in noisy 

field map estimates. We propose to use six uniform time 

samples. Since the accrued phase and decay is linearly 

proportional to delay, the inclusion of the larger delays 

considerably improves the estimates of α . We estimate the 

spatial support of fat and water by thresholding their 

concentration estimates. We plan to replace the thresholding 

step by more robust approaches in the future. 

 

III. RECONSTRUCTION OF MRSI DATA 

A. Distortion Correction Using High Resolution Field Map 

Priors 

As discussed previously, the spatial variations of the main 

magnetic field will result in significant line shape distortions in 

regions with large field inhomogeneity. If the spatial point-

spread functions were localized as in single voxel 

spectroscopy (SVS) and NMR, the signal acquisition can be 

modeled as a simple linear convolution of the original 

spectrum with the distortion function. The common practice is 

to estimate the line shape distortions from a reference water 

scan [27]; this estimate is used to deconvolve the measured 

data and thus recover the original spectrum. Unfortunately the 

point-spread functions in MRSI are very broad due to the low 

resolution acquisitions. Consequently, the direct extension of 

this scheme to MRSI by independently deconvolving the 

spectra at each low resolution MRSI voxel may only provide 

sub-optimal results.  

We propose to account for the cross talk between voxels by 

posing the recovery of the spectra at all the voxels as a single 

recovery problem. In addition, since it is often difficult to 

differentiate the metabolite and baseline signals in voxels with 

large inhomogeneity, we combine the deconvolution and 

baseline removal into a single algorithm. To ensure the validity 

of (5), we propose to recover the spectra on a fine spatial grid. 

We model the field-map-induced distortion at each voxel as 

the multiplication of the x-t space data by damped 

exponentials as shown in (6) and recover the spectra using the 

iterative algorithm described below. While this approach is 

conceptually similar to reference deconvolution, the main 

difference is its ability to account for the cross talk between 

neighboring voxels as well as integrating the baseline 

suppression.  

B. Spatial Regularization for Well-Posed Reconstructions 

We address the recovery of the signal at the same grid as the 

MRI data 64 64 4x y zN N N× × = × ×  in 256fN =  frequency 

points. Since the number of unknowns is significantly higher 

than the number of measured k-space samples, the problem is 

ill-posed. To make the recovery of [ , ]fv nn  well-posed, we 

pose the reconstruction as a total variation (TV) regularized 

reconstruction scheme [34] 

 { }est arg min TV ( )
v

v v= n ,      s.t.      ˆ ˆv s sε− ≤A , (10) 

where 
2

( , )
ˆ ˆ[ , ]

f
fk

s s k
∈Γ

= ∑ k
k  and Γ  indicates the set of 

acquired Fourier samples restricted in a block of size 

( , , ) (32,32,1)x y zM M M= =M  and 256fN = . The parameter 

ε  is chosen depending on the standard deviation of the 

measurement noise. TV ( )⋅n  denotes the discrete spatial total-

variation norm, which is defined as the 1� -norm of the spatial 

finite differences: 

 
1

22 2

,

TV ( )

f

x y z

n

v v v v v= ∆ = ∆ + ∆ + ∆∑n n

n
�

, (11) 

where xv∆  is the finite difference along the xn  dimension 

[ (1,0,0), ] [ , ]x f fv v n v n∆ = + −n n . We use the subscript n  in 

TV ( )⋅n  to indicate that only spatial gradients are penalized. It 

is common practice to reformulate (10) as 

 { }2
ˆarg min TV ( )

v

v v s vλ λ= − + nA� . (12) 

where λ  is chosen to satisfy ˆ ˆv s sε− ≤A . We propose to 

minimize this criterion using an iterative reweighted algorithm, 

discussed in Section IV. 

C. Reduction of Spectral Leakage Using High-Resolution 

Spatial Priors 

The spectral components of the MRSI signal are 

significantly different in various spatial regions. For example, 
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the extra-cranial regions are free of metabolites, while they 

contain the strong lipid signals. In contrast, the fat signal is 

largely absent in brain regions, except in lesions. In (12), the 

finite differences between all neighboring voxels are included 

in the TV norm, including those belonging to regions with 

significantly different spectral properties. This approach can 

lead to cross talk between spatial regions. Although, the use of 

TV norm is known to preserve spatial edges in comparison to 

Tikhonov regularization, the low resolution nature of the 

MRSI encodes makes it difficult for the algorithm to recover 

the edges and thus to prevent cross talk. Since the locations of 

these spatial regions are readily available from the Dixon MRI 

data, we propose to use the supports of fat and brain regions to 

reduce the cross talk between these regions.  

We denote the mutually-exclusive spatial support regions by 

kΩ ; 1, ,k K= � . In addition, we indicate the set by 

1{ , , }K= Ω ΩΩ …  and denote 
1

K

ii=
Ω = Ω∪ . We replace the 

TV penalty in (10) as the sum of the TV norms of the 

coefficients in different spatial compartments.  

 
1

1

1

TV ( ) k

K

k

v v
−

Ω

=

= ∆∑Ω

n n
�

. (13) 

In this paper, we restrict 2K = , where the spatial regions 

correspond to fat and brain. Moreover, we apply the TV norm 

to 1Ω . If the boundaries of gray-matter, white-matter, and CSF 

are available, this information can be additionally injected into 

the algorithm by increasing the number of spatial 

compartments; this can further improve the reconstructions.  In 

the new definition of the gradient, the finite difference 

operators k
x
Ω∆ , k

y
Ω∆ , and k

z
Ω∆ are modified such that the 

differences between neighboring voxels are non-zero only if 

both the voxels are in kΩ . For example, 

 
[ (1,0,0), ] [ , ]; , (1,0,0)

0, else
i f f k

x

v n v n
v

Ω + − + ∈Ω
∆ = 



n n n n
. 

  (14) 

With this modification, we rewrite the optimization problem as 

 { }2
ˆarg min TV ( )

v

v v s vλ λ= − + Ω

nB . (15) 

Here, the operator Ω=B AM , where ΩM  is the masking 

operator, defined as 

 
[ , ],

[ , ]
0, else

f

f

v n
v nΩ

∈Ω
= 


n n
nM . (16) 

In (15), we constrain the reconstructions to be finitely 

supported to Ω . 

We carefully designed the spin echo and the EPSI 

sequences to reduce any spatial mismatch between the 

anatomical priors and MRSI data. In this study, we ignore the 

motion between the scans. However, mismatches between the 

scans can be accounted by modeling it as an affine 

deformation as in [20]. 

D. Constraining the Reconstructions Using a Sparse 

Spectral Model 

The reconstruction of the spectral signal from the 

inhomogeneity corrupted data is analogous to spectral 

deconvolution procedure [21], [27] as discussed in Section III-

A. Similar to any deconvolution problem, the recovery of the 

signal is ill-conditioned if the filter attenuates several 

frequency components. In similar cases, many researchers 

have proposed to exploit the sparsity of the signal to make the 

problem well-posed [3], [7]. 

We propose to exploit the sparse nature of the spectral lines 

to make the recovery of the spectra well-conditioned in regions 

with large inhomogeneity. The sparsity of the spectra was used 

in [16] to reconstruct hyperpolarized C-13 MRSI data from 

undersampled k-space data. In contrast to hyperpolarized 

MRSI, the proton MRSI signal is significantly noisier and is 

corrupted by several additional components such as a) residual 

water signal, b) baseline due to macro-molecules, and c) 

smoothly varying fat signal. Fig. 1 depicts an example of such 

a spectral line of in vivo brain data, reconstructed with (15). 

We model the MRSI signal at the n th voxel as a linear 

combination of spikes and polynomials: 

 

1

0
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1

0
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[ , ] [ , ] [ ]
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f k fk
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γ

−

=
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=

= −

+ +

∑

∑
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n

�����������

�����������

, (17) 

Here, we use shifted Kronecker delta functions to capture the 

spikes, while discrete Chebyshev polynomials of the first kind 

Fig. 1. (a) A typical spectrum of the brain reconstructed from the water-suppressed MRSI data using (15). Here we used TE 40ms=  and TR 2s= . The shaded 

area shows the region of interest (ROI) with the metabolite peaks. Note that the spectrum is centered at zero. ROI is set before shifting the spectrum. (b) 

Zoomed version of a region of (a) indicated by a box. (c) The same spectrum reconstructed using the proposed scheme of (19). Metabolites and the 

corresponding baseline are shown in solid and dashed lines, respectively. 

Fat Leakage 

 (a)                            (b)                 (c) 
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of order pN  were used to capture the baseline signal. Note 

that there are clearly other options to be utilized in the 

dictionary such as splines, wavelets, etc. We chose 

polynomials for their simplicity. The Chebyshev polynomials 

are recursively defined in the range [ 1,1]f ∈ −  as 

 

0

1

1 1

( ) 1,

( ) ,

( ) 2 ( ) ( ).i i i

f

f f

f f f f

η

η

η η η+ −

=

=

= −

 

We define the discrete version of these polynomials with a 

support limited to a range of [ , ]f a bn n n∈  as 

 

2
, [ ]

[ ]

0, else

f a b

i f a b

i b a

n n n
n n n

n n n
η

γ

− −  
∈ −  

= −  



. (18) 

Since the estimation of f pN N+  coefficients ( [ , ]fw nn  for 

0 1f f pn N N≤ ≤ + − ) at each spatial voxel n  from fN  data 

samples is ill-posed, we formulate the reconstruction as a 

sparse optimization scheme 

 { }1 2 1

2

, 1 2ˆarg min TV ( )
w

w v s w wλ λ λ λ= − + +Ω

nB�
�

. (19) 

Here, (17) provides the relationship between the coefficients 

v  and w . 2λ  is a parameter that controls the sparsity of the 

spectral signal. The proposed sparse model does not dictate the 

number of Diracs required representing a single metabolite 

peak (e.g. NAA). In practice, a single peak may be represented 

by 2-3 Diracs, thus capturing the width of the peak due to 2T  

or *
2T  variations. To enable the accurate representation of the 

baseline with few polynomials, we limit their support to a 

subregion of the chemical shift frequencies, corresponding to 

the metabolites, as shown in Fig. 1(a). Note that we excluded 

the water peak from this subregion. If this range is included, 

the polynomials will fit to the huge water signal, thus biasing 

the estimates in the spectral range of the metabolites.  

Fig. 1(c) shows the reconstructed spectrum using the 

proposed scheme of (19). It is seen that the proposed algorithm 

provides a decomposition of the original signal into baseline 

and metabolite components. This approach is qualitatively 

similar to the standard schemes, where a polynomial is fitted to 

the reconstructed signal and removed [37], [40]. However, the 

main difference is that we have this step integrated into the 

reconstruction scheme. This enables us to improve the 

robustness of the reconstructions in regions with significant 

inhomogeneity and to be consistent with the data while 

performing the baseline suppression. 

It is clear that the proper choice of the regularization 

parameters is key to good reconstructions. We choose the 

parameters 1λ  and 2λ  such that 

 ˆ ˆv s sε− ≤B . (20) 

We have one degree of freedom in choosing  1λ  and 2λ . In 

our experience, using a smaller value of 2 10.1λ λ≈  is often 

sufficient to ensure the decomposition of v  into baseline and 

metabolites components and provide reasonable suppression of 

artifacts and noise.  

 

IV. IMPLEMENTATION 

A. Efficient Implementation of the Forward Model 

The forward model and its transpose have to be evaluated 

during each iteration of the optimization algorithm. Hence, 

their efficient implementation is essential to realize a fast 

algorithm. We rewrite (6) as 

 

2[ ] 2
model

ˆ ˆˆ ( , ) ( ) ( ) [ , ]

ˆ ˆ( . ) ( ) ; ( , )

f

f

n f

f

j tnt j
f
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v t

πα πφ ψ

φ ψ α

−− −=

= ∈ Γ

∑ ∑n k n

n

n

k k n

k

F

A

W F W F

i

���������

���������

.  

  (21) 

nF  and 
fnF  denote the Fourier transforms along the spectral 

and spatial dimensions ( fn  and n ) respectively. Assuming the 

k-space samples to be on the Cartesian grid, these summations 

can be computed efficiently using fast Fourier transforms 

(FFT). In (21), ( )αW  and ˆ ˆ( . )φ ψW  denote point by point 

multiplication by matrices [ ]te α− n  and ˆ ˆ( ) ( )tφ ψk  respectively 

(Since we reconstruct the data on a grid with a much finer 

resolution than the acquired k-space data, we assume that 

ˆ ˆ( ) ( ) 1tφ ψk 
 ). We precompute [ ]te α− n  and use it within the 

iterations. The transpose of the forward model is also 

efficiently implemented using FFTs. 

B. Optimization Algorithm 

We use the iterative reweighted conjugate gradients 

algorithm [12] to minimize (19) and thus derive the optimal 

coefficient vector w . Since the cost function is convex, the 

iterative reweighted (a special case of majorize minimize) 

algorithm for 1� -minimization is guaranteed to converge to the 

global minimum [8]. 

At the i th iteration, we solve the weighted quadratic 

optimization problem 

 

( )

22 2
( 1) ( ) ( ) ( ) ( ) ( )

1 21 2

1

ˆarg min k

i

K
i i i i i i

w k

w v s r w r wλ λΩ+

=

 
= − + ∆ + 

 
∑ nB�

.  (22) 

The weights ( )
1

ir  and ( )
2

ir  at the i th iteration are specified by 

the relations 

 ( )
1

2
( 1)4

1

1
[ , ]
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i
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K i
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r n

w n µΩ −

=

=
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, (23) 
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2

2
( 1)4

1
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2 [ , ]

i
f

i
f

r n

w n µ−

=

+

n

n

. (24) 



 7 

Here, µ  is a small number to avoid division by zero. We solve 

(22) using the conjugate gradients optimization algorithm [29]. 

The iterative reweighted algorithm is initialized with uniform 

weights (0) (0)
1 2r r= = 1 . 

 

V. RESULTS AND DISCUSSION 

In this section, we assess the performance of the algorithm 

using experimental data from a uniform MRSI phantom, 

normal human subject, and a brain cancer patient. We compare 

our results to the standard scheme [36] which consists of the 

following stages: IFFT, Papoulis-Gerchberg (PG) lipid 

extrapolation [30], [14] (for the in vivo data), compensation of 

0B  inhomogeneity by peak shifting using the field map 

obtained from the water-unsuppressed MRSI scan, polynomial 

fitting (polynomials of degree 7  to be consistent with our 

scheme) to remove baseline, and spatial apodization to 

suppress noise. Since there is no fat signal in the spectroscopy 

phantom, we omit the PG extrapolation step in these 

experiments. The details of the PG algorithm are provided in 

the Appendix to make the paper self-contained. 

All experiments were performed on a Siemens 3T Trio 

scanner using the EPSI sequence. In experiments 2-4 (Sections 

V-B – V-D), we acquire both the water-suppressed (with 9  

averages) and water-unsuppressed MRSI data with 2secTR = , 

40msecTE = , matrix size 32 32 256x y fM M N× × = × × , 

slice thickness 1cm= , spectral bandwidth 1kHz= , and total 

scan time of 10.7 min . We employed CHESS sequence in the 

MR scanner for water suppression. The water-unsuppressed 

MRSI is used for 0B  correction in the standard approach. The 

accompanying high resolution Dixon MR scan is acquired over 

the same FOV with 2secTR = , 40msecTE = , and matrix size 

                                                                      (c) 

          (d)                                               (e) 

     (a)                        (b) 

Fig. 2. Quantitative comparison: Moderate distortion (see Section V-A). (a) The water image. The spectra from the voxels indicated by the blue dots are shown 

in (c)-(e). (b) Local standard deviation of the estimated high resolution field map. (c) The high resolution (32x32x2) spectra, which is chosen as the ground 

truth. (d) The spectra reconstructed using the proposed scheme from 16x16x1 data. (e) The spectra reconstructed using the standard scheme from 16x16x1 data. 

Difference spectra between the ground truth and the proposed and standard schemes are scaled by 2 and also shown in (d) and (e) in brown color. Note that the 

proposed scheme provides much lower errors at the boxes outlined in red. The standard reconstruction is slightly better than the proposed results only in one 

box, which is outlined in yellow. These observations are also consistent with the error maps shown in Fig. 3.   
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64 64 4x y zN N N× × = × × . We process this data by the 

algorithm in Section II-C to estimate the field map and spatial 

regions of water and fat. The study was approved by the 

research subjects review board at the University of Rochester 

and informed consents were obtained from the human subjects. 

We did not use any fat suppression methods (e.g. inversion 

recovery or spatial saturation).  

The proposed algorithm proceeds by iteratively matching 

the actual measurements ŝ  to the simulated measurements 

(measurements made on the signal model v , assuming the 

forward model B ). The quality of the fit is determined by the 

norm of the residual error ˆ ˆr v s= −B , denoted by ˆ|| ||r . We 

refer to this quantity, relative to the norm of ŝ  as 

ˆ ˆ|| || || ||r sε = . We map the residual error in the Fourier domain 

to the spatial domain by an IFFT to qualitatively appreciate the 

quality of the fit to the model at each voxel. We denote the 

inverse Fourier transform of r̂  as r .  

If r  is structured (i.e., has residual peaks at the same 

locations as the metabolite peaks), it implies that the algorithm 

failed to capture part of the peak; that is, the reconstructions 

are biased. For example, when we apodize (smooth) the data in 

k-space to reduce noise in the standard scheme, the final 

reconstructed spectra becomes less consistent with the actual 

measurements. This is mainly due to the attenuation of higher 

spatial frequencies. We plot the residual signal in both cases 

(proposed and standard schemes) to compare the introduced 

bias.   

The high resolution estimate of the field map can be used to 

predict the line shape distortions at each voxel. One good 

parameter that quantifies the distortion is the local standard 

deviation of the field map within each voxel. This parameter is 

indicative of the line width at the specified voxel ignoring the 

cross-talk between adjacent voxels. Since the standard scheme 

does not correct for the field-map-induced variations, the line 

shapes in the regions with high standard deviation experience 

significant degradations and losses. While the proposed 

scheme is more robust to field inhomogeneity distortions, its 

ability to recover the spectra decreases as the distortions 

increase. For each of the experiments, we show the local 

standard deviation map to enable the reader to focus on areas 

with higher distortion.  

A. Quantitative Comparison: Moderate Field Map 

Distortion 

The main goal of this experiment is to quantitatively 

compare the proposed scheme with the standard scheme. We 

assume the MRSI data of a cylindrical spectroscopy phantom, 

acquired with a matrix size of 32 32 2× ×  ( x y zN N N× × ) and 

256 spectral samples with 31 averages as the ground truth. 

This acquisition (with water suppression and TE 40ms= , 

TR 2s= , 3FOV 160 160 10mm= × × ) took roughly 1 hour of 

scan time and is relatively free of measurement noise. The 

slice was chosen in a region with moderate inhomogeneity so 

that the ground truth dataset was not significantly distorted. 

The phantom contained water and three main brain 

metabolites: choline (Cho), creatine (Cr), and N-acetyl-

aspartate (NAA).  

We acquired a low resolution dataset at a matrix size of 

16 16 1× ×  and with the same acquisition parameters as above. 

We reconstructed the dataset using the proposed and the 

standard schemes and we compared the results of both 

algorithms with the high resolution dataset. The proposed 

scheme used the field map extracted at the matrix size 

32 32 2× ×  to recover the data, while the 0B  estimate from a 

water reference scan at 16 16 1× ×  matrix size was used to 

correct the standard reconstruction. We chose the 

regularization parameters as 1 0.1λ =  and 2 0.002λ =  to 

obtain 2.85%ε = . 

In Fig. 2 we show a few reconstructed spectra using the 

proposed and standard schemes and compare them with the 

ground truth shown in Fig. 2(c). As seen, the standard 

approach shows higher error especially at the region indicated 

with red boxes in Fig. 2(d). Overall, the proposed scheme 

provides line shapes that are closer to the high resolution 

ground truth spectra at most voxels. Fig. 3 shows the peak 

integral maps and the errors (differences between the ground 

truth and the reconstructions) estimated from the proposed and 

standard reconstructions. We show the standard deviation of 

the field map in Fig. 3(d). It is clear that the proposed 

reconstruction in Fig. 3(b) yields lower error, when compared 

to the standard approach, shown in Fig. 3(c). The average 

reduction in measurement errors for the peak integral maps of 

Cho, Cr, and NAA are 16% , 21% , and 36% , respectively.  

In this experiment, we restricted the recovery of the spectra 

Fig. 3.  Quantitative comparison: Moderate distortion (see Section V-A)-

Peak integral maps and the error maps of NAA. (a) The peak integral map 

estimated from the ground truth. (b) Peak integral map using the proposed 

method. (c) Peak integral map using the standard scheme. (d) Local standard 

deviation of the estimated high resolution field map. (e) Error map for the 

proposed scheme [difference with the ground truth in (a)]. (f) Error map for 

the low resolution standard reconstruction. The amplitudes of the errors are 

scaled by two for better visualization. 
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to a grid size of 32 32 2× × , mainly to obtain noise-free 

ground truth. The reconstruction of the spectra at a 32 32 2× ×  

grid limited the ability of the scheme to correct for field 

inhomogeneity distortions. We will consider the recovery of 

the spectra at a finer grid size in the remaining experiments 

and qualitatively demonstrate the potential of the algorithm in 

correcting for larger distortions. 

B. Qualitative Comparison: Large Field Inhomogeneity 

Distortion 

In this experiment we used the same spectroscopy phantom, 

but we deliberately selected a slice with a larger magnetic field 

inhomogeneity to demonstrate the capability of the algorithm 

in correcting large field inhomogeneity distortions. 

Specifically, the slice included an air bubble on the top and is 

closer to the opening of the bottle. Note from Fig. 4(b) that the 

standard deviation of the field map is much higher than 

Fig. 3(d). This experiment enables us to demonstrate the 

potential of the algorithm in correcting field inhomogeneity 

induced distortions. We acquired a slice having a FOV of 
3140 140 10 mm× × . Three iterations of the auto shim routine 

on the MRI console were run before the MRSI scans to make 

the field as uniform as possible. We chose the regularization 

parameters ( 1 0.05λ =  and 2 0.002λ = ) to obtain 0.05ε = ; 

the noise standard deviation was assumed to be 5%  of the 

standard deviation of the measurements. We used 8pN =  [the 

number of polynomials in (17)] for all the reconstructions. We 

qualitatively compare the results to reconstructions obtained 

with the standard scheme, discussed earlier.  

Fig. 4(a) shows the field map estimates at the first and last 

slices. It is seen that the magnetic field changes significantly 

along the slice thickness, even after three iterations of auto 

shim. This emphasizes the need for employing a 3-D field map 

in the reconstruction. A few reconstructed spectra are shown in 

Fig. 4(f)-(g). Improved reconstructed line shapes are observed 

for the proposed method, especially where the field map 

variation is high. We model the reconstructed NAA peak as a 

Gaussian and estimate its standard deviation to obtain a 

quantitative measure for the line width. In Fig. 4(c)-(d) we 

show the estimated line width for the proposed and standard 

schemes. As seen, the proposed scheme yields significantly 

narrower line widths. In Fig. 5(c)-(e) we display the metabolite 

maps, obtained using peak integration. We average the 

reconstructions of the individual slices provided by the 

proposed scheme for display. It is seen that the standard 

reconstructions suffer from significant losses at regions with 

large field inhomogeneity [see Fig. 5(b)]. In contrast, the 

proposed scheme is capable of recovering the signal 

0

5

10

15

Fig. 4. Qualitative comparison: Large distortion (see Section V-B). (a) Field map estimate of the metabolite phantom at slices 1 and 4. The color bars indicate 

the field map amplitude in terms of Hz. (b) Local standard deviation of the estimated field map. (c) Histogram plots of the line width of NAA in blue and red 

colors for the proposed and standard methods, respectively. The line widths are estimated from the reconstructed spectra shown in (f) and (g). 

(d) Map of the line width estimates in (c) for the proposed (Left) and standard (Right) methods. (e) Anatomy. (f) The reconstructed spectra at the voxels shown 

by the blue dots in (e) using the proposed method. The corresponding residual error r  is shown below each spectrum in brown. (g) The spectra at the same 

voxels reconstructed using the standard method along with the residual error due to spatial apodization shown in brown color.  Note that the spectra obtained 

with the standard scheme are broadened in the regions with high inhomogeneity.  
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reasonably well. This is also clear from the plot of the 

reconstructed spectra. 

C. Qualitative Comparisons on a Healthy Subject 

The main objective of this experiment is to demonstrate the 

utility of the algorithm on a normal human subject. We 

acquired the brain MRSI using the same settings as above, 

except the FOV was 3210 210 10 mm× × . To test the 

feasibility of the proposed algorithm in minimizing fat leakage, 

we did not use inversion recovery or spatial suppression 

schemes to suppress the lipids; this is the main difference of 

the acquisition scheme with standard MRSI schemes. As in the 

previous case, we used three iterations of auto shim before the 

MRSI scan. We reconstructed the data using 1 0.05λ =  and 

2 0.002λ = , resulting in 2.3%ε = . As in the previous case, 

we compared the algorithm with the standard method, where 

data consistency error is 5.6%ε = .  

The estimated field map and its local standard deviation, 

together with the anatomical images and line width estimates 

of the NAA peak are shown in Fig. 6(a)-(e). Note that the 

anatomy and field map varies significantly along the slice 

thickness, especially in the extra-cranial regions. We show the 

reconstructed spectra at the voxels within the brain, indicated 

by the dots in Fig. 6(g), using the proposed scheme and the 

standard method in Fig. 6(f) and (h), respectively. It is seen 

that the proposed method gives less distorted line shapes at 

almost all locations. In contrast, the standard scheme provides 

significantly degraded and noisy peaks, especially at locations 

close to the boundary of the brain (where the standard 

deviation of the field map is large). The spectral quality of the 

Fourier reconstructions can be improved by using larger 

spatial voxels, higher spectral resolution, and using 

multichannel acquisition. However, the proposed scheme is 

capable of recovering the data well in the current setup. 

Since the ground truth is not available in this case, it is not 

possible to perform quantitative comparisons. Unfortunately, 

the proposed scheme is not capable of completely removing 

the fat leakage; although, the results are comparable with the 

PG scheme. However, it is successful in preventing the fat 

signal from corrupting the major metabolites (NAA, creatine, 

and choline). The residual error r  for our scheme is at noise 

level, indicating that the proposed scheme is not introducing 

any systematic biases in the results. 

In Fig. 7 we demonstrate the metabolite maps estimated 

from the proposed and standard approached using peak 

integration. Qualitatively, the proposed method [see Fig. 7(c)] 

provides less noisy estimates. In contrast, the standard 

approach estimates [see Fig. 7(d)] are noisy and manifest some 

ringing oscillations in the brain region due to remaining fat 

leakage. Note that the standard scheme suffers from significant 

losses close to the brain boundary (indicated by the green 

curve), consistent with the high intensity regions in the 

standard deviation map in Fig. 7(b). In contrast, the proposed 

scheme can recover the spectra in these regions, even though 

the recovery is not perfect.  

D. Qualitative Comparisons on a Subject with Brain 

Cancer 

The main objective of this experiment is to demonstrate the 

ability of the algorithm in recovering the spatial variations in 

the metabolite concentrations due to lesions. In this 

experiment, we reconstruct the MRSI data from a subject with 

brain cancer. The subject had a brain surgery to remove the 

tumor and underwent three weeks of radiation therapy prior to 

the scan. The approximate location of the region from which 

the tumor is surgically removed is indicated on the anatomical 

slices shown in Fig. 9(a). We expect no metabolites in that 

region. We acquired a slice with a FOV of 
3220 220 10 mm× ×  and we assumed 1 0.05λ =  and 

2 0.002λ =  resulting in 3%ε = , in comparison with 5%ε =  

for the standard method.  

Fig. 8(c)-(d) depicts the line width of the NAA peak 

estimated from the reconstructed spectra. We observe that the 

proposed scheme significantly reduces the line widths. In 

Fig. 8(e)-(f), we show the spectra at the locations 

corresponding to the dots in Fig. 8(a), along with the 

corresponding residual error r . We zoomed in on the myo-

Inositol to NAA range for better visualization.  It is seen that 

the proposed scheme can recover the spectra from almost all 

the brain regions reasonably well. The standard 

reconstructions are fair in the lower regions of the brain, while 

(c)                       (d)              (e) 

Fig. 5. Qualitative comparison: Large distortion (see Section V-B). (a) 

Anatomy. (b) Local standard deviation of the estimated field map. (c)-(e) 

Reconstructed peak maps of the metabolites in the phantom using the 

proposed scheme (Top row) and the standard scheme (Bottom row). All peak 

maps are normalized to one and the share same color bar. 
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they are heavily distorted in regions close to the tumor. This is 

expected due to the large variations in field inhomogeneity in 

these regions seen from the standard deviation maps. The low 

noise-like residual errors r  with the proposed scheme clearly 

indicates that the proposed scheme is not biasing the results or 

missing important peaks.  

In Fig. 9, we show the metabolite peak integral maps using 

the proposed and standard reconstruction schemes. It is seen 

that the proposed scheme can reliably recover the spatial 

variations in the metabolite concentrations due to the lesions as 

well as ventricles. Note that we do not use the spatial 

information of the ventricles and the lesions to generate the 

spatial model. This clearly demonstrates the ability of the 

proposed scheme to reliably recover small lesions, which may 

not be visible in the anatomical images. It is seen that the 

Fourier maps of weak metabolite peaks such as myo-Inositol 

(labeled with “myo”) are highly noisy. In contrast, the 

proposed scheme can recover almost all the maps reasonably 

well. This demonstrates the SNR improvement obtained with 

the proposed scheme. 

E. Discussion 

It is clear from the comparisons in the previous section that 

the main advantages of the proposed approach are 

- Efficient field map compensation resulting in better line 

shapes and reduction of losses, 

- Noise reduction, while maintaining the consistency to the 

measurements, 

- Improved suppression of fat leakage,  

- Ability to capture lesions, and  

- Inclusion of all the processing steps in a unified 

framework. 

The ability of the proposed scheme to give high quality 

reconstructions, while keeping the residual errors comparable 

or lower than the standard scheme, demonstrates that the 

dominant components of the error in standard reconstructions 

are truncation artifacts and field-inhomogeneity-induced 

distortions, as opposed to measurement noise.  

The standard deviation map [shown e.g. in Figs. 5(b), 7(b), 

and 9(b)] is a good indicator of the line shape distortion at a 

given voxel, in the absence of field inhomogeneity 

compensation. This measure correlates well in regions where 

the standard scheme demonstrates higher losses/distortions. 

Even though the proposed scheme is much more robust to field 

map distortions, its ability to recover the actual spectrum 

decreases as the distortions increase. Note from the line width 

Fig. 6. Qualitative comparison on a healthy subject (see Section V-C). (a) Estimated masks for slices 1 and 4 showing fat (in white color) and water (in gray 

color) regions. (b) Field map estimates of the brain slices. Magnitude is clipped for better visualization. (c) Local standard deviation of the estimated field map 

in the water region. (d) Histogram plots of the line width of NAA in blue and red colors for the proposed and standard methods, respectively. The line widths are 

estimated from the reconstructed spectra shown in (f) and (h). (e) Map of the line width estimates in (d) for the proposed (Left) and standard (Right) methods. (f) 

A few reconstructed spectral lines at voxels shown in (g) using the proposed method as well as the corresponding residual error r . (h) Same spectra 

reconstructed with the standard method along with the residual error due to spatial apodization shown in brown color.   
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estimates in Figs. 4(d), 6(e), and 8(d) that the proposed scheme 

has difficulty in minimizing the line widths in regions with 

high distortions. Thus, the standard deviation of the field map 

may be used as a qualitative indicator of the uncertainty in the 

peak integral maps. This approach is analogous to rejecting the 

regions with large water line widths [25]. The derivation of 

more accurate theoretical uncertainty measures is not straight 

forward due to the nonlinear nature of the reconstruction 

scheme, and is beyond the scope of this paper. We will focus 

on this problem in the future. In this work, we have only 

focused on comparisons using peak integral maps. Although 

such comparisons are widely accepted by the community [4], 

more rigorous quantitative comparisons using schemes such as 

LCModel [32] may be required to determine the performance 

improvement obtained by the proposed scheme. We will 

perform these in our future work.  

The proposed method was capable of preventing lipid 

leakage onto resonances such as NAA, Creatine, and Choline. 

However, it may have limited capability in imaging 

metabolites close to fat frequency (e.g. Lactate). In this case, 

fat suppression schemes such as inversion recovery may be 

coupled with the current algorithm to further suppress the 

lipids. We used slice selective RF pulses, modulated to the 

NAA frequency, to excite the spins on the slice. Due to 

chemical shift effects, the metabolite resonances other than the 

2 ppm peak of NAA will correspond to different slice 

locations. Therefore, these metabolites experience different 

magnetic fields and the forward model, specified by (6), is less 

accurate for these metabolites. This effect may be mitigated by 

using spatial spectral excitation pulses. We performed all 

experiments reported in this paper using TE 40ms= . Since 

there are no restrictions in our proposed reconstruction for 

shorter echo times, we expect to achieve similar results for 

those cases. This, however, needs to be confirmed by carrying 

out more experiments which we plan to do in the future. 

The disadvantage of our approach compared to the standard 

method is the longer computation time and memory demands. 

The current MATLAB implementation of the reconstruction 

algorithm takes around 6 hours on a Macintosh with 2.4 GHz 

Intel Core 2 CPU and 4GB of memory. However, we are 

confident that these hurdles can be overcome with the recent 

advances in computation hardware. 

VI. CONCLUSION 

In this paper we introduced a new reconstruction scheme for 

MRSI data. In contrast to the classical sequential scheme, we 

combined the reconstruction and post processing steps into a 

single algorithm in our proposed scheme. As a result, we could 

inject a range of prior information into the reconstruction 

scheme leading to significantly improved reconstructions. We 

compared the proposed algorithm with the state-of-the-art 

approach on phantom and human brain MRSI data. The 

comparisons demonstrated a significant improvement in the 

reconstructions, while retaining the consistency to the 

measured data. This is achieved by minimizing the dominant 

error components, which are the artifacts due to field-

inhomogeneity-induced distortions, spectral leakage, and 

truncation artifacts. 
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Fig. 9. Qualitative comparison on a cancer patient (see Section V-D). (a) Anatomy. The region indicated with an ellipse is the place of the removed tumor. (b) 

Local standard deviation of the estimated field map in the water region. (c)-(d) Reconstructed metabolite maps of myo, Cho, Cr, and NAA using the proposed 

method (c), and the standard scheme (d).  
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